
 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY REV-03.18.2016.0 
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited 

EMBEDDED DEVICE VULNERABILITY ANALYSIS 
CASE STUDY USING TROMMEL 
 
Madison Oliver 
Kyle O’Meara 

November 2017 

Executive Summary 
Researching embedded devices is not always straightforward, as such devices often vastly differ from 
one another. Such research is difficult to repeat and results are not easily comparable because it is 
difficult to conceive a standard approach for analysis. This document proposes an initial research 
methodology for vulnerability analysis that can be applied to any embedded device. This methodology 
looks beyond preliminary research findings, such as open ports and running services, and takes a 
holistic, macro-level approach of the embedded device, to include an analysis of the firmware, web 
application, mobile application, and hardware. In addition, TROMMEL, an open source tool, was 
created to help researchers during embedded device vulnerability analysis. 

This document provides security researchers with a repeatable methodology to produce more thorough 
and actionable results when analyzing embedded devices for vulnerabilities. As a case study, we 
analyzed a Wi-Fi camera as a class of embedded devices to demonstrate this methodology is more 
encompassing than standard research. This methodology can be applied to all embedded devices and 
should be expanded as the landscape of embedded device evolves. 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             2  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

1. Introduction 
Embedded devices are becoming more ubiquitous. Embedded devices can be thought of as “a 
paradigm that considers pervasive presence in the environment of various things that 
through...connections are able to interact and cooperate with other connected things to create seamless 
communication and contextual services...” [Misra 2017]. Embedded devices have multiple 
components, both hardware and software, that can contain vulnerabilities. All of these different 
components can contain exploitable vulnerabilities and provide additional entry points for attackers.  

These devices have multiple components that are often overlooked during analysis because 
researchers typically focus on one area or part of the device, such as changing memory contents, or 
have not applied their findings to a physical device [Seshadri 2004; Papp 2015].  

The proposed methodology ensures that a researcher considers all components of the device during 
analysis and broadens the footprint of the results. This methodology is meant to be a living document 
and should be adapted to include additional steps as the embedded device ecosystem evolves. We 
outline the following methodology to take during research: embedded device list curation and 
identification, general information gathering, firmware analysis, web application analysis, mobile 
application analysis, hardware analysis, and vulnerability analysis.   



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             3  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

2. TROMMEL 
We created a custom, open-source tool using Python called TROMMEL to assist researchers during 
embedded device vulnerability analysis [TROMMEL 2017]. TROMMEL sifts through directories of 
files to identify indicators that may contain vulnerabilities. Specifically, TROMMEL identifies the 
following indicators:  

• Secure Shell (SSH) key files 
• Secure Socket Layer (SSL) key files 
• Internet Protocol (IP) addresses 
• Uniform Resource Locators (URLs) 
• email addresses 
• shell scripts 
• web server binaries 
• configuration files 
• database files 
• specific binaries files (for example, Dropbear, BusyBox, and others)  
• shared object library files 
• web application scripting variables 
• Android application package (APK) file permissions 

Also, TROMMEL integrates vFeed, which is a database wrapper that pulls in content from Common 
Vulnerabilities and Exposures (CVE) database, Exploit-DB, and Metasploit [Toolswatch 2017]. vFeed 
offers a free, downloadable Community Database for non-commercial users [Toolswatch 2017]. This 
integration allows for further in-depth vulnerability analysis of identified indicators. TROMMEL 
significantly lessens the manual analysis time of the researcher by automating much of the 
vulnerability discovery and analysis process.  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             4  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

3. Methodology 
We created this methodology to enable other security researchers to follow a more uniform and 
scientific research process when reviewing embedded devices. Given that a methodology does not 
presently exist for embedded devices, our goal was to provide a way for researchers to apply a 
repeatable, macro-level process to embedded device research or analysis. Researchers should apply 
this methodology to analyze disparate types of embedded devices, and as the ecosystem evolves, 
should add additional components to account for the changing landscape. 

We provide a case study using a Wi-Fi camera to highlight the key points for each part of the process.  

3.1. Embedded Device List Curation and Identification 

Given a particular challenge or set of requirements, researchers should develop a list of common 
embedded devices. To further narrow this list of candidate devices, researchers should then consider:  

1. Ease of physical access to the device. Physical access allows for more complete results. 

2. Ease of access to the firmware. Firmware access is necessary to have comprehensive results. 
Researchers should consider the number of firmware versions, the availability of this 
firmware, and whether the firmware is still being maintained.  

