
What Makes a Good Software Architect?

Table of Contents

SEI WEBINAR SERIES | Keeping you informed of the latest solutions .. 2

Carnegie Mellon University... 2

Copyright 2016 Carnegie Mellon University ... 3

What Makes a Good Software Architect? .. 3

The Life of a Software Architect ... 7

What do architects do? ... 9

Architect’s Skill Sets .. 11

Polling Question .. 13

Architect Skills in the System Lifecycle ... 18

Polling Question .. 26

What is Technical Debt?* ... 42

Polling question .. 44

Software Architecture Biggest Contributor .. 48

Polling question .. 54

Technical Debt is Not Simply Bad Quality ... 58

Essential Software Development Artifacts ... 65

Polling question .. 72

Who is Aware and Manages Technical Debt .. 76

SEI WEBINAR SERIES | Keeping you informed of the latest solutions .. 82

Page 1 of 82

SEI WEBINAR SERIES | Keeping you informed of the latest solutions

22
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Carnegie Mellon University

1
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Carnegie Mellon University Notice

This video and all related information and materials (“materials”) are owned by Carnegie Mellon
University. These materials are provided on an “as-is” “as available” basis without any warranties and
solely for your personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of
viewing the video, or using referenced websites, and/or for any consequences or the use by you of
such materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read
and agree to our terms of use (www.sei.cmu.edu/legal/).

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

© 2016 Carnegie Mellon University.

Page 2 of 82

Copyright 2016 Carnegie Mellon University

2
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Copyright 2016 Carnegie Mellon University
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be directed
to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003417

What Makes a Good Software Architect?

© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

What Makes a Good Software
Architect?
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

John Klein and Andrew Kotov
Hosted by Will Hayes

**003 Presenter: And hello from
the campus of Carnegie Mellon
University in Pittsburgh,
Pennsylvania. We welcome you to

Page 3 of 82

the SEI virtual event, "What Makes a
Good Software Architect."
Depending on your location, we wish
you a good morning, a good
afternoon, or a good evening. My
name is Shane McGraw. I'll be your
moderator for the presentation, and
I'd like to thank you for attending.

We want to make today as interactive
as possible, so we will address
questions throughout the discussion
and again at the end of each
separate discussion. You can submit
your questions to our event staff at
any time by using the Questions tab
on your control panel. We will also
ask a few polling questions
throughout the presentation, and
they will appear as a pop-up window
on your screen. The first polling
question we want to ask is: How did
you hear about today's event? And
that will be posed now.

Another three tabs I'd like to point
out are the Download Materials,
Twitter, and Survey tabs. The
Download Materials tab has software
architecture-related work and
resources from the SEI available
now. For those of you using Twitter,
be sure to follow @saturn_news.
Once again, that's @saturn_news,
and use the hashtag #seiwebinar.

Now I'd like to introduce our
speakers for today. First, our
facilitator. Mr. Will Hayes is a
principal engineer at the SEI. He
provides direct lifecycle management
support to major Department of
Defense programs. Throughout his

Page 4 of 82

26-year career at the SEI, he has
supported numerous commercial,
government, and defense
organizations, providing consultation
and coaching for a wide range of
roles. Mr. John Klein is a senior
member of the technical staff at the
SEI where he does research and
consulting in enterprise and system
architecture, working with
commercial and government
customers in domains that include
healthcare, analytics, financial
trading, and command-and-control.
Andrew Kotov has recently joined the
SEI as a senior member of the
technical staff. He works with
government customers to evaluate
and improve their architectural
solutions, and prior to joining the SEI
he worked as a software engineer
and architect in various domains,
such as reliability engineering, supply
chain management, role-based
systems, finance, and healthcare.

Now I'd like to turn it over to our
facilitator, Mr. Will Hayes. Will,
welcome. All yours.

Presenter: Thanks. Welcome
everyone. So let's dive right in to the
focus of this event. So John, what
makes a good architect, and how
does one find their way into that
role?

Presenter: Well Will, like a lot of
questions that relate to software
architecture, the answer to that is, "It
depends."

Page 5 of 82

Presenter: And John just
demonstrated the very basic skill of
software architects, to say, "It
depends," because it gives you five
seconds to provide a more
meaningful answer.

Presenter: Right, right. So it
depends. There are a number of
skills you need, and the key thing is
matching the skills to the point that
the system is in in its lifecycle.
Different points in the lifecycle, as
we'll talk about, have different skill
needs, and so it's important to match
those, and it's a mix of technical skills
and also other kinds of skills.

Presenter: Actually, communication
skills are important, leadership skills
are important, because you need to
communicate with various
stakeholders, including business
stakeholders as well as technical
stakeholders, and you have to do it
throughout the whole lifecycle of the
system.

Presenter: So maybe we can do
the polling question.

Presenter: So there's a polling
question that's a natural follow-on to
this, and I'll ask Shane to go ahead
and--

Presenter: Okay, we're going to
pose that question now, and the
question we want to know is: What is
your relationship with software
architects? As I mentioned at the
beginning, we're going to launch
some polling questions throughout

Page 6 of 82

today's event. Particularly this one's
going to help us get an idea of who's
here with us live and where to steer
the conversation. We want to
maximize your time here with us, so
take about 15 or 20 seconds to vote.
We'll turn it back to Will.

Presenter: So while the audience is
address threat question, Andrew, let
me ask you a little bit about the
important things that an architect
does in this role that they play.

The Life of a Software Architect

5
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The Life of a Software Architect

**005 Presenter: Sometimes it's
probably easier to say what he
doesn't do, but it's a technical
leadership role where you have to
provide a technical solution to a
business problem. So first of all, you
have to define what the problem is,
understand what the business drivers
for the solution are, their quality

Page 7 of 82

attributes, provide design concept,
select the technology, and work with
developers to make sure you can
actually implement that solution, and
work with other various business
stakeholders making sure that
solution can be supported in the field.

Presenter: Okay, we're going to
chime in with those results. We've
got 44 percent that are software
architects, 17 percent want to
become a software architect, 8
percent managing software
architects, 21 percent "I work on
projects with software architects,"
and 10 percent at Other. So
hopefully that will give us an idea of
where to take the conversation
today.

Presenter: So if we think about the
things that architects do, in light of
who we have in the audience, how
would you want to elaborate on that,
John?

Page 8 of 82

What do architects do?

6
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

What do architects do?

**006 Presenter: Well, the main
role of software architecture is to
bridge between the business goals
and the system that we're building,
and to do that there's a couple steps
we go through, taking business goals
and extracting the architecturally
significant requirements, the
functionality and qualities. From that
we've got to build an architecture,
design it, create it, analyze it,
evaluate it, document it, and then
finally we're going to use that to build
the system, and we can do this in an
iterative fashion, we can do it in a
little bit bigger design up front. So
lots of ways you can go through it,
but these are the basic steps that we
need to pass through. And there's a
set of technical skills that you need to
do this. As an architect, you need to
be able to do architecture design,
design at scale. You need to be able

Page 9 of 82

to analyze your design, decide
whether the design is going to meet
the functionality and qualities that
you're looking for. You need to do
some modeling and representation.
Some people would call that
documentation, but it doesn't
necessarily end up as big, thick paper
documents. And you need to be able
to do evaluation. "Is this going to
satisfy everybody's needs?"

Presenter: So there's a pretty high
demand on the technical acumen for
an architect. Andrew, if you could
talk a little bit about the role you play
in dynamic, ongoing efforts-- the role
the architect plays-- with these skill
sets.

Presenter: Sure. I think it's
important to understand when you're
transitioning from a software
engineer to a software architect, the
technical skills are still going to be
used but you're going to use a
different scale, but you can start with
overall design of a system, so it's a
really high-level view of the system,
and you still need to provide
technical solutions. So in the same
time, you have 360 degree of the
system, view of the system, and
you're concerned with different
aspects. So a lot of times it's
zooming in and zooming out. You're
zooming out, provide a big picture,
create proper concepts, create proper
elements of the architecture,
relationship between them, and so on
and so forth; but then you're
zooming in sometimes to a different
level. If you use off-shelf program,

Page 10 of 82

can it be licensed? Can it satisfy your
needs? So there's a lot of things like
that. And throughout the whole
process the architecture becomes the
conduit of communication between
the various parties. So we have to
stay in touch with them. You have to
listen and understand what they say,
and especially when you start talking
to business users, which you switch
from technical users, they start using
different language. So you have to
be cognizant of that change and
make sure you custom your message
to those users. That's where I
personally struggle a bit with that,
and as a good ratio, we have two
ears and one mouth, so that's a good
ratio to keep between communications.

Architect’s Skill Sets

7
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Architect’s Skill Sets

**007 Presenter: So there's a
pretty high demand on understanding
who your communicating with and

Page 11 of 82

being able to articulate these fairly
complex subjects and still keep an
eye on the trajectory for the system.
That's a demanding job.

Presenter: Absolutely. And it's
really ongoing process. You can't
just put the stack of documents, say,
"This is the architecture, and I'll see
you guys when you're done with the
release."

Presenter: Right. So the
communication and the leadership
skills are important, but the technical
skills are equally important, I think,
because at the end of the day your
job is to deliver a system, and so all
of the communication and leadership-
- and the thing that distinguishes a
product or a program manager from
an architect is the technical skills, the
ability to design that architecture, the
ability to analyze it, model it,
evaluate it. And so those are really
important things. Otherwise you
don't have anything to say, so.

Presenter: And you have a finite
amount of time, because the time to
market these days is pretty critical,
so all these activities are tied to a
particular program and you have a
business goal in mind, then you have
to deliver that system .

Presenter: So there's another
polling question-- ready to go to
that?-- that helps elaborate this
point.

