
Secure Coding Best Practices Part 3

Table of Contents

SEI WEBINAR SERIES | Keeping you informed of the latest solutions .. 2

Carnegie Mellon University... 2

Copyright 2016 Carnegie Mellon University ... 3

Secure Coding Best Practices .. 3

Why Software Security? .. 5

Most Vulnerabilities Are Caused by Programming Errors .. 7

Secure Software Development ... 8

Sources of Software Insecurity ... 9

Unspecified and Undefined Behaviors ... 11

Polling Question .. 12

Adopting Secure Coding Practices .. 15

Tools encourage application of secure coding ... 20

Static Testing – Source code analysis tools ... 21

SCALe Multitool evaluation .. 23

Static Testing – Source code analysis tools ... 24

Conformance Testing .. 25

Polling Question .. 26

Supply Chain Software .. 29

SEI WEBINAR SERIES | Keeping you informed of the latest solutions .. 31

Page 1 of 31

SEI WEBINAR SERIES | Keeping you informed of the latest solutions

#SEIwebinar 1[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

SEI Webinar Series

Carnegie Mellon University

#SEIwebinar 2[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Carnegie Mellon University Notice

This video and all related information and materials (“materials”) are owned by Carnegie Mellon University.
These materials are provided on an “as-is” “as available” basis without any warranties and solely for your
personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of
viewing the video, or using referenced websites, and/or for any consequences or the use by you of such
materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read and
agree to our terms of use (www.sei.cmu.edu/legal/).

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

© 2016 Carnegie Mellon University.

Page 2 of 31

Copyright 2016 Carnegie Mellon University

#SEIwebinar 3[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US
Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0003493

Copyright 2016

Secure Coding Best Practices

#SEIwebinar 65

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

#SEIwebinar © 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.
]

Secure Coding Best
Practices
Robert Schiela

**065 And welcome back to the SEI
virtual event, Lessons Learned from
the Jeep Hack, How to Reduce
Vulnerabilities in Cyber-physical

Page 3 of 31

Systems. Once again, for anyone new
joining us today, the presentation
slides are available in the download
materials tab at the bottom of the
console. For those of you using
Twitter be sure to follow
@CERT_division and use the hashtag
SEIwebinar. And there's a survey tab
there as well as we want you to fill
out that survey as your feedback is
always greatly appreciated.

Our next talk is going to be secure
coding best practices by Bob Schiela.
And Bob's the technical manager
leading the CERT secure coding team
in the Cyber Securities Foundation
Directorate within CERT. Bob has
been working in the field of
information technology, software
development, and software
development education for almost
twenty years. He's been helping to
lead research teams and projects in
cybersecurity foundations for four
years, primarily with the Science of
Cyber Security Group. Prior to joining
the Cyber Security Foundations team,
Bob was a technical advisor of the
director at the SEI. So, Bob you're
doing to talk about what can be done
during development to the security of
software. So, what can be done?

Presenter: Thank you, Shane.

Presenter: Sure.

Presenter: Good afternoon, Mark
and good afternoon to everyone
that's here with us. Thank you for
your time. At the risk of preaching to
the choir, what I'd like to do is set a

Page 4 of 31

little context. And I think this is a lot
of what we've already heard today.
But as it turns out, context is very
important to secure software. And as
it is with solving mazes, sometimes
it's best to start at the end. So, what
I'd like to start off with is thinking
about what are we trying to
accomplish and what are our goals.
Largely, we're trying to avoid
vulnerable software. We're trying to
avoid hackers taking control of our
software, hackers or unintended, or
unauthorized access of data. We're
trying to avoid physical damage in
some cases. And--

Why Software Security?

#SEIwebinar 66
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Why Software Security?

Developed nations’ economies and defense depend, in large part, on the
reliable execution of software
Software is ubiquitous, affecting all aspects of our personal and
professional lives.
Software vulnerabilities are
equally ubiquitous, jeopardizing:

• personal identities
• intellectual property
• consumer trust
• business services, operations, and continuity
• critical infrastructures & government

**066 So, why is this important? As
I said, it's probably obvious to a lot of
the audience here today. But
software is everywhere. It's now
more than ever part of our lives, part
of our economy, part of the way we

Page 5 of 31

live. And we rely, our businesses rely
on software more than ever.
Additionally, software and the risk of
attacks on our software and systems
is ever present. And so, our systems
are now more important than ever
and yet, because of connectivity,
they're able to be attacked. Or, at
least the risk of attack is always
constant.