3.2. General Information Gathering  

After selecting a device, researchers should perform significant information gathering on the device 
and the device class. Additional research points should be: 

1. Vulnerabilities, past or present, that have been associated with the vendor and with vendor 
devices that are similar to the selected device. These vulnerabilities are likely still present on 
older devices and on older firmware versions that are still used by consumers.  

2. Exploits. There are multiple Internet resources, such as Exploit-DB and VirusTotal, that can 
be used to discover exploits for the vulnerabilities found. 

3.3. Firmware Analysis 

After information gathering is complete, the contents of the device firmware image should be 
extracted and analyzed for potential vulnerabilities. There are multiple tools that can be used, but for 
our analysis, we chose open-source tools that included Binwalk and TROMMEL.  

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             5  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

3.3.1. Binwalk 

Binwalk is an open source tool that is used to analyze, reverse engineer, and extract firmware images 
[devttys0 2017]. Though Binwalk has many advanced features, two standard options are useful: 

1. Pass the firmware image to Binwalk with no options. This allows review of the contents of 
the firmware image before extraction and reveals whether: 

a. The firmware contains data that can be extracted. 

b. The firmware contains a file system. Common file systems found in the firmware of 
embedded devices are: SquashFS, compressed ROM file system (CramFS), 
Journalling Flash File System version 2 (JFFS2), Yet Another Flash File System 
(YAFFS2), and second extended filesystem (ext2). 

2. After a file system is identified, pass the firmware image to Binwalk with extraction options. 
This will extract all content identified by Binwalk, including—but not limited to—the file 
system directory. The researcher will need to review and recursively search this new directory 
for the file system folder and perform follow-on analysis. 

3.3.2. TROMMEL 

We chose to use TROMMEL for firmware analysis because it supports identification of indicators, 
mentioned above, that are found in file systems extracted from embedded device firmware. 

3.4. Web Application Analysis 
In many cases, embedded devices usually contain a web application interface that the user can access 
to control the device. These interfaces are usually administrative in nature and are used to adjust 
settings, either through a web, cloud, or mobile platform [OWASP 2016]. This interface should be 
thoroughly tested for vulnerabilities such as information leakage or unauthorized access. The interface 
can be tested manually or with automated tools. We chose to use automation, owing to improved test 
speed and reliability.  

There are many open-source web application tools available. Using a variety of tools is recommended, 
as results may vary from tool to tool. Web application scanners, which typically test for a wide array 
of web application vulnerabilities, are the most common type of tool used in web application analysis. 

Some examples of the most commonly used scanners are [Infosec Institute 2017; eHacking 2011]: 

• Burp Suite 
• Grabber 
• OWASP ZAP 
• Nikto 
• W3af 
• Wapiti 
• Vega  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             6  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

In this case study, we used two different open source tools because of they are extremely informative 
and easy to use: 

1. OWASP ZAP uses a proxy to intercept website requests and then to scan actively and 
passively for vulnerabilities [OWASP 2017].  

2. Nikto is a web server scanner that searches for potentially malicious files, checks for outdated 
server versions, and looks for specific known problems in the server versions found [Sullo 
2017]. 

We suggest using the default settings in each tool, both tools were given the administrative webpage 
IP address, and Nikto was given administrative login credentials. These tools are also able to 
thoroughly crawl the entire website and return results about potential vulnerabilities, such as cross-site 
scripting or Structured Query Language injections (SQLi). 

3.5. Android Mobile Application Analysis 

Mobile application analysis includes the process of analyzing the decoded package files of an Android 
mobile application. While this is not an exhaustive list, researchers should attempt to analyze the 
Android mobile application with Apktool and TROMMEL. 

3.5.1. Apktool 

Apktool is a tool for reverse engineering Android Package Kit (APK) files [Wiśniewski 2017]. To 
decompile the APK file, the researcher provides Apktool with the decode option and the absolute path 
to the APK file. Apktool saves the decoded content to a directory named [APK file name].out. 

3.5.2. TROMMEL 

We chose to use TROMMEL for mobile application analysis because it supports identification of 
indicators, mentioned above, that can be found in decompiled APK files. 

3.6. Hardware Analysis 

There are multiple steps that can be taken for the hardware analysis process, but we recommend the 
following five steps.  