Presenter: So we're going to
launch that question now. It should

Page 12 of 82

be up now. We'd like to know
exactly what the architects in your
organization do. So you'll see that on
your screen now. Now, some of your
organizations may do more

Polling Question

8
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Polling Question

Do architects in your organization do:
• Architecture design
• Development
• Architecture analysis
• Modeling or other documentation
• Architecture evaluation
• Communicate architecture
• Provide technical leadership
• Provide coaching and mentoring

**008 --More than one of these
things, but we could not set it up as
multiple choice, so pick the one that's
most, and then if you do more than
one, feel free to type it into our
question box, just so we get an idea
of some of the other results coming
in. And while we give you about 30
seconds to vote for that one, we've
got some great questions coming in
already, so I'm going to fire them off
to you guys and see what we got.
From Scott, asking, "How best to
integrate software architect into an
agile dev/ops environment?"

Page 13 of 82

Presenter: Oh, great question.
What do you guys think?

Presenter: Do you want to start?

Presenter: I think probably dev/ops
should be renamed to arc/dev/ops.
So you just allow sometimes for the
architecture, and really you design,
you implement, and then you
support, and this is the lifecycle. So
basically you have to allow some time
for the architecture, for big view and
design up front, and you
can distribute that throughout the
different sprints or have a different
swim lane, and then just have it as
ongoing process. It's a practice, so
it's just not a state-- continuously,
dynamically moving, and it's a
practice.

Presenter: Yeah. So I think there
are some technical skills. One way to
look at dev/ops is it brings in a
different set of qualities for your
architecture. Deployability,
incremental deployability, and
observability become very important
qualities in your architecture that you
need to build in and treat those as
first-class things.

Presenter: So then a successful
architect working in a setting where
dev/ops is a dominant concept, the
skill set they have to be successful
with dev/ops is a slightly different
one than different environments,
perhaps?

Presenter: Maybe a little bit
different skills, a little bit different

Page 14 of 82

priority. I mean, at some level a lot
of architecture is understanding what
are the important qualities for a
particular system and then
constructing an architecture that's
going to satisfy those qualities--
different qualities for different
contexts. And then bringing in the
technical background to be able to
satisfy those qualities. So when you
get into dev/ops, there are a lot of
off-the-shelf tools that you want to
be taking advantage of, some of the
incremental deployment tools,
configuration management tools,
those sorts of things.

Presenter: Helps you speed up the
progression that you need to go
through.

Presenter: Yes.

Presenter: And at the same time
the ops part of it gives you an ability
to get the direct feedback. That's
raw feedback from the use in actual
environment, or maybe even various
environments, making sure that
decisions that you made early on
were correct ones and you correctly
identify market of customer needs.

Presenter: That seems like a very
important connection to the
implementation, connection to how
the system is benefiting the user of
it. Architecture is not something
that's just dreamed up in advance
and you fire and forget. This is an
ongoing interaction.

Presenter: Yes.

Page 15 of 82

Presenter: Exactly, and you judge
by the result. It's not just a stack of
paper or drawing on the board. You
judge by the result and the system
actually can be performed in a real
market environment and that gives
you an idea if you were right or not.

Presenter: Great. Should we go for
the poll results?

Presenter: Yeah, let's show the poll
results, and I'd like to work in one
more question if you don't mind, too.
So let's see here. We got 41 percent
focused on architecture design, 7
percent development, 7 percent
architecture analysis, 7 percent
modeling or documentation, 9
percent architecture evaluation, and
3 percent communicate architecture
and 26 percent provide technical
leadership, and we had a number of
people typing in "All of the above"
into the box. So the other question
I'd like to get to real quick just while
we're in this session was Steve's,
because it ties in so well here: "Are
there MBTI-- so Myer-Briggs
personality types-- that have higher
aptitude to be software architects?
Perhaps INTJ or ENTJ. In the
inverse, are there personality types
who have a low aptitude for this work?"

Presenter: So what makes a bad
software architect.

Presenter: If you're a severe
introvert and can't communicate, that
makes it very difficult. That's still
possible, but it makes it very difficult.

Page 16 of 82

Presenter: Yeah, I'm not sure how
successful people would rate me. I'm
moderately successful. I'm an INTJ, so.

Presenter: So there are some
observations that despite your
preference for how you might behave
in a default setting, when you take
on a profession and identify with a
role that your obligation and your
passion for that role doesn't
necessarily find itself limited by what
you might do at a resting state, if you
will.

Presenter: That's right. That's
right. The thing to remember about
Myers-Briggs is, as you say, it's what
you would do at rest, and as long as
you recognize that your tendency is
going to be in that direction, you can
behave differently at the office.

Presenter: Do webinars live.

Presenter: Yes.

Presenter: Okay.

Presenter: Back to you, Will. Yeah.

Presenter: Yeah. So what more
would you like to say about the
different kinds of skills and roles that
people play over time? I think that's
the next theme we want to work in.

Page 17 of 82

Architect Skills in the System Lifecycle

9
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Architect Skills in the System Lifecycle

**009 Presenter: Yeah. So one of
the things that I've observed is that
systems go through different phases
in their lifecycle. You start with some
initial design of either an entire
system or a major new subsystem,
and so you've got to make this
transition from nothing to something,
and then once the system is built,
there's a tendency to want to make
small changes to extend it, and as we
build those extensions on, we're
adding value. The cost of each
increment of value is lower because
we're building on top of this big base.
And then over time the system gets
old. It gets a little bit fragile. Maybe
we've accumulated some technical
debt, and the original use of the
system-- the technology that
surrounds it may have passed-- and
so we move into the sustainment
mode, where we want to keep the

Page 18 of 82

system around, keep it producing
value, but we don't want to change it
very much, if at all. And so as the
system goes through those different
stages, the skills that you need as an
architect to be successful are a little
bit different. At the beginning, to get
from that nothing to something, the
clean sheet design, you need a set of
skills to be able to determine and
create the right abstractions,
maintain the conceptual integrity of
the architecture, keep it looking as if
it came from one mind, keep things
consistent across it, and it's got to be
developable.

Presenter: And oftentimes it's a
favorite part because architecture is--
essentially that stage is modeling, the
modeling behavior of a system. You
want to make sure that you create
proper abstracts. And at the same
time, you always model for change.
Right? So you know whatever you
develop now is going to be changed
later on, but when you go to the
standards stage, that you're going to
test your skills, how you designed the
system, because the quality of your
design is going to be inversely
proportional to the number of
changes you need to do every time
you implement a new feature.

Presenter: So at the outset, the
successful architect is skilled at
communicating the vision of what is
not yet visible to everyone. It's still
at a conceptual level. And then as
we enter into this middle stage, it's
how to understand the tradeoffs
among the competing value drivers?

Page 19 of 82

Presenter: Yeah, so there's a
couple of things there. One is to
have a deep understanding of the as-
built system, right? What are all of
the interfaces, what are all of the
side-effects on interfaces, what are
the places where you could squeeze
in a little bit of functionality. And so
this is a place where often a senior
developer steps in and starts taking
on this role of making system-wide
architecture decisions because
they've got that great knowledge of
the as-built system. But as you say,
you've got to make good tradeoffs.

Presenter: So that must be
particularly challenging if you've been
very successful in the early
envisioning of the system. You've
attracted more people to be
interested in modifying your system
and to provide more paths for value
through it. It must get much more
difficult in that middle stage.

Presenter: Yeah, definitely now
software architecture basically is a
team sport. So you can't do it all
alone, and the architectural role is
just really wide, so when you go
deep you have to make sure that you
got support and you have the buy-in
from various stakeholders, and the
main one is definitely technical staff
who are working on the system, and
you have to have a team of people
you can consult with before
presenting to a larger audience,
maybe. You have to work with
people. You have to work with
younger developers, making sure
they understand and adopt your

Page 20 of 82

ideas. So there's a lot of coaching
going on. So you basically work with
many parts of the organization.

Presenter: And you bring up a
good point there, Will, about the
difference in the vision, because at
the beginning part of your job as an
architect is to maintain the purity of
the vision and the conceptual
integrity, and a lot of what happens
as we extend the system is we make
compromises. And so one of the
anti-patterns that I've seen is the
architect has a little bit too much
ownership of the system and isn't
willing to make those compromises,
not willing to give up that purity.
And so as you move into the
extension phase, they propose doing
things the right way as opposed to
maybe incurring a little bit of
technical debt in order to produce
value faster, and if you're making the
wrong tradeoffs, from a business
point of view you're not going to be
successful. So it's a transition.

Presenter: At the same time, you
already have-- at that time you have
probably gotten certain patterns,
certain styles that do work, so you
can just make sure that you continue
using them or make adjustments if
they do not work. So the architect
needs to have a pretty large tool set
that they can use to their advantage,
including also how the architectural
process works within the organization;
make sure that the architectural process
can support his design decisions, or if it's
a group of architects, design decisions of
that group.

Page 21 of 82

Presenter: So the fast feedback
that might come from employment of
dev/ops, for example.

Presenter: Sure.

Presenter: You just mentioned a
team of architects. It would seem to
me that you would benefit from
broadening the focal point for this
activity when you're trying to deliver
value at a faster pace and in small
increments. Has that been your
observation?

Presenter: I worked on a team
where there was a group of
architects, and the exchange of
opinions was very valuable. In the
same time, if a lot of people-- so this
was a group of architects who were
developing and designing.
Sometimes it could be a challenge to
keep a balance. It would be nice if
you have a person who was just in
charge over the architecture and then
he relies on the opinions and works
with a group of architects. That
probably, in my opinion, would be
the optimal way to do that, especially
if it's a large system and there's a lot
of different concerns so it's hard to
keep track of all the various parts.

Presenter: Yeah, and that's an
important point, because even in this
extension phase, although we're not
designing the new system, and the
changes that we're making may be
small in scope, the impact is still
broad across the entire system.
We're going to be impacting the
qualities, performance, modifiability,

Page 22 of 82

and so these are our architectural
decisions, and often that's hard for
developers stepping into this role to
see that just getting it done fast is
not enough. And on the other hand,
getting it done exactly right may be
too much, and having the experience
to find that balance--

Presenter: Or sometimes notice of
the change is just a local, or it's a
systematic change throughout the
whole system. Maybe it's time to
review how your exception handling
mechanism works in the system, how
you can-- do you have a safety net to
capture any problems with the
system? Do you have proper
auditing, proper logging, proper
communication channels, and so on
and so forth? So it's a good time to
review early on cross-cutting
concerns of the system.