Additionally, our software is
vulnerable. The software that is in
the field today, and unfortunately
often software that we're developing
today, has vulnerabilities that can be
exploited, again, as unintended use.
Systems that have been built are
being put in environments that were
never expected by the original
designers and developers. Systems,
cyber-physical systems for example,
and controllers are just being bolted
into or bolted on to networks that
provide access that were never part
of the original threat analysis if a
threat analysis was done to the
system, or a risk assessment,
because there is never this-- or there
was not an anticipated mechanism of
getting onto the system through a
network when it was originally
developed.

Page 6 of 31

Most Vulnerabilities Are Caused by Programming Errors

#SEIwebinar 67
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Most Vulnerabilities Are Caused by Programming Errors

64% of the vulnerabilities in the NIST National Vulnerability Database due
to programming errors
• 51% of those were due to classic errors like buffer overflows, cross-site
scripting, injection flaws

Top vulnerabilities include
• Integer overflow
• Buffer overflow
• Uncontrolled Format String
• Missing authentication
• Missing or incorrect authorization
• Reliance on untrusted inputs (aka tainted inputs)

Sources: Heffley/Meunier: Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate Software Security?; cwe.mitre.org/top25
Jan 6, 2015

**067 Additionally, studies have
shown that a substantial number of
vulnerabilities come from programing
errors. These are programming errors
that have been well known for years,
like integer overflow, buffer overflow,
and missing authentication. Some of
these vulnerabilities lead to system
shut down. Some of them may lead
to unauthorized access of data. And
some of them unfortunately may lead
to unanticipated control of your
software end system.

Page 7 of 31

Secure Software Development

#SEIwebinar 68
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Secure Software Development

Secure software development starts with understanding insecure coding
practices, and how these may be exploited.

Insecure designs can lead to “intentional errors”, that is, the code is
correctly implemented but the resulting software contains a vulnerability.

Secure designs require an understanding of functional and non-functional
software requirements.

Secure coding requires an understanding of implementation specifics.

**068 And so, when we think about
how to develop secure software, we
have to think about and understand
insecure coding practices that lead to
exploitable vulnerabilities and
understand them. We also have to
think about the interactions of
insecure designs and security built
from insecure designs and how that
leads to vulnerabilities. And as with
secure designs needing the designers
to understand both functional and
nonfunctional requirements, we also
have to think about, for secure
coding, fully understanding the
implementation specifics.

Presenter: So, Bob, what does
secure coding mean? What does that
really involve?

Page 8 of 31

Sources of Software Insecurity

#SEIwebinar 69
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Sources of Software Insecurity

Absent or minimal consideration of security during all life cycle phases
Complexity, inadequacy, and change
Incorrect or changing assumptions
Not thinking like an attacker
Flawed specifications & designs
Poor implementation of software interfaces
Unintended, unexpected interactions
• with other components
• with the software’s execution environment

Inadequate knowledge of secure coding practices

**069 Presenter: So, secure
coding is a set of best practices to
develop software while avoiding
weaknesses that lead to
vulnerabilities. So, here we're looking
at the sources of insecurity. And
there are many. Across the whole
lifecycle, one common source is how
much are you considering security
through that lifecycle. And frankly,
that's what much of the discussion
today is about, the different phases
of the lifecycle and when we can
consider security, and how to.
Another aspect is complexity of the
software, complexity of the system,
complexity of the design, and in
some cases complexity of the source
code itself.

There's also the issues of changes or
changing assumptions. Again, as I
mentioned before with regard to

Page 9 of 31

what is the anticipated environment
that a software is going to go into,
and what's the anticipated uses. Not
thinking like an attacker, I think Chris
Valasek said this morning something
about he and his partner have a
particular way of thinking when
they're working with these systems
and trying to find issues that helped
him and their research find issues to
break into the Jeep.