3.6.1. Step 1: Identify all markings on the case of the device  

The researcher should research all markings on the case of the device, then compare findings against 
the vendor’s website and against any information collected during the Information Gathering phase of 
the methodology. Information that can be identified on the case of the device might include product 
number, model number, serial number, media access control (MAC) address, Wi-Fi service set 
identifier (SSID), and Wi-Fi password. If the device has any radio communication, the case might 
have regulatory numbers for countries it was registered with such as the Federal Communication 
Commission (FCC) or Industry Canada (IC). These regulatory agencies store device information in a 
publicly searchable database. Typically, the database will have documentation that was provided by 
the vendor during the registration process. This documentation may include datasheets and can be 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             7  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

used to further identify or verify internal components of the hardware device, as well as supplement 
the data collected during the Information Gathering phase. 

3.6.2. Step 2: Identify the components internal to the device located on printed circuit board 
(PCB) 

The researcher must open the device to expose the PCB with the goal of identifying the flash memory 
component. Any datasheets discovered during the first step of hardware analysis will be useful in 
identifying the components on the PCB. If no datasheets were discovered, the goal is to identify any 
labeling on all components present on the PCB. This labeling will include alphanumeric strings and 
potentially a vendor logo, which the researcher can use to search for datasheets and further 
information from the respective vendor website or the Internet at large. It may be difficult to locate 
datasheets, but they are necessary to identify the pin layout of the flash memory component.  

3.6.3. Step 3: Dump memory from flash memory component to firmware image binary 

The third step requires more advanced skills, but the goal is to dump the contents of the flash memory 
component to a firmware image binary. There are many different tools that can be used to extract 
firmware images from devices. After identifying the pin layout of the flash memory component, we 
recommend the following tools for attempting memory extraction: a Linux machine with flashrom 
installed, jumper wires, ultra-fine test clips, a Bus Pirate, and a Bus Pirate cable [FireEye 2017]. We 
chose this setup due to the integration between BusPirate and flashrom, as well as the fact flashrom 
supports a variety of makes and models of flash memory components. If flashrom (in conjunction with 
the BusPirate) can identify the flash component, it will extract the contents of the component to a 
binary file in the working directory. 

3.6.4. Step 4: Extract and analyze the content of firmware image binary 

The fourth step is to take the firmware image binary dumped from the flash memory component in 
step 3 and follow the steps in section 3.3.1. regarding the use of the Binwalk tool.  

3.6.5. Step 5: Compare the contents extracted from the flash memory component to 
relative firmware 

If applicable, in the fifth step, the researcher should compare the contents extracted from the flash 
memory binary to firmware versions gathered during the Embedded Device List Curation and 
Identification phase of the methodology. 

3.7. Vulnerability Analysis 

After the appropriate information is gathered in the above steps, researchers should proceed to 
vulnerability testing, exploit testing, and coordination. 

3.7.1. Vulnerability and Exploit Testing 

When testing, we suggest two separate steps: 

1. Review the firmware updates for patches against the vulnerabilities that were found during back-
ground research to determine if and when these vulnerabilities were fixed. This information can 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             8  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

typically be found in any release notes associated with the update and requires manual review. If 
there is no documentation that the vulnerabilities were fixed, the researcher should test for these 
vulnerabilities on every firmware version to determine if the device is still vulnerable. If the ven-
dor claims that the vulnerabilities have been fixed with a software or firmware update, the re-
searchers should then check these fixes before and after the update to ensure that the vulnerabil-
ity was fixed. 

2. Test the actual exploits against the device. All exploits gathered during the Information Gather-
ing section that are associated with other devices from the same vendor should be tested against 
the chosen device to determine if there is any crossover of vulnerabilities. Researchers should be 
cautious when downloading exploits, review the exploit code before testing it against the chosen 
device, and use isolated systems/networks. 

3.7.2. Vulnerability Disclosure 

Novel vulnerabilities found during this process can be disclosed in a few different ways. Cencini, Yu, 
and Chan define three different forms of vulnerability disclosure: non-disclosure, full disclosure, and 
responsible disclosure [Cencini 2005]. Non-disclosure is when a researcher keeps a vulnerability 
secret and does not disclose it to anyone. Full disclosure is when a researcher informs the public of the 
vulnerability. Responsible disclosure, or limited disclosure, is when the researcher informs the 
software vendor and gives them a specific amount of time that they must issue a response. After this 
time passes, the researcher can disclose the vulnerability to the public with or without a patch from the 
vendor [Cencini 2005]. 

The CERT Guide to Coordinated Vulnerability Disclosure defines Coordinated Vulnerability 
Disclosure as “the process of gathering information from vulnerability fixers, coordinating the sharing 
of that information between relevant stakeholders, and disclosing the existence of software 
vulnerabilities and their mitigations to various stakeholders, including the public” [Householder 
2017]. The CERT Guide encourages responsible disclosure and can assist researchers with disclosing 
to organizations that do not have a process set up yet.  