Presenter: So as you enter into
sustainment now, it seems the
balance again changes among these
things-- the architectural purity
versus the functionality delivery. Can
you comment on that?

Presenter: Yeah. So in this phase,
the system is becoming more fragile
and so we want to minimize the
changes, and so one of the jobs of
the architect is to be able to do some
different modeling and representation
to show how this-- what might be
termed a legacy system-- is still
relevant in these new environments.
So being able to update the models,
update the documentation, and back
it up with analysis and evaluation to

Page 23 of 82

show that the system is still
appropriate.

Presenter: So you're deriving an
as-built viewpoint on the
architecture, which might differ from
the vision that originally created it.

Presenter: Usually by the time you
get to this point, the as-built system
is very much diverged from what you
originally intended.

Presenter: And probably a good
indication that you have to come
back to the initial designer role and
start designing a new system,
because you already know what
works, what doesn't work, and
probably throughout the lifecycle of
the application, technology change or
approaches change or even business
change. So this is the critical time to
start working ahead of time and
maybe create a prototype of a new
system and start throwing the ideas
and see what works the best.

Presenter: Yeah. One of the things
that I've seen though is that
architects that are successful as
sustainers, often they've got this
huge domain knowledge and they
understand how people are using the
system. They may have gotten a
little bit rusty about the current
technology, current development
practices-- out of practice, a little bit.
And so what I've seen managers do
often is they say, "Well, this person
knows exactly what the old system
does, so we're going to have them
design the new system," and making

Page 24 of 82

that transition is often very hard.
Moving from a role where you're
communicating outwardly as your
primary task to a role of now having
to go back to, "I've got an empty
sheet of paper in front of me and I've
got to start back at design," and pay
attention to these things like
developability and dev/ops, which a
few years ago didn't exist and you
may not be up to speed on all the
nuances of that. And so it's a place
where I've seen people fail. On the
other hand, I've seen successes
where managers put together teams
that brought the architect who was
the good sustainer together with
some maybe younger architects that
had the technical skills and the
current technology. They were able
to build a team that produced a new
product very successfully.

Presenter: So before we ask about
strategies for that skill development,
let me ask Shane to go ahead and
launch the next poll.

Page 25 of 82

Polling Question

10
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Polling Question

Does your organization offer or require specific professional development for architect
(e.g., classes, apprenticeships, certificates)?
• Yes
• No
• Not sure

**010 Presenter: So we'd like to
know: Does your organization offer
or require specific professional
development for architects? For
example, classes, apprenticeships or
certificates. So go ahead and vote
for that, and while we're doing that,
we have a ton of questions coming
on, so we're going to handle this a
little like a game show, if you don't
mind. We're going to fire off as
many questions as we can. If there's
something you don't want to answer,
let's just say "Pass" and we'll get to
the next one. But Boris would like to
know, "What is the role of an
architect in the non-software cases to
other situations, such as services?"
And feel free to pass if it's something
that-- because we got so many.

Page 26 of 82

Presenter: So architecting a service
system, considering--

Presenter: Again, service is
modeling some kind of a business
process, so that process needs to be
properly modeled, and making sure
that the business goals of the process
are satisfied, and you have some
measurable business goals, especially
in services. There's some service-
level agreements, availability
requirements, and so on and so
forth, and there's some quality
attributes of the system that needs to
be satisfied. So there's a lot of stuff
on just the modeling of that that
could be done by an architect, and
considered to be architectural work.
And then implementation, it depends
on the situation, I guess.

Presenter: So just as with a
physical system, the quality attributes
really drive decisions you're making.
In a service system, those tend to
take on a different flavor.

Presenter: And it's important to
consider them first so you don't have
to change the system later. So later
optimization usually does not pay off
for a large or complex system.

Presenter: Then Claudia asking,
"How do you describe roles of the
software architect versus the solution
architect, versus the enterprise
architect?"

Presenter: Solution architect
essentially works with the already-
existing pieces to make sure that it's

Page 27 of 82

composed into some kind of a form.
They work and provide solution to
the customer problem. Software
architect usually develops a solution.
That's some kind of developing work
or extending existing architecture,
starting the new one, or sustaining
the other one. That's how I would
see the difference. And solution
architect is also much concerned with
existing environment of the
customer, making sure that the
proposed architecture can fit that
environment.

Presenter: Right. Yeah. And
there's different levels of architecture
and one person's-- one level's
solution is the constraints and
requirements for the level below it.
So enterprise architecture creates the
constraints and requirements on the
solution, and the solution
decomposes it into maybe software
and other processes, and those
become the constraints and
requirements as you move down. It's
a lot of the same skills. As you move
up to the enterprise level, you do less
modeling of actual processes and it
becomes a little bit more policy than
structure.

Presenter: But just as you spoke
of, the architecture transitioning
through phases for a physical system,
we could think of an enterprise
architecture similarly being stressed
by the different needs being placed
on the business, and there might be
a time when we need to really
consider a new viewpoint on the
architecture for the enterprise.

Page 28 of 82

Presenter: Definitely.

Presenter: Because you have more
concerns. You have that huge chart
of concerns.

Presenter: Right. Great question.

Presenter: All right, let's get one
more and then we'll share the results,
if that's okay with you guys. From
Robert, asking, "What are the
panelists' thoughts about risk analysis
and mitigation during architecture
design?"

Presenter: One way to view
architecture is it's entirely a risk-
reduction practice. Right? I mean,
you could just put everybody in the
room together and say, "Okay, let's
start coding." The reason we do
architecture is to reduce the risk that
the dependencies in the code are not
going to support incremental
deployment, reduce the risk that the
performance of the system isn't going
to satisfy our initial set of
requirements. So architecture as a
whole is definitely a risk-reduction
practice. In fact, I know an architect
who works for a consultancy-- they
do a lot of fixed-price work-- and he
reports to engineering but also
reports on a dotted line to the risk
management subcommittee on the
board of directors.

Presenter: Probably in the
regulated environment it's a bit more
important because risk analysis is a
part of the quality process, so you
have to identify risks that the system

Page 29 of 82

is subject to or can cause harm or
substantial loss. So there you have
to work with the person doing that
work to make sure that all proper
risks are identified.

Presenter: Right. And so tangible
things you can do with that though
are-- part of architecture is
developing structures, making
decisions. You can isolate the high-
risk parts of your system so that the
impact of having to change them if
the risk does take place-- your
performance or memory or whatever
the challenge that you have there.
So separating out the high-risk from
the low-risk, initiating prototyping
and deciding what the goal of the
prototyping should be based on the
qualities that you're trying to reduce
risk for-- these are all architecture-
centric practices that will help you to
manage risk throughout the entire
lifecycle.

Presenter: You can work probably
on the training materials to make
sure that you work out the process.
That minimizes that risk, and that
becomes a part of a training program
for the system.

Presenter: And it sounds like
there's a very close connection to the
concept of technical debt here, that
the investments you're making, the
forward-looking things you're doing,
you're doing that to buy off or to
prevent technical debt from accruing.
Your choices to perhaps invest less
might be balanced by technical debt
that you have to then deal with later.

Page 30 of 82

Presenter: Yes. So one form of
technical debt is risk, that you decide
to carry that risk forward and hope it
doesn't happen.

Presenter: So the skill there is to
be able to identify these particular
issues of technical debt.

Presenter: Terrific. I think we have
poll results?

Presenter: Yeah, and I wanted to
just chime in real quickly before you
share those poll results. I actually
heard from someone on Twitter, a
native Pittsburgher in Italy watching
the webinar, so we wanted to thank
today, and I wanted to let
him know it's 70 degrees today here
in Pittsburgh, in March. So.

Presenter: So come back.

Presenter: But it is raining, of
course. Anyway, back to wrap up the
polling question. The question was,
"Does your organization offer or
require specific professional
development for architects?" So we
had 30 percent with yes, 54 percent
no, and 16 percent not sure.

Presenter: So if you could talk a
little bit about what would that look
like. What is professional
development in this arena for you?

Presenter: Well, I think the first
thing is to note, that we're talking
about what makes a good architect,
but architects don't work in isolation.
One of the pictures we had earlier

Page 31 of 82

showed them being beaten up by lots
of stakeholders, right? And so
they're working in this environment,
and so you've got a set of individual
skills that are important, but you also
need to be working in a team that is
going to be able to take advantage of
the architecture that you build. So
the team has to have certain
competencies to be able to build the
system as designed, and then you
need to be working in an
organization that respects the need
and the role for architect, that does
respect architecture as a risk
mitigation mechanism, and is going
to put together some sort of
professional development track. So
individual, team, and organization
competencies are all important if
you're going to be successful.

Presenter: Like we said before, it's
leadership skills, it's the
communication skills, the technical
skills. So you can work on all of
them individually if you want to.
There are courses available and
materials available, and of course in
the technical skills, making sure that
you're familiar with architectural
principles and practices, that you're
familiar with modern technologies
used, approaches. So that's still
collaboration and communication
with a lot of development forums and
see what kind of problems they have,
how are they trying to solve them.
Learning about new patterns, new
approaches, new tools, and make
sure you can incorporate. So you
have to keep that toolbox fresh all

Page 32 of 82

the time, making sure you can solve
business problems.

Presenter: Yeah, and there's a core
set of tools, right? And coming back
to some of the things we talked
about earlier-- design analysis,
modeling and evaluation-- and those
are-- they're eternal. You always
need to be able to do that. Part of
design is things like architecture
patterns that Andrew just mentioned.
They show up in different ways. For
example, now in big data we've got
streaming processing systems. Well,
a lot of that looks like pipe and filter
patterns, which go back to batch
processing and card decks and things
that maybe some of our audience has
never seen. So some of these
patterns are eternal, and so having
good familiarity with them-- the
qualities involved with those don't
change, right? A pipe and filter
pattern introduces latency at the
expense of modularity and flexibility
and composability, and that's true
whether we're talking about decks of
punch cards or a streaming
architecture for big data. So there
are some things that are constant.
There are other things that are new.
And so keeping that mix of the core
things that you can get training for,
but also a lot of it is practice, right?
It's hard to become an architect. It's
one of those things that teaching
people, particularly people who are
coming out of school maybe with a
master's degree, as part of a master's
of software engineering program,
trying to teach them architecture--
because so much of it comes back to

Page 33 of 82

this risk mitigation, and until you
have enough experience to
understand what the risks are, it's
hard to know what to mitigate or
even why you'd want to worry about
mitigating it.