Flawed specifications and designs, as
we mentioned, poor implementation
of software interfaces, that includes
input/output to the users. But it also
includes interfaces to other software
components. And unintended and
unexpected interactions, if there's
one common statement that I'm--
common thread across my
presentation, it's going to be
unintended, unanticipated
environments, the systems and
interconnections, communication
interfaces, uses and platforms or
environments that the software has
installed on. Finally, all of this can
lead to what we would call
inadequate knowledge of secure
coding practices. And so, secure
coding practices--

Page 10 of 31

Unspecified and Undefined Behaviors

#SEIwebinar 70
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Unspecified and Undefined Behaviors

implementation-defined behavior - Unspecified behavior whereby each
implementation documents how the choice is made.
unspecified behavior - Behavior for which the standard provides two or
more possibilities and imposes no further requirements on which is chosen
in any instance.
undefined behavior - Behavior, upon use of a nonportable or erroneous
program construct or of erroneous data, for which the standard imposes no
requirements. An example of undefined behavior is the behavior on integer
overflow.

From ISO/IEC 9899-1999.

**070 Require the knowledge and
understanding of the specifics of the
language that you're using in the
software, as well as the behavior and
the implementation of the compilers
and the hardware that's underlying it
with regard to the anticipated
platforms that you're installing. So,
for example, the C language and the
C++ language allow something called
unspecified and undefined behaviors.
Unspecified behaviors are when the
language allows more than one
activity or interpretation to be
considered correct. And undefined is
when the language does not define a
particular interpretation because it
deems whatever happened to not be
correct. So, for example, an integer
overflow is not something that should
happen on the system. And so, the
language deems that as not correct
behavior. These exist to allow

Page 11 of 31

flexibility in the implementations of
the language, so the compilers and
the hardware to try and optimize for
what the systems are trying to
optimize for.

However, that leads to the issue of
portability or whether your code was
written portable or not. Moving your
software from one system to another
might lead to completely unexpected
behavior. And that is often a way that
malicious attackers can take
advantage of your software.

Polling Question

#SEIwebinar 71
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Polling Question

Does your organization use a coding standard for security?
• Yes
• No
• Maybe?

**071 Presenter: So, we're going
to ask a few polling questions as we
were with the earlier presentations.
And the first one we're going to
launch now is, "Does your
organization use coding standards for
security?" So, take about ten to
fifteen seconds to vote. And Bob, you

Page 12 of 31

can keep on presenting. And we'll
circle back for the results.

Presenter: So, Bob you just
mentioned some particular criteria
used by C. What are the roles that
language selection has in secure
coding?

Presenter: Sure. So first, I would
state that all languages have some
semantic interpretation in their
implementation. And all languages
can be written securely or insecurely.
There is no such thing as a secure or
an insecure language. It's all about
how you use the language. The
devil's in the detail with the
language, the compiler, and the
interpreter. Though there's
commonalities among secure coding
best practices, the best practices and
the rules themselves are language
dependent. And in many cases,
they're also platform and
implementation dependent.

That said, some languages have a
primary concern of performance. C
would be one of the ones that I'd
think of as it's prioritized for
performance. Others have security
and other qualities to make software
writing easier. That's often a primary
tradeoff, easier for the computer to
run for performance or easier to write
and maintain. Your system software
may have very precise timing
requirements, for example. And so,
writing-- using a language that has a
run time environment that is not
precise may not be suitable for that
particular use. But with the power to

Page 13 of 31

manipulate the machine comes great
responsibility not to mislead the
machine or to allow someone or
something else to mislead the
machine.

Presenter: All right, to wrap up the
polling question. I know we're going
to go to another one here in a
second. But the question was, "Does
your organization use a coding
standard for security," forty-six
percent yes, thirty-four percent no,
and twenty percent maybe or not
sure.

Presenter: So, of that-- now, I don't
know how many developers-- what
the profile of our audience is. But I
threw the maybe question in almost
as a laugh. And I'm curious, if that's
the people that answered maybe are
just not the developer. They're either
managers, or architects, or whatnot.