Presenter: Or creating proper
concepts in this case. So one of the
areas where you also can work, if
you can learn about the business
area where you work, maybe there's
some nuances that are not accounted
for. At the same time, when you're
talking about the principles,
practices, design patterns, if that
conversation is going on in your
organization then it means that next
time you try to communicate certain
architectural artifacts, then
everybody is going to be using the
common language and they
understand what you're talking
about. So it again brings up the
continuous practice of the
architecture within the organization.

Presenter: So there's a core set of
knowledge. It's an understanding of
technology. There's the context that
the organization provides. If you
think about an individual person's
career path, if you could trace
perhaps some varieties of where
people start, what kind of
experiences really contribute to them
being a successful architect as they
go through their career, could you
comment on that?

Presenter: Andrew, you just came
out of industry, so.

Page 34 of 82

Presenter: I think what was helpful
to me working with the systems
where it was a black box, so I have
to learn the system just by myself or
very little help, that gives you an idea
if the system is organized properly.
Can you understand the system by
just looking at the modules? That
gives you an idea about that
organization. So then working
through the ranks of various software
architectural applications is very
helpful. Different areas use different
patterns and different applications.
You get requirements in a different
way. Quality process is designed a
different way. System is tested in a
different way. So that prepared you-
- as soon as you get the breadth of
experience, that's probably a good
thing when you-- good stage when
you can think about the architectural
position. And the architect is not a
position-- is just not a tag on the
door of your office. It's a role. So
the role needs to be played properly,
and it's a leadership role, so there's a
lot of things that are associated with
leadership, because if you're a leader
and nobody walks behind you, it's
just a walk in the park.

Presenter: Yeah. Yeah. And that's
a good point, that it's a role and not
necessarily a title. So there are often
agile teams where there is nobody
who is the architect, but yet there is
someone who is the architect. There
is someone who takes ownership of
those system-wide decisions. So you
may not have it on your business card,
it may not be on your door plate, but
you need to take that role on.

Page 35 of 82

Presenter: And it sounds like the
variety of experiences, a collection of
contrasting experiences, is a really
valuable component of this.

Presenter: Yes.

Presenter: But for organizations,
it's important to understand that if
the system is complex enough then
you probably need to have a single
person or group of people
responsible for that, because
otherwise you're going to have lava
patterns, when you're doing one
thing for some period of time, then
the other thing for a different period
of time, and the system becomes
very amorphous from the design
perspective because of the different
patterns used in different parts of the
system.

Presenter: So should we take some
more questions?

Presenter: Yeah, we've got about
five minutes left with John and
Andrew for this segment before we
bring in Ipek and Michael, so we're
going do some-- back to the rapid-
fire questions. So Rodney would like
to know, "What is the typical
percentage balance an architect
spends between design and coding?"

Presenter: Ooh.

Presenter: Depends probably on
the stage. Initial design, there's a lot
of design, and it goes to prototyping,
and that's as much coding you
probably can do at that point in time.

Page 36 of 82

When you are an extender, you're
probably better off pairing with
existing developers, making sure that
you can change that functionality
properly. And when you're a
sustainer, you work, again, mostly
with developers. So I would say
80/20-- 80 percent design, 20 coding.
But it could be more during the initial
stages. It could be 100 percent
coding.

Presenter: Yeah, it depends, right?
So a couple things to keep in mind
though is the architect has to do the
design, because nobody else is going
to do the architecture design. Other
people will do coding. So getting
sucked in and doing too much coding
leaves the architecture design
undone. The second thing is it's hard
to make that shift, right? If you drift
in and out of coding, it's a hard thing
to do. It takes a little while--

Presenter: Context switching--

Presenter: Yeah, the context switch
is a killer, so that's something else to
keep in mind. And the third piece is
because the architect's first job is
doing the architecture design, often if
you are going to do coding, and that
is a good practice that architects
code, for a lot of reasons, stay off the
critical path, because that allows you
a little bit more flexibility in balancing
how you do it.

Presenter: And make sure you fully
own recommendation and practices
that you gave to others.

Page 37 of 82

Presenter: Yes.

Presenter: That sure sounds like
great advice.

Presenter: And often that's-- yeah,
often the kind of coding that an
architect does is sort of the exemplar.
Create that first example of how to
use the architecture, show how to
use the framework that you've
developed. Those are good places
for architects to start.

Presenter: And programming and code reviews are
the other two means of
communication in terms of coding.

Presenter: So coding is partly to
communicate the vision the architect
has.

Presenter: It becomes a good way
to do that, yeah.

Presenter: Nice. Another question?

Presenter: Okay, from Lee, asking,
"Many years ago, Barry Boehm
remarked at most maybe 80 percent
of software problems are directly
related to design flaws. Do you
agree?"

Presenter: Wow. It's hard to say
because design flaws could be
caused by bad requirements. So if
requirements were not adequate or
the quality attributes were not
defined the way they were passed, or
the system became just a pack of
features when there's no priority in
how they were put together in logical

Page 38 of 82

coordination between them. So the
answer is it depends.

Presenter: I got to disagree with
you there. You don't argue with
Barry.

Presenter: Good answer.

Presenter: All right, we got about a
minute. There's two more in here,
one from Nicholas asking, "How, as
an architect, can I push technical
innovation in an environment that is
technically stale?"

Presenter: Oh. Laden with
technical debt, perhaps? That might
be a good question for the next
speakers.

Presenter: Okay, we'll go on. Jim
would like to know, "What are the
key ways software architects can
influence others without being a
manager?"

Presenter: Architectural role is--
again, it's a leadership role. You can
influence, but you don't manage, you
don't fire anybody. You can agree or
disagree with a design, but you have
to present a case, because it's you
solving the problem. So you have to
be able to explain why it's a better
solution, how this solves the problem,
and how you're going to implement it
and how you can install it in the field.
You have to think about all the
aspects of that.

Presenter: Yeah, and the approach
that we espouse at the SEI is to start

Page 39 of 82

with business goals and derive things
from that, have traceability back to
business goals so we can talk in
terms of business impact and not get
into arguments about which
programming language is better. So
keeping it at that level is often a way
to promote change.

Presenter: Great. That's a nice
place to stop.

Presenter: Yeah, excellent
discussion. Your time's up, so as we
get ready to transition to our next set
of speakers, we had tons of great
questions in the queue there
obviously we didn't have time to get
to, but I wanted to let everybody
know there is a software architecture
LinkedIn group that we maintain.
We'd love to see these questions
posted to that group to get some
feedback and discussion going there.
If you're on LinkedIn, just search for
SATURN on your groups, and that
stands for SEI Architecture
Technology User Network. Feel free
to post your questions there. Couple
thousand members there would love
to keep this discussion going there.
And also wanted to let you know,
speaking of SATURN, our 12th annual
architecture user network event,
which is called SATURN, will be held
in San Diego, California, and that will
be May 2 through 5, and SATURN
2016 will feature the Internet of
Things as one of the themes of its
four tracks, and to see the great
lineup of speakers, make sure you
download the SATURN conference
guide that is in your console now.

Page 40 of 82

You can see keynote speakers--
Grady Booch, Joe Salvo from GE, and
also wanted to let you know that all
attendees today get 15 percent
discount to the conference. For
those of you attending late, I
mentioned at the beginning there is
that Download Materials tab. You
can find lots of great information on
architecture work from the SEI there.
There's an IEEE paper there that
John Klein wrote on what makes
architects successful. You'll see
training as well from the SEI that we
offer. And lastly, there's a survey
tab. We request that you fill out that
survey tab upon exiting today's
event, as that feedback is always
greatly appreciated. So we're going
to go back to Will. Actually, you
know what? I'm going to introduce
Ipek and Michael first as they join us
onstage. So Ipek Ozkaya is a senior
member of the technical staff. She
works with government and industry
organizations to improve their
software architecture practices,
focusing on research and
development of software economics,
agile development, architectural
tradeoff and technical debt practices.
Michael Keeling is a senior software
engineer at IBM where he develops
and mentioned IBM's Watson's
Explorer and Watson platforms.
Michael is an experienced software
architect, agile practitioner and
programmer, having worked on
projects ranging from combat
systems to search to web apps. Now
I'm going to turn it back to Will.
Will? All yours.

Page 41 of 82

Presenter: Great. So we're going
to transition now into a conversation
about technical debt, and I think it's
appropriate that we start with setting
the table for what we really mean by
technical debt.

Presenter: Well, I'll start off, Will.
 has been increasing
interest in understanding what
technical has been in the recent
years, and I think it's very relevant to
software architecture because there's
an important aspect of it that relates to
where the rubber hits the road--

What is Technical Debt?*

13
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• Exists in an executable system artifact, such as code,
build scripts, automated test suites;

• Is traced to several locations in the system, implying
ripple effects of impact of change;

• Has a quantifiable effect on system attributes of interest
to developers, such as increasing number of defects,
negative change in maintainability and code quality
indicators are symptoms of technical debt.

What is Technical Debt?*

* Term first used by Cunningham, W. 1992. The WyCash Portfolio Management System. OOPSLA '92 Experience
Report. http://c2.com/doc/oopsla92.html.

**013 --And that comes with the
aspect of technical debt that the
architects as well as developers and
the team have to be responsible of,
which is it resides in an executable
artifact of the system, such as the
code, the build scripts, automated

Page 42 of 82

test scripts. It's traced to several
locations in the system because of
the impact of the rework, and most
importantly, if you understand the
architectural tradeoffs well and
architecturally significant
requirements, you can actually
quantify its effect, and I think that
frames it well for the software
architecture skills discussion as well.
But what's your take on it, Michael?

Presenter: Yeah, I mean, certainly
everything you said is true. I tend to
look at it in a little bit-- I don't know,
simplified. So technical debt for me
and kind of the way we use it day to
day is kind of the gap between the
value that you need to provide and
your ability to provide it. Right? So
we've got some software, we've got
some system that we have today.
We've got features and things that
we want to develop and that we want
to provide, and sometimes there's
things in the way that kind of prevent
us from getting there, from providing
that extra value, and that gap is kind
of where I see-- or when we talk
about technical debt, that's usually
what we're talking about, at least on
my team.

Presenter: Is it safe to think of it as
an impediment to agility?

Presenter: Sometimes. Right? So
it depends on what you're dealing
with. Yeah, it can definitely cause
problems.

Presenter: It's impediment to
actually many of the developments.

Page 43 of 82

Not just agility, but it's also
sustainability and extending the
system as well.

Polling question

14
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Managing technical debt is a critical technical skill that
software architects should have.

• I agree

• I disagree

Polling question

**014 Presenter: So I think we
have a polling question we'll jump to
now. I'll ask Shane to introduce that.

Presenter: Okay. That polling
question is going to be on your
screen now. We'd like to know if you
agree or disagree that managing
technical debt is a critical technical
skill that software architects should
have. So we'll give you about 10
seconds to vote, and we'll turn it
back to Will here, and then we'll get
the results.

Presenter: So in our previous
discussion, technical debt came up in
speaking about the successful
architect and the role they play.

Page 44 of 82

Could you help make some more
connections for us to architecture
and the architect's role with technical
debt?

Presenter: So it's all about
tradeoffs. If you're able to
understand the architecturally
significant tradeoffs then you're able
to get ahead of technical debt,
because there's a view of the
technical debt that it's actually code
quality-- not following code quality
rules or not being able to develop
good code. However, we see over
and over again it's really in long-lived
systems these key architectural
decisions that are made on early that
start biting you back as the time goes
on, and that really goes back to
understanding what are the quality
attributes of the system, which ones
change, and actually how do you
quantify that in the aspects of the
system. Is your performance starting
to degrade because you didn't take
the right measurements or did not
pick the right infrastructure at the
right time? Or is it that you're not
able to scale the system that's biting
you? Or is it just a maintainability
churn that you're having to deal
with? So that connection is very
important to recognize in
understanding and getting ahead of
technical debt.

Presenter: So the challenge of
quantifying it, there are a number of
different approaches people have
been looking at, and if I could ask
you to comment a little bit on that,
Michael.

Page 45 of 82

Presenter: Yeah, quantifying is
tricky, right? So when you come
back to this idea of value-- right? So
this question you're asking, is this
something that architects need to
worry about-- I mean, architecture
being at this intersection between
technology and business, I think it
puts it squarely in the architect's kind
of role. Quantifying it though can be
tricky, right? Because we're talking
about what are we trying to do,
where are we trying to go, and then
how much is it going to cost us to get
there, and you have to-- I don't
know, you have to be able to
estimate this in some way, or at least
make a reasonable guess. Right?
Because you are-- at least in my
opinion, when you're thinking about
technical debt in the right ways,
you're making an investment. Right?
So you're saying, "I'm going to take
on a little bit of debt now." Right?
You're making an active choice. "I'm
going to take on a little bit of debt
now, and it's going to get me this
much value now." Right? Or soon.
At some point, you may or may not
have to pay that back. And what
does that mean and how is that
going to affect you later, that's when
things-- measurement gets really
difficult.

Presenter: So it's really another
consideration in the business drivers
that lead you to deploy a certain
capability or not, and to try to get to
a common framework of dollars with
technical debt is an ambitious thing.

Page 46 of 82

Presenter: Well, I mean-- yeah,
maybe dollars. I mean, so-- okay,
look. So we work with a marketing
team and with our product
managers, and they do a really good
job of trying to quantify the amount
of value that a certain feature could
bring. Right? So if we go to market
with a feature, what is that going to
bring us? My job, working with my
team, is to understand what is that
going to cost to be able to do that,
and part of that is understand short-
term versus long-term, I guess. So if
I'm able to deliver this faster and it
gives us this value, to our users, and
then users are willing to give us
money to get that value, what if that
then puts me in a position where the
feature after that is not possible?
Right? So we're constantly trying to
work with this balancing act. Right?
And sometimes we get it right,
sometimes we don't, and that's really
where this idea of managing our
technical debt comes into play.

Presenter: Let's see how the poll
came out.

Presenter: So we had 95 percent
agree and 5 percent disagree.

Presenter: Well, I like the audience
already. And it actually goes back to
the discussion we were just having,
Will, because what we find over and
over again-- and that's really the
answer to the riddle of the
quantification. If you're able to
quantify your short-term decisions
and how-- what much you anticipate
in long-term, it's based on the types

Page 47 of 82

of systems as well. If you're working
in a safety-critical system, those
might be tighter in terms of the
short-term if you're really developing
for the long-term, whereas if you're
working with a new system that's
going to be out there and you're
going to get feedback from the
people who are using it, then that's a
different set of choices. And when
we actually ask the developers...

Software Architecture Biggest Contributor

15
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Software Architecture Biggest Contributor
• Bad architectural choices rated as the top contributor to technical debt

among over 1800 developers we surveyed.
• 56% of the respondents ranked architecture among top 3 pain points.

A Field Study of Technical Debt https://insights.sei.cmu.edu/sei_blog/2015/07/a-field-study-of-technical-debt.html

**015 --This actually was confirmed
as well. The number one leading
reason of our technical debt in
several kinds of systems-- and the
audience can read this going through
the link on our blog as well-- it's a
survey with several organizations,
about over 1800 people responded,
and the number one leading biggest
contributor of technical debt turned
out to be bad architecture choices.
So it's one thing for us to say

Page 48 of 82

architecture and technical debt is
related, but I think it's more
concrete, and I think there's more
evidence when we hear it over and
over again from senior developers,
architects and teams.

Presenter: So the choice you make
near-term may limit choices you want
to make later, just as Michael was
speaking of earlier.

Presenter: Yeah, and this is an
interesting graph-- right?-- looking at
this. So when I look at the top things
that people were indicating there,
they're talking about things that in
my opinion are-- well, with the
exception of bad architecture
choices-- relatively easy to chance.
Right? So when you're talking about
code complexity, I can refactor code.
Right? Usually pretty easily. Testing.
I can add more tests. Right? But if
you've made a major structural
decision, refactoring your way out of
that can be extremely costly. So
that's, I don't know, kind of
interesting.

Presenter: Do we want to try to
take some questions?

Presenter: We have lots of
questions. You may get one-- there's
so many coming in, you may get one
that was left over from John and
Andrew. So I'm still going to pose it
to you guys, just because it's a good
question. Owen wanted to know,
"What general career advice can you
give to someone who's doing
software engineering master's, but

Page 49 of 82

has worked in sales for the last seven
years? What general steps do they
need to know to follow, at the age of
32?" And the answer can't be just
attend SATURN. So we have to
something more--

Presenter: Oh wow. Well, there
are lots of opportunities to be
involved in open source development
today that actually puts the skills of a
recently-- I guess junior in terms of a
career path and who does not have
the experience, or he may not have
the opportunity to have experience--
get involved with one of those
projects. They actually have a
ladder, and you could actually get
really pretty decent both architecting
as well as development experience,
and that can actually help you
understand what it takes. So that's
one thing that comes to my mind.

Presenter: It might help you meet
a mentor.

Presenter: Yes, that's another one.

Presenter: Yeah, number one thing
is just write code, read code.
Especially if you're coming from
sales, you probably already have the
business side of things down really
well, so it's a matter of getting to
know the technology and just getting
some experience on the technology
side of things.

Presenter: And just one more from
Tim, a quick one. "Do you see
architects as active coders?" And

Page 50 of 82

then it says production code,
reference implementations.

Presenter: Yes. Well, I think
"active" probably has a balance.
Architects should definitely code, and
depending on the context of it how
"active" really means. It's not a 24/7
job for the architect because of all
the other roles and responsibilities,
but architects must definitely code.

Presenter: Yeah, I said something
at SATURN last year about this, and
then George Fairbanks and I argued
for the rest of the conference about
it. Absolutely. Architects have to
write code. That doesn't mean that
you are on the critical path
necessarily, right? Because a lot of
your job as an architect is enabling
others, helping them to write code or
kind of educating about what the
core qualities are and the
properties that you want to promote
in your system. But you've got to
write some code every once in a
while just to stay in touch.

Presenter: So in the previous
segment we spoke about writing
code as a way of helping to make
more tangible and communicate the
architectural concepts you're
espousing, and here I think we're
also talking about how you stay
connected to the downstream
consequences of those choices, and
understanding feasibility,
understanding what it's going to look
like.

Page 51 of 82

Presenter: Correct, and really it's
about the craftsmanship and to be
able to champion that craftsmanship
and be the mentor to the team for
the craftsmanship, and if you don't
understand the details of it, there is
no way you'll be able to advocate
them and make the right tradeoffs.
And on that subject, there's actually
a very good paper in IEEE Software, I
believe, by Frank Buschmann, who
really touched upon why an architect
should code and to what extent. We
can give the audience a reference to
that. That would actually give some
concrete advice there too.

Presenter: So I want to, I don't
know, pivot this a little bit. It cuts
both ways, right? So yeah, an
architect needs to code, but an
architect also needs to be aware of
the business side. So you can't
ignore-- as annoying as the
marketing guys might be sometimes,
you can't just ignore them, right?
You have to understand the market,
you have to understand your users.
Maybe you should read the marketing
plan. Right? It's not just the
technology side of things, but you
kind of have to have your hands dirty
in both of these areas. And from a
communication perspective, right?
So we're talking about technical debt.
When I'm talking about it with my
team from an engineering
perspective, everybody usually gets
it, but then there's that other side of
the conversation, talking to my
product manager. He wants Feature
X. "Eh, you can't get that." Right?
"I need to do some technical debt

Page 52 of 82

pay-down." Right? How can I
communicate with that person in a
way so that they understand the
value of making this investment?