Presenter: Feel free to type that in
the question and window if you're
one of the ones that were maybe,
and with what role you have, or why
you answered that way. So, the next
polling question will be up on your
screen now. We've got in the
language there a little bit. So, the
question is, "What programming
language do you work with most in
your organization?" And that is--
there's quite a list there. So, take
about fifteen or twenty seconds to
vote. We'll turn it back to Mark and
Bob.

Page 14 of 31

Adopting Secure Coding Practices

#SEIwebinar 73
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Adopting Secure Coding Practices

Secure Coding Infrastructure
• Defining Secure Coding Practices
• Influencing Language Standards
• Influencing Tool Vendors

People
• Training

Processes
• Coding Standards and Security Standards, Testing

Technology
• Tools: IDE’s and Analyzers
• Automated transformation and remediation

**073 Presenter: Though I think
someone feels that they want to put
in some more information in the box,
I'd be curious to know which coding
standard they use for security.
There's a lot of coding standards for
style, and a couple for safety. But
since half of our audience says
they're using them for security, that
would be understand as well.

Presenter: Yes. So, one of the
aspects with secure coding is trying
to understand how can it help you.
And that's what that question sort of
leans to. And the ones that said
either that they don't, or are not
using secure coding standards,
and/or that they may or may not be,
it would also be interesting to
understand why. But one of the
issues is barriers of adopting secure
coding standards. And so, we've been

Page 15 of 31

doing several things to try to improve
and reduce those barriers. In
particular, a lot of work goes into
what I call secure coding
infrastructure. This is basically
developing, and understanding of the
languages, and the compilers, and
the specifics that we already talked
about. It's also codifying best
practices and defining and developing
the roles and recommendations for
those languages and those platforms.
There's a lot of work, as with much
infrastructure, that needs to continue
to go into that to keep things
relevant and up to date.

Additionally, the language standard
committees have been adding
security aspects to the language. In
particular, for C for example, we the
SEI and CERT have helped with the C
technical specification 17-9-61, which
is a C secure coding standard into the
language. Now, that standard is
intended to be used by vendors and
to try and help with regard to
conformance. But it also ends up
helping developers develop more
secure software.

And finally, we and others are
working with tool vendors. And the
vendors are themselves trying to
improve their tools to improve the
ease, efficiency, and effectiveness of
developers to apply secure coding
practices, not just in tests, but also in
earlier phases in the, for example,
the IDEs.

Presenter: Just to wrap up the
polling question quickly Bob, the

Page 16 of 31

majority was fifty percent C, twenty-
four percent C ++, and then Java at
twenty-eight percent were the big
returnees.

Presenter: Okay. So, I think that for
how to help an organization adopt
secure coding practices, the most
important aspect is their people.
Their people have more influence
into the security of their software
than any other aspect. And so,
training people on secure coding
practices and on correct tool use is
very important. Many software
developers have been self-taught.
Some have been taught directly. But
very few have been taught secure
coding practices. They generally
know how to functionally code but
not to code securely. And so, helping
and training your workforce to
understand secure coding practices is
very important. Also, helping them to
understand the languages and the
semantic meanings between the
software and the hardware often is
also helpful as well because it's a
detail that often the developers don't
know.

Presenter: Have you seen
organizational barriers to adopting
secure coding? These look like sort of
some of the technical elements that
have to be met in order to adopt it.

Presenter: So, certainly from a
marketing perspective, it seems that
there is a priority now for functional
release, for speed to market with
functionality. I think that as aspects,
in particular as the risks keep

Page 17 of 31

growing-- as you mentioned earlier,
there are several now cyber-physical
attacks that have caused physical
damage, and the Sony hack, and
OPM. As more and more attacks
actually affect more and more
people, I think adding aspects to
security of the software is going to
become more important as the
companies realize the risk that
they're under.

Right now, there is-- sorry, there has
not been a lot of precedence for
companies to pay a lot of risk
compared to the amount of economic
damage that has happened, for
example Sony. There's been studies
on the economic damage compared
to what Sony paid its users. Now,
leaders of companies sometimes
have lost their jobs. But there hasn't
been a lot of precedence for risk to
actually be realized to companies. As
that happens, I think security will
become a higher quality attribute
compared to the functionality and the
speed to release.