Presenter: So perhaps it makes it
more tangible for you in the role of
architect to have that experience in
the code and being able to articulate
what technical debt really truly
means in an operational sense, not
just a conceptual sense.

Presenter: Yeah, I mean, my point
is that you have to be able to speak
to your audience, right? And an
architect has many different people
in the audience that they need to be
able to talk to. So code and
technology is one, but there's all
these other things around business
and value on the other side of this.

Presenter: And when it comes to
code as well, to bring it back to the
architectural skills and technical debt
and coding, there are lots of issues
that might creep into the code, for
example, with the skill sets of the
developers. That's the team that you
get assigned with, and to be able to
understand where those maybe
unintentional issues might be
creeping into your system early on,
you really need to be able to
understand it, reflect to it, and
interfere at the right time to be able
to make sure that it doesn't creep in
and accumulate.

Presenter: This looks like a nice
lead-in to the next polling question
we have.

Page 53 of 82

Polling question

16
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In which of these areas do you observe technical debt the most?

• Code; our code has become very hard to maintain because of clones, cycles, and random
bug fixes.

• Architecture; we have made suboptimal architectural decisions that we need to rearchitect
soon.

• We have skipped practices such as reviews, necessary testing, and documentation that we
are now paying for with low system quality.

• All of the above

• None of the above

Polling question

**016 Presenter: Okay. So let's
get that queued up here. And that
question is: In which of these areas
do you observe technical debt the
most? In your code; in your
architecture; we have skipped
practices such as reviews, necessary
testing and documentation; all of the
above; or none of the above. So
we'll give you about 15 or 20 seconds
to vote on there. Will?

Presenter: So this is really about
different manifestations of this
concept we're talking about here, and
if I could ask you to kind of contrast
the different ways that you see it.

Presenter: So we've reflected that
more and more we see the critical
technical debt to be architectural.
We also-- the way we work on this
and the reason that we're excited

Page 54 of 82

with our team at the Software Engineering
itute with a lot of the colleagues out there
that we work with about technical debt on,
is because it can be strategic and
conscious. Unfortunately, the reality
of the software development today is
we see a lot of unintentional
technical debt creeps in, and that's
where the discussion, "Well, is it
code, is it architecture, is it my
manager that brings the technical
data into the system?" comes in. So
that's probably one thing, to make
sure that the teams really clarify and
trace the roots of technical debt to
their system rather than talking about
it only at the abstract level. So that's
one of the experiences that I can
offer based on our work.

Presenter: So do we want to take
the poll results?

Presenter: We do. So we had 4
percent none of the above, 62
percent all of the above, 14 percent
have skipped the practices, 7 percent
with architecture-- I'm sorry, 7
percent with code, 14 percent with
architecture, 12 skipped the
practices, 62 percent all of the above,
and 4 none of the above.

Presenter: Surprising, or is that
what you would expect?

Presenter: Well, I don't know if you
recall, we were discussing about this
a couple days ago and I said that I
predict that we'll get all of the above,
and that seems to be consistent.
Yes, it's all of the above because I
don't think currently teams have the

Page 55 of 82

right skill set to balance it off and
they're not sure where it creeps in,
and that's where it becomes really
important that there's ownership
about the skill set of understanding
those architectural tradeoffs, and
making sure that you separate-- well,
it's not just skipped practices that
creeps the technical debt. If you
have skipped practices, if you're not
doing code reviews, if you're not
training your developers, just do it.
Calling it technical debt is not going
to help, and I think that resonates
with Michael's team's experience as
well.

Presenter: Yeah. I mean, I'm a
little disappointed that anybody
unfortunately is skipping practices.
It's like this idea of essential-- or
what is it?-- accidental and essential
complexity. Like there's these things
that you just should do. Like there's
no excuses for not doing reviews,
right? Skip a review, it's going to bite
you later, right?

Presenter: So it's the old adage.

Presenter: Those things we have
control over, is my point. Like we
should-- any kind of process thing,
any kind of methodology type of
thing, we should be able to do that
kind of stuff. Those top two I think
are interesting because there's a
whole bunch of things that, "Well, it
seemed like a good idea at the time,"
or maybe it was the right idea at the
time. Right? Like you chose to take
a shortcut maybe to get a time to
market-- faster time to market or

Page 56 of 82

something like that. Or maybe you
didn't know what the right answer
was and you've got to ship
something, so you develop a
hypothesis of what you think is the
right design moving forward and you
go with that and then you learn. So
those things I think we can't avoid,
but the practices we definitely
should.

Presenter: So it's the old adage in
terms of skipping practices. We
never have time to do it correctly,
but we find time to do it over.

Presenter: Yeah.

Presenter: If you're in that
situation, technical debt is going to
mount. So let's talk a little bit about
how it manifests. I think you have a
next slide that talks about this a bit.

Page 57 of 82

Technical Debt is Not Simply Bad Quality

17
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Original interpretations of technical debt
led us to think it is bad code quality.

• Low internal code quality is a problem,
but claiming it as technical debt should
not and does not legitimize it!

Technical Debt is Not Simply Bad Quality

“we have the source code static
analysis tools, but this is to assure
proper quality of source code. But
how architectural changes are
impacting I don’t know.”

**017 Presenter: So the
initial interpretations of technical debt
led a lot of the development teams to
believe that it's really about code
quality, and if you get ahead of code
quality, you'll get out ahead of
technical debt, which there's a
significant aspect of it that might be
true if you really have this lack of
software craftsmanship, there's lack
of skill set, but it's really-- the code
quality by itself is not enough, and
today there are quite a lot of tools
that help you with code quality. Use
them as they are fit, and make sure
that you don't inject those kinds of
issues into your system. That's really
bread and butter, and I think if there
are-- teams are finding that they are
struggling with it, it's I think a
different problem. It's really where
you cannot really use those tools to
be able to detect the architectural

Page 58 of 82

issues, where some of them might
still be related to the way you
actually maybe structuring the system,
the modifiability and maintainability
of the system. And again, some of
those tools could actually start
helping you, but someone needs to
be able to understand how you're
going to instrument those tools and
what you're going to get out of them,
because there is no solution out there
that's going to help you answer those
questions just by the click of a
button. So that's-- and we have
evidence over evidence over evidence
that confirms this, both from
research as well as practice.

Presenter: No silver bullets.

Presenter: No silver bullets.

Presenter: So if you think about
agile development processes and the
desire to quickly learn from the
experience of short iterations, how
does that play out vis-a-vis this view
that technical debt goes beyond just
what you can see in the code? If you
could comment on that please.

Presenter: Right. So the main
thing, bugs are not technical debt,
right? Bugs are bugs. Technical
debt-- I mean, really the way it
manifests is your ability to deliver.
With agile processes-- I don't want to
pick on agile, I guess, because it has
nothing to do with agile. It's really
when you're making decisions in
uncertainty. It's very-- let's see here
it's very easy for you to deliver some
kind of outward, externally visible

Page 59 of 82

kind of value in a kind of bad way, in
a suboptimal way, and backward and
forward, how do you understand this--

Presenter: So I guess where I was
going was success at agile requires
you to be conscious of technical debt
and if you're not conscious of
technical debt, you're just getting in
trouble faster.

Presenter: Well, I mean, with those
things it's-- as Ipek was kind of
mentioning, your number one
weapon against these things is really
caring about what you're doing.
Right? Having a strong sense of
craftsmanship. Even if you have
delivered the wrong thing-- which
hopefully you don't, right?-- hopefully
the code is still good. Right? Like
you didn't just write terrible code to
do it. But obviously there's a
balancing act, because you don't
want to invest too much in something
that is potentially not useful. I don't
know, it turns into a big swirl, I
guess, but.

Presenter: And it's critical to bring
it back to the architect's skill level,
because as I think my colleagues
John and Andrew commented out
there is the designer, the extender,
and the sustainer role, and those are
really being able to understand the
needs of the system today versus
tomorrow. So evolution will creep in.
Quality and maintainability will creep
in. But there are these systematic
issues that across the system might
actually be starting early on, and it's
really architect's role to be able to

Page 60 of 82

understand them, because it really
comes down to the refactoring and
rework, and there is the rework that
you can today understand by looking
at the system, but there's also the
anticipated rework. "If I don't do it
today, what am I going to get myself
into? If I don't upgrade the
technology today, what will happen?
If I don't really make these changes
that keep slowing us down, what will
happen?" Those are really skills,
someone who has the ability to
abstract the system's changes, who
has the ability to understand some of
the key architectural patterns and
design choices that were made, and
their impact not only on the single
files that you might be looking into,
the code quality, but structurally
across the system what needs to
change when I start making those
changes, and that's what we're trying
to communicate. Simply if you just
feel that you have bad code quality,
you probably have a lot of other
issues that you need to deal with.
Technical debt, that is not just one of
them. Software architecture is not
just one of them.

Presenter: It's a big iceberg.

Presenter: It's a big iceberg.

Presenter: I just want to throw in,
this-- you can reason about
them as well. Right? So technical
debt is not always this bad thing you're not
the victim, right? This is something
that you can choose to do. You can
choose to invest in certain ways. I
think there's some work by Barry

Page 61 of 82

Boehm, and I want to say there's a
curve, and I'm not remembering
what it is, but basically you can
estimate what's the cost of me
delivering something sooner versus
later versus the cost of me taking
more time to design it, doing more
up front, and kind of-- I don't
remember what the axes are-- of
course, because we're in front of tons
of people here-- but the curve kind of
dips at some point and you're aiming
for this--

Presenter: So U-curve optimization
problem.

Presenter: Right, exactly. You're
aiming for kind of this lowest point of
how much you invest versus how
much-- your ability to deliver. So you
can think about that. You can reason
about it. You can estimate. And
sometimes rework we generally think
is bad, unless you get a lot of value
from that, and if you're able to ship
sooner-- right? So something that I
like to talk about is, "Oh, that's a
problem I'd love to have." Right?
So, "Oh no, our system's not going to
be able to scale to a million
concurrent users." Right? Awesome.
We've got a million concurrent users.
Let's deal with that, because right
now we've got two. Right? Let's get
two users concurrently, and then we
can deal with the scalability issues
later. Right? So when you're kind of
looking at the world from this "You
ain't gonna need it" kind of
perspective, or build it just in time
when you do need something, now
you're starting to look strategically at

Page 62 of 82

these ideas. Right? And so if you've
built a system that isn't scalable to a
million users, is that necessarily a
bad thing, because you shipped and
you're getting value today? Right?

Presenter: And so this probably
drives further to the benefit of
quantifying and to finding ways to
monetize some of these things. It
really helps you to make strategic
choices, along the lines of what you
said.

Presenter: Correct. And
quantification, as I keep repeating it,
it's not just a press of a button. It's
really understanding what you're
quantifying from a quality attribute
perspective as well as business
perspective and how it maps to your
system. That's really that balance.
And in earlier days of software
architecture there were the teachings
that we said, "Well, your system has
an architecture whether you know it
or not." I think that could very well
be reflected in technical debt as well.
Your system will have technical debt
whether you're aware of it or not,
because if you're dealing with a
successful, long-lived system, you're
dealing with change, you're dealing
with technology upgrades, you're
dealing with developer turnover,
you're dealing with software
architects who might have or may
not have the right skills based on the
time of the development. So I think
that's how they really relate very well
together in design tradeoff analysis.

Page 63 of 82

Presenter: Should we take a couple
more questions? I think we've
probably got a list of them.

Presenter: Yes, lots of good
questions coming in. So Nita's
asking, "How do you get the balance
between growing technical debt and
the delivery speed?"

Presenter: Okay. So that I think
goes back to whether you understand
your business goals and whether you
understand what growing technical
debt really means. One of the things
that we are advocating is, similar to
how you define your architecturally
significant requirements, your defects
or features define your technical
debt, and that actually makes a very
significant starting point because you
can anchor it, and then decide
whether it's really tipping off or
maybe it's still okay. And one of the
other aspects of technical debt, when
used right, it could really be a very
powerful strategic design tool. So
that really comes to the teams to be
able to define what that means. I
think Michael's example in terms of,
"Well, if you're just dealing with two
concurrent users versus a million,
well, then maybe you can live with
some technical debt initially."

Presenter: Do you want to speak a
little bit about visibility and different
kinds of technical debt? I think you
have a good chart on this.

Page 64 of 82

Essential Software Development Artifacts

18
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Essential Software Development Artifacts

New features
and added

functionality

Architectural,
structural
features

Defects Technical
Debt

Visible Invisible

Positive

Value

Negative

Value

Kruchten, P. Nord, R.L., Ozkaya, I. 2012. Technical Debt: From Metaphor to Theory and Practice, IEEE Software, 29(6), Nov/Dec 2012.

**018 Presenter: Well, I think one
of the things that we're realizing as
we think and collect more empirical
evidence on technical debt and
software architecture is technical
debt should be treated as part of a
software development artifact, similar
to how we treat new features,
defects, architecture and the related
aspects of it. So initially this chart
was put out there by our colleague,
Philippe Kruchten, and he calls is
"What Color is Your Backlog?" So an
ideal software development
environment has a balance of these
aspects of.... You need to
be able to spend time in developing
new features. You need to ensure
that the architecture supports those
new features today and upcoming,
and you need to minimize your
defects and be able to respond to
them timely, and because long-lived

Page 65 of 82

systems go through these evolution
cycles, technical debt will creep in as
well and you need to be able to
balance that too.

Presenter: Yeah, I think this is a
cool chart. Right? So "What Color is
Your Backlog?" is kind of-- it's a neat
idea, right? So you should be-- let's
see here. So most of the time, on
the visible side of things, we're
talking with our product managers
about what sorts of things, or we're
really thinking about our customers.
What we don't always do a good job
of-- and those things, under the
visible column there, they make their
way into the backlog as a very
obvious thing that we track, and I
think that we've done a very good
job as a software community of
making that visible and creating
artifacts that we can collaborate with
among different stakeholders. These
invisible things I think are much more
interesting, at least from an
engineering perspective, and
unfortunately though, we don't
always do a good job of visualizing
them or prioritizing them. And so I
really like this idea of kind of
zippering in a couple of defects, a
couple of features, some architectural
investment, some technical debt
investment within your backlog and
bringing that conversation out into
the open. I think that's really the
main thing.

Presenter: And what I also like
about this chart is, as we said earlier,
yeah, you might think your manager,
because they're not making the right

Page 66 of 82

decisions at the right time, is the
reason of the key technical debt you
have. Correct, but at the end of the
day it really manifests itself in your
system. What you need to change in
the system is what technical debt is.
It puts in your face that it's a key
artifact that you need-- it's a
byproduct of system development
and as an artifact you need to
manage it throughout your spin
backlogs, release management
systems, whatever process you're
using.

Presenter: I think this is a nice
elaboration that really comes from
that previous question. Maybe
there's another question that'll take
us down another great path.

Presenter: Okay. So let's go with
one from Gerald, asking, "Given that
technical debt is an impediment to
agility, do you believe that agile
methods may actually be a cause of
technical debt?"

Presenter: Oh, heavens.

Presenter: All right. I'll take that
question, and I'm sure Michael--
there is-- you cannot say agile
creates technical debt or waterfall
prevents technical debt, and we
actually-- one of the things that we're
really working very hard is whenever
we put something out there, we have
empirical evidence, and we find over
and over again there is absolutely
correlation between one development
process versus technical debt. It's
really the architectural decisions and

Page 67 of 82

the teams and the system needs that
might create or not create technical
debt. And if anything, if you're doing
agile right, it might help you visualize
technical debt earlier than later,
because if you're making software
architecture a part of your software
retrospectives, then you're really
uncovering those tradeoff issues.
You're talking about, "Is it short-
term, is it long-term? Can I live with
this? It is priority?" You're really
negotiating them. So it's really-- if
you're finding yourself dealing with
technical debt, before you blame the
process, I would really step back and
really assess what's going on. So,
Michael uses agile day in, day out, so
I'll let him comment more on this.

Presenter: Yeah, so it-- agile
doesn't create technical debt; you
create technical debt. Okay? So you
put it in the system--

Presenter: Own in.

Presenter: Yeah, own it. Don't
blame the process, right? It's the
decisions that you make day to day,
and maybe they are the right
decisions, and that's fine, right? If
anything, agile, when you really
embrace the agile principles and the
values, it's one of your best ways
that you can manage technical debt,
right? And some people, I think
anyway, are less comfortable with
this ambiguity or the uncertainty than
others. Yeah, so if anything, agile, it
really helps you, and I'm kind of
reminded of the-- there's the story of
the boiled frogs, or whatever. So this

Page 68 of 82

is-- it doesn't make any sense when
you think about it, so let's just go
with it, right? If you want to cook a
frog, you throw him in a frying pan.
First of all, don't cook live frogs,
right? But if you want to cook a frog,
you put him a frying pan, he hops
right out. It's too hot. Right? So
instead you put the frog in cold
water, turn up the heat. Over time it
rises. Next thing you know, your frog
is boiled alive, right? Totally dead.
Agile practices have these inspect-
and-adapt methods built in. It's
baked in as a part of the
methodology, right? So at no point
should you ever find yourself as a
boiled frog where suddenly you're
overwhelmed by massive amounts of
technical debt because hopefully
you've been inspecting your
processes, inspecting your system as
you go, and making conscious
decisions to pay down or manage
that as you're moving along. So agile
doesn't create it, you create it, and if
anything, I think agile really helps
you to manage it in a much more
positive way.

Presenter: So if you do agile well,
the feedback you're getting, the pace
at which you're getting feedback,
may help you to be more proactive
more frequently. But if you're doing
agile poorly, you're making more
mistakes more quickly, and it's not
because of agile, it's because of
choices you make.

Presenter: Yeah. Now, we want to
be careful about pacing and stuff
though, right? Because to me, a

Page 69 of 82

week-long or a two-week-long sprint
is really good. For other people,
that's way too fast. The point is that
you're kind of embracing this idea
that there is change and you're kind
of inspecting and adapting, and that's
your process, your practices, but also
your system, your software system.
So whatever timescale that is.

Presenter: Probably rooted under
that question is also agile and
software architecture compatibility
question, and I'm really hoping we've
discussed that enough and we are
beyond that. Yeah, there were
earlier writings of agile software
development process that misled us
to think that they were incompatible,
but I think today both the agile
community as well as the software
architecture and the developer
community recognize that this is not
necessarily a byproduct of the
process; it's really a byproduct of
how you decide the priority of your
backlog, and if the software architect,
they are not-- either developers or
software architects-- that are really
embracing their role well, yeah,
correct, your system will suffer, but
that's not necessarily the process.
It's really the software architects
that's probably not putting the right
things in the backlog at the right
time.

Presenter: So coming back to this
nice two-by-two matrix, it's a matter
of making more visible the things
that have previously been invisible,
and irrespective of the methodology
you choose.

Page 70 of 82

Presenter: Exactly.

Presenter: Well, we're also growing
as a community, right? So I think
there's been a lot of work in the
patterns community and groups
building out frameworks. Like we
have more frameworks than we've
ever had. They kind of embrace
more-- they're more opinionated
about how you build systems today.
Right? And I think that's also
contributing to some of our ability to
talk about technical debt and deal
with it. So we talk a lot about agile,
but modifiability and maintainability,
you probably don't actually have
scenarios for those. You probably
don't ever talk about them with
stakeholders. They're just assumed
to be true, right? And I think that's
wonderful that as a software
community we're finally getting to
that point where just good
craftsmanship and good design is just
assumed, right?

Presenter: Correct. And that also
goes back to how software architects
should be able to understand it,
because if I don't understand what
the framework-- what quality
attributes come with a framework I
choose, then I might actually be
injecting technical debt that nobody
bought into to start with.

Page 71 of 82

Polling question

19
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In our project technical debt management is currently owned by:

• The software architect

• The product owner

• The team

• All of the above

• No one

Polling question

**019 Presenter: So I think we
have a next polling question that
really brings this to who's involved
and what roles are we going to be
relying on. So Shane, if you would?