So, additionally to improving the-- or
reducing the barriers for the adoption
of people is tools and automation.
And this also I think goes to that
question of why are organizations not
currently worried about security as
much as functionality. It's hard. It's
not easy. The tools don't currently
make it easy for developers or
testers. And a lot of the tools right
now have a low signal to noise ratio.
And the tools need to be improved.
That's something that I think tool
vendors are currently working on.

Page 18 of 31

Additionally, organizations should still
be adding these processes to their
repertoire. So, they should be
considering coding standards and
coding reviews to try and improve
the quality of the code because
quality of code leads to less
weaknesses, which leads to less
vulnerabilities.

Presenter: What did you mean
when you commented on you need
to improve the signal to noise ratio?

Presenter: Ah, so a lot of tools--
actually, can we hold that question?
And I will answer it in a moment. But
that's a great question. And I already
have an answer kind of queued up.
What I wanted to do just to finish
this off is to kind of lead into a
further discussion of tools and just
mention that using tools such as
integrated development
environments that provide alerts to
users and paying attention to those
alerts to try and improve the quality
of your software is important as well
as using static analyzers or dynamic
analyzers to improve the security.
We're also working on tools that try
to automate changing of code,
transforming of code, and
remediation of errors with regard to
error handling.

Page 19 of 31

Tools encourage application of secure coding

#SEIwebinar 74[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Moving rules into IDEs improves application of
secure coding:
• Early feedback corrects errors on introduction.
• Exceptions are understood in context.

Adoption of secure coding IDEs
• help deploy tools
• training on tools
• extend tools to meet targeted needs

Tools encourage application of secure coding

**074 But what I wanted to do was
dig a little deeper with regard to tool
use, which leads to that question of
currently a lot of the alerts that tools
provide to developers and testers are
noisy. What I mean by noisy is
they're false positives. They tell you
something might be wrong when in
fact there is nothing wrong. Or,
whatever might be wrong is not
going to lead to a vulnerability. And a
lot of the tools simply aren't precise
enough to give alerts that-- or at
least a high proportion of alerts that
actually are issues. There's certain
identifiers in code that might suggest
a particular issue. But in fact, there's
also perfectly good reasons to do
things in those ways if you're doing
them the correct way. And often
software analyzers can't tell the
difference. So, they give you an
abundance of alerts.

Page 20 of 31

Now, one thing that we suggest is
that static analyzers in particular are
often particularly optimized for
specific types of errors. And so, they
find types of errors very well and try
to reduce the number of false
positives of certain errors. But at the
same time, they might miss errors
that they should catch. And so we
recommend using multiple static
analyzers to get better coverage of
different types of errors. When doing
that--

Static Testing – Source code analysis tools

#SEIwebinar 76

Static Testing – Source code analysis tools

Secure Code Analysis Laboratory
(SCALe)
• C, C++, Java, PERL, Python,
Android rule conformance
checking

• Thread safety analysis
• Information flows across Android
applications

• Operating system call flows

**076 Presenter: Do you have any
feeling for what a typical coverage is
for a tool?

Presenter: I'm not sure I
understand your question. What do
you mean by that?

Page 21 of 31

Presenter: So, I'll pick a number out
of the air. Let's pretend that there's a
hundred different kinds of problems
that one might find.

Presenter: Sure.

Presenter: Will the typical tool find
five, ten, fifty of those kinds?

Presenter: Sure. Sure. So, my
experience is that the tools-- there's
a very wide range of tools. Many of
the tools will find-- so, like you said,
if we categorized to a hundred
different types, many of the tools will
find roughly twenty-five to fifty, the
better tools. There aren't too many, if
any tools that will find more than fifty
percent of the types with one
particular tool. And so, adding
multiple tools might get you to a sixty
or seventy percent coverage of the
types of issues. Some of the issues
simply cannot be found with tools.
What I mean by that is there is no
way for the computer to distinguish
proper use versus improper use. But
that's about the rough percentage I
would say with regard to the tool
use.