Presenter: The final polling
question for today is asking: "In our
project, technical debt management
is currently owned by the software
architect, the product owner, the
team, all of the above, or no one."
And we'll give you about 15, 20
seconds to vote there, and if we can
work in a quick question from Jim
asking, "What are the best tools for
smartly identifying and removing
inherited technical debt. If you can
recommend a tool."

Presenter: Oh, wow. So, you really
need to start with the goals of the
system. So before the tools, I would

Page 72 of 82

start with my business goals and my
quality attribute requirements, and
then maybe do an architecture
evaluation to start with, and from
there on, if you really want to assess
the quality of the code and pick the
tool that maps your quality attributes.
Like for example, if security is really
important, then there are lots of tools
out there that help you do some
security analysis of the
implementation aspects of it, versus
some of the architecture. So that's
the right way to go.

Presenter: So I think what you're
saying is it depends on which types
of technical debt really matter to you,
and then the tools follow.

Presenter: Correct. Correct.

Presenter: Anything from your
experience you want to comment on
there?

Presenter: Yeah, I mean, just to
echo that, with legacy systems
especially, you don't actually know
why they were built sometimes. So
getting some kind of a foundation
established of like, "What are the
business drivers? What were the
actual quality attributes?"
Understanding the lay of the land or I
guess how you got to here is
important, but also understanding
kind of where you want to go with
the legacy system, and I don't know,
from some of the things that I've
done in the past, I think tests are
probably one of the easy entry
points. So you can look at-- I guess

Page 73 of 82

depending on how you define legacy
system, there may or may not be any
tests to actually show you how it
works, and I know that that is
something that is easy to quantify,
easy to measure; there's lots of tools
out there. So that at least gives you
a window to kind of peek into what's
going on.

Presenter: So if you had a suite of
regression tests that have been built
up over time, over the life of the
system, you could really do an
analysis on where has our focus been
there.

Presenter: Yeah. I mean, you
could-- assuming those tests are
written in an understandable way,
which sometimes they're not, you
could even use that kind of as a
second part of your analysis, right?
So given your business drivers and
your quality attributes, what's
reflected in your tests? Do those
things actually align? That can give
you a bit of a hint at least at where
the system really is versus where it
needs to be.

Presenter: That's a really clever
idea. Thank you for that.

Presenter: All right, and to wrap up
our polling question, we had 13
percent that the technical debt is
owned by the software architect; 12
percent the product owner; 20
percent the team; 31 percent all of
the above; and 25 percent no one.

Page 74 of 82

Presenter: Interesting. So no one
owning technical debt. What does
that really mean?

Presenter: It will keep creeping in.

Presenter: Find a new job.

Presenter: You know who you are.
Is that what you're saying?

Presenter: Oh, that's sad. Yeah.

Presenter: Well, all of the above is
probably how it should be, because
it's the team's responsibility, and
that's-- there are different ways it
might creep in and everybody should
contribute to visualizing it when they
find it. Like especially if you're
maintaining a legacy system. You
might still have surprises despite all
the evaluation and the assessment
you did early on. But if it's no one,
now is probably time to start
discussing how you're going to deal
with it, because without ownership,
things will not progress.

Presenter: People are busy
enough. They're not going to
volunteer for stuff.

Presenter: Right. And thankfully,
with this webinar, whoever you are,
you now have some of the
information you need to take
ownership over the technical debt in
your backlog.

Page 75 of 82

Who is Aware and Manages Technical Debt

20
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Developers are most aware of technical debt.
While a joint responsibility, software architects are reported to own management of
technical debt more often than other roles.

Who is Aware and Manages Technical Debt

0% 10% 20% 30% 40% 50% 60%

Software Architect

Team Lead

Developer

Project manager

Business Manager

Tester/QA

Requirements Analyst

Aware Aware & Manages

A Field Study of Technical Debt https://insights.sei.cmu.edu/sei_blog/2015/07/a-field-study-of-technical-debt.html

**020 Presenter: So, I'll bring
some of the-- again, I like tying it
back to not "our" data but like "your"
data, and this again comes from this
survey we did, and we continue to
work with organizations and we'll put
out them as we do the analysis. But
so the questions we ask were two.
One is: Who's aware of it? Because
you might be aware but you may not
have the power to do anything about
it. And: Who's aware and manages
technical debt? So the way to read
the chart is the lighter ones are
they're both aware and they're both
responsible of managing. So
dominantly, developers actually come
at the top for being aware, and that's
not surprising because day in, day
out they work with the system, they
suffer from the consequences of the
technical debt in the system. On the
flipside, although software architects

Page 76 of 82

maybe tend to be less aware of it in
a way, they're actually the ones who
own it more. They manage it more.
So that responsibility rests on both
the team lead as well as the software
architects. But we kind of have an
equal balance of the project
manager, developer, team lead and
software architect as owning it, and I
think that's reflected in the poll
results as well. There's a collective
ownership of it, but awareness but
vary depending on how the
developers are working with it. And
if no one owns and manages it, that's
a problem.

Presenter: Yeah, that reflects our
experiences pretty well at my team at
IBM. So obviously the engineers are
feeling it, right? They feel the pain
day to day, and so are much more
aware of it. But really it's a strategic
between the engineering, the
developers, the product owner, and
the design team, who kind of
represents our user focus. So
making strategic decisions between
those three is oftentimes how we
manage it.

Presenter: And it helps you to
avoid being the frog in the pot
perhaps.

Presenter: Exactly, yeah.

Presenter: Let's see if we have
questions.

Presenter: We got lots of
questions. So same thing as with
Andrew and John; we'll do rapid-fire

Page 77 of 82

questions. If it's something you don't
want to answer, just say pass
because we've got so many in here.

Presenter: Lightning round.

Presenter: From Ronnie, asking,
"What are some ways an architect
can win over their senior developers
if they don't agree with the
architecture design?"

Presenter: Pass. That's tricky.
Everybody's different, right? So you
have to get to know that person and
you have to understand what
motivates them. Right? What are
their objections? Can you reason or
can you persuade them using logic?
Do you need to give something to get
something? That's a very individual
kind of thing, unfortunately, I think.

Presenter: Yeah. I think
for opinions.

Presenter: There you go.

Presenter: But people can get
emotional.

Presenter: Correct. Correct.

Presenter: So data-- if the person,
"Oh, I hate Java"-- nothing you say
and no data you show is going to
change--

Presenter: Correct. But still that
makes it a little bit more objective
rather than subject if you have that
and if there's a reason of it.

Page 78 of 82

Presenter: Get to the root of the
problem.

Presenter: Get to the root of the
problem, and then personal skills
come into play.

Presenter: Convince them that
you're in the same boat.

Presenter: Yeah, same team.
That's probably the most important
thing. Almost remind them.

Presenter: We are in it together.

Presenter: Great.

Presenter: We touched on it, but
like I said, so many questions coming
in. From Devaya asking, "Planned
debt versus unplanned debt. Most of
the technical debts starts out as
planned debt but it tends to keep
accumulating, like if you initially
made a different choice and it wasn't
important enough then, its
importance only continues to
decrease compared to newer
requirements or opportunities. How
do you manage this?"

Presenter: So first of all, if it's
really planned, it needs to be well
communicated. Because one of the
things that seems to be really missing
from what we've observed is nobody
knows that it was intentional at the
time, and if you don't know what was
made intentionally at the time then
you cannot trace it to the roots and
you cannot react to it. So that's
number one step that I would take.

Page 79 of 82

And the creeping in is the continuous
monitoring and decide what you're
monitoring on so that you would be
able to bring it-- if you're in an agile
team, bring it to your agile
retrospectives. If you're in a non-
agile team, again, make it part of
your software development process
to be able to touch upon these and
decide at the right time.

Presenter: I just want to comment
on this. One of my favorite things for
I guess unplanned is the To Do flag.
Right? So you have this brilliant idea
and you're in the middle of the
coding, and then you realize, "Wow,
I'm about to go off on some path
that we don't need today." Comment
"To Do"-- right?-- and then leave a
brief description there, and
oftentimes you can use the tools-- go
back and review it-- you can get a lot
of ideas like that for free from the
IDE, from the compiler.

Presenter: So maybe there's some
sophistication behind what it really
means to have it be a planned
technical debt.

Presenter: Correct.

Presenter: There's a
communication obligation, there's a
lifecycle to retiring it or to allowing it
to persists. There are decisions that
are made later as well.

Presenter: And maybe to wrap it
up, every time you think you are
making a planned technical debt

Page 80 of 82

decision, you are also making a key
software architecture decision.

Presenter: Yep. Nice.

Presenter: That's-- there's no way
that it works otherwise. So that's
actually really important to recognize,
as I said.

Presenter: Great conversation,
folks. Thank you very much. This
has been great. I'll pass it to Shane.

Presenter: Yes, thank you Ipek,
Michael, Will, great facilitation.
Thank you very much to John and
Andrew as well. That's going to be
all the time we have for today for
"What Makes a Good Software
Architect?" We thank you for joining
us. Again, please fill out that survey
upon exiting the event, as your
feedback is always greatly
appreciated, and we hope to see you
at SATURN 2016 in San Diego to
continue this conversation. Have a
great day everyone.

Page 81 of 82

SEI WEBINAR SERIES | Keeping you informed of the latest solutions

22
What Makes a Good Software Architect?
SEI Webinar
© 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Page 82 of 82

	What Makes a Good Software Architect?
	Table of Contents
	SEI WEBINAR SERIES | Keeping you informed of the latest solutions
	Carnegie Mellon University
	Copyright 2016 Carnegie Mellon University
	What Makes a Good Software Architect?
	The Life of a Software Architect
	What do architects do?
	Architect’s Skill Sets
	Polling Question
	Architect Skills in the System Lifecycle
	Polling Question
	What is Technical Debt?*
	Polling question
	Software Architecture Biggest Contributor
	Polling question
	Technical Debt is Not Simply Bad Quality
	Essential Software Development Artifacts
	Polling question
	Who is Aware and Manages Technical Debt
	SEI WEBINAR SERIES | Keeping you informed of the latest solutions