Page 22 of 31

SCALe Multitool evaluation

#SEIwebinar 77

SCALe Multitool evaluation

Improve expert review productivity
by focusing on high priority violations
Filter select secure coding rule
violations
• Eliminate irrelevant diagnostics
• Convert to common CERT Secure
Coding rule labeling

Single view into code and all
diagnostics
Maintain record of decisions

**077 And so, one of the things that
using multiple analyzers, a problem
that that creates is, as I said, there's
this false positive issue, this noise to
signal ratio issue. Using multiple
analyzers is just going to create more
noise. And so, what we recommend,
and we have a tool that can help with
this, is aggregating the output of the
tools, filtering and prioritizing the
tools based on previous data and
information that we know about the
different tools and what rules, what
issues they're better at finding, and
paying attention to the ones that are
most important as well as paying
attention to the ones that have the
highest risk with regard to what will
happen if a weakness of this type
gets through the software.

Page 23 of 31

Static Testing – Source code analysis tools

#SEIwebinar 76

Static Testing – Source code analysis tools

Secure Code Analysis Laboratory
(SCALe)
• C, C++, Java, PERL, Python,
Android rule conformance
checking

• Thread safety analysis
• Information flows across Android
applications

• Operating system call flows

**076 We also have a tool that
helps with regard to our coverage of
analyzing software using and
aggregating all of the output of these
static analyzers as I mentioned that
helps with several languages
including C, C++, Java, and Python.

Page 24 of 31

Conformance Testing

#SEIwebinar 75
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Conformance Testing

The use of secure coding standards defines a proscriptive set of rules and
recommendations to which the source code can be evaluated for compliance.
For each secure coding standard, the source code is certified as provably
nonconforming, conforming, or provably conforming against each guideline in the
standard:

Evaluation violations of a particular rule ends when a “provably nonconforming”
violation is discovered.

Provably
nonconforming

The code is provably nonconforming if one or more violations of a rule
are discovered for which no deviation has been allowed.

Conforming The code is conforming if no violations of a rule can be identified.

Provably
conforming

Finally, the code is provably conforming if the code has been verified to
adhere to the rule in all possible cases.

**075 The tool actually works with
other languages. The issue is that we
don't currently have rules for other
languages. And as I mentioned with
the software infrastructure issue is
the care and feeding in development
of new roles for new languages, or
updating roles as languages change
over time.

Another aspect or process that we
recommend-- well, as we said earlier,
it was having and using a set of
secure coding rules, your own
tailored version, but also having a
security policy, and then using those
roles for a conformance testing. So,
at some point you want to test your
software to make sure that it's
actually complying with the security
rules that you have defined, else you
won't know if you're software's
actually following, and you're

Page 25 of 31

mitigating the risks like you think that
you will be.

Polling Question

#SEIwebinar 78
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Polling Question

What testing does your organization perform on your software?

• Static Analysis

• Dynamic Analysis

• Both

• None

**078 Presenter: Okay, that's
going to lead us to our next polling
question, which is going to be posed
now. And we'd like to know, "What
testing does your organization
perform on your software, static
analysis, dynamic analysis, both, or
none?" While we give you a little time
to vote on that, seems like an ideal
time for some audience questions.
So, we'll turn to Bob and Mark for
Brandon wants to know, "Are there
methods to prove that software has
secure code and lacks common
vulnerabilities?"

Presenter: Prove is a hard word. So,
back to what I was just mentioning
about conformance testing, there's
certainly tools that allow you to try

Page 26 of 31

and find these issues. And if they find
them and alert you to them, then you
can go and mitigate them and
remove them or change them. I don't
know. I guess I'm afraid of the word
prove. I don't know how you feel
about that, Mark. But--

Presenter: So, I'm actually not
afraid of the word prove. But the
reason I'm not afraid is because it's
not helpful. I could write a piece of
code, "If Turing test, then secure
coding violation," in which case, I
promise you I can't write an analyzer
that will be able to figure out one
way or the other what the answer is.
But as a practical matter, we've seen
them getting better and with
programmer assistance in various
kinds of annotations, and we've seen
this in certain classes of language
features. For example, I think in the
C++ threading area, these
annotations are now being put into
the standards and have shown some
practical value. One can get better
results as you move more and more
into conventional theorem proving.
Frankly, it requires more and more
skill on the part of the programmer in
order to specify what they're looking
for even with the tool support. And
it's become even more difficult and
more training in practice is what
we've seen. But it is getting better.

Presenter: And I think that, in
practice, the big issue ends up being
the complexity of the software. As
your software becomes more
complex, provability becomes really,
really difficult and requires a lot of

Page 27 of 31

resources that often become
impractical.

Presenter: Okay, this is a question
from Martha from one of our earlier
polling questions. She's saying, "Your
question did not have the right
query. Some of our projects use
coding standards, but only for normal
coding practices. Others do use
secure coding standards. And some
do not use either. We are working on
getting everyone to use them, not
just there yet."

Presenter: Sure. So, that brings up
an interesting aspect, which is
understanding the criticality of your
software and what you can and
cannot test with the software. So,
you may not be able to apply this
same levels of security activities to all
software that you're developing. And
so that kind of leads us--

Page 28 of 31

Supply Chain Software

#SEIwebinar 79
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Supply Chain Software

Install Security Updates.
Test Source Code.
Review vendors’ security and software assurance practices and results.
Request reports from their own testing or request independent security
reviews and testing.
Test Binaries.
Apply Defense in Depth – only enable features that are required, and
protect them.
Isolate critical and non-critical services and data.
Perform penetration testing.
Install an independent monitoring system.

**079 To probably our final slide
here, which is what happens when
you don't have the source code, or
you're not developing the software
yourself. And so, you're limited with
regard to what you can do. As I said,
you can't always apply the same
practices. So, what I suggest with
this is a layered security approach,
basically doing whatever it is you can
do. And that may depend on the
leverage that you have on your
lender as a buyer. And so, certainly
as security updates become available,
you should install the security
updates on software packages that
you are buying. If available, if you
can get access to source code, in
particular if it's critical software, you
may want to go through the activity
of testing it yourself.

Page 29 of 31

Presenter: Okay, just to wrap up
the polling question, which was,
"What testing does your organization
perform on your software," twenty-
seven percent static analysis, one
percent dynamic analysis, sixty
percent both, and twelve percent
none. So, we've got about thirty
seconds, Bob. So, we're going to get
one more question here before we go
into our next talk.

Presenter: That's interesting as sort
of the flip of what some of the other
studies that we've seen.

Presenter: And this is from Ted
asking, "It seems that the secure
coding standards that we are aware
of are more oriented toward business
applications that our clients/server
are highly networked. Are there
coding standards tailored to
embedded systems that are not
widely networked or self-contained?"
Do we have a quick answer for that
one?

Presenter: I would say that a lot of
popular languages, now there is a
market for tools that help with the
security of those languages. There
may or may not be specific
standardized rules for them. But tool
venders are trying to help develop
software in lots of popular languages,
even if they're web transactional
software.

Presenter: But I think the summary
statement is pretty accurate in that
most of the attention has been given
to conventional IT systems. And

Page 30 of 31

there are a whole host of additional
issues that are important to the
embedded systems that I don't think
a careful analysis of what's necessary
for security in those systems has
been carried out yet.

Presenter: Great. Bob, thank you
for your talk.

Presenter: Thank you.

SEI WEBINAR SERIES | Keeping you informed of the latest solutions

#SEIwebinar 1[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

SEI Webinar Series

Page 31 of 31

	Secure Coding Best Practices Part 3
	Table of Contents
	Carnegie Mellon University
	Copyright 2016 Carnegie Mellon University
	Secure Coding Best Practices
	Why Software Security?
	Most Vulnerabilities Are Caused by Programming Errors
	Secure Software Development
	Sources of Software Insecurity
	Unspecified and Undefined Behaviors
	Polling Question
	Adopting Secure Coding Practices
	Tools encourage application of secure coding
	Static Testing – Source code analysis tools
	SCALe Multitool evaluation
	Static Testing – Source code analysis tools
	Conformance Testing
	Polling Question
	Supply Chain Software