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             9  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

4. Case Study Application and Results 
This section outlines the results of the proposed methodology using a DCS-935L D-Link camera. 
Some of the results are limited, as we are currently coordinating the vulnerabilities with the vendor. 

The following sections correspond to the methodology described in Section 3. 

4.1. Embedded Device List Curation and Identification 

After compiling a list of nearly 300 different embedded devices, we chose a D-Link camera because 
D-Link makes their firmware readily available, and although there has been significant analysis 
completed on D-Link routers, there has been less analysis on their cameras. Table 1 includes a list of 
the DCS-935L firmware versions analyzed. 

Table 1: D-Link DCS-935L Firmware Versions 

Camera Model Firmware Version 

935L 

1.04 
1.06 
1.08 
1.09 
1.10 

 

4.2. General Information Gathering 

The Appendix contains the list of known vulnerabilities, exploits, and corresponding CVE pairings for 
the DCS-935L and similar devices.  

4.3. Firmware Analysis 

The following results are for firmware v1.10.01 for DCS-935L, which was downloaded directly from 
the D-Link website. This was the newest available firmware at the time of writing this whitepaper.  

4.3.1. Binwalk 

Binwalk identified a file system embedded in the firmware v1.10.01, which was then extracted for 
follow-on analysis using TROMMEL.  

4.3.2. TROMMEL 

Table 2 shows two indicators that contained extensive product information, which aid the researcher 
in vulnerability analysis. These files provided extensive wireless details about the product that was 
previously not found anywhere else during the General Information Gathering phase.  

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             10  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

Table 2: TROMMEL Results: Files of Interest from Firmware Image 

File name and location 

/root/etc/Wireless/wscd.conf 

/root/etc/Wireless/RTL8192CD_static.dat 

With the integration of vFeed into TROMMEL, v1.22.1 of BusyBox was identified, which is out of 
date. The newest version available as of this writing is v1.27.2 [BusyBox 2017]. vFeed also assisted in 
providing further vulnerability analysis on the out-of-date version of Busybox: 

• CVE-2016-2148 affects BusyBox versions before 1.25, CVE-2016-2147 affects BusyBox 
version 1.25, and CVE-2014-9645 affects BusyBox version 1.23 [Toolswatch 2017].  

• At the time of writing this whitepaper, no Exploit-DB entries or Metasploit modules exist for 
the above three CVE [Toolswatch 2017]. However, this does not negate the fact that the 
current BusyBox version in firmware v1.10.01 contains known vulnerabilities. 

4.3.3. Web Application Analysis  

As stated in the Web Application Analysis section, both tools used in this phase, OWASP ZAP and 
Nikto, are open-source web application testing tools.  

OWASP ZAP spidered the web pages and performed active scans against the administrative web 
interface while returning the results detailed in Table 3. OWASP ZAP returned four different findings 
when testing the administrative webpage. Two of these findings are related to best practices of 
securing a web interface. The other two findings are vulnerabilities that have not been previously 
reported. We contacted the vendor and followed the steps outlined in the Vulnerability Disclosure 
phase to properly disclose these vulnerabilities. 

Nikto confirmed most of our findings from OWASP ZAP, including one of the newly discovered 
vulnerabilities. It also found one additional vulnerability that OWASP ZAP did not find.  

The results, of previously reported findings, of these scans are included in Table 3 and Table 4. 

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             11  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

Table 3: OWASP ZAP Scan Results 

Finding/Vulnerability Status 

The X-XSS-Protection Header is not defined Best Practice 

The X-Content-Type-Options header is not set. Best Practice 

Table 4: Nikto Scan Results 

Finding/Vulnerability Status 

The X-XSS-Protection Header is not defined Best Practice 

The X-Content-Type-Options header is not set. Best Practice 

/crossdomain.xml contains a full wildcard entry. Best Practice 

 

4.3.4. Android Mobile Application Analysis 

4.3.4.1. Apktool 

We downloaded the APK file com.dlink.mydlink from the Google Play store. D-Link customer 
service identified this file as the Android application used to administer the DCS-935L D-Link 
camera. We then successfully decoded the APK using Apktool to the specified output directory. This 
directory was used for follow-on analysis by TROMMEL. 

4.3.4.2. TROMMEL 

TROMMEL was executed on the decoded APK output directory. The indicators were reviewed and 
verified. No vulnerabilities were identified.  

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             12  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

4.3.5. Hardware Analysis 

4.3.5.1. Identify all markings on the physical case of the device  

The physical case for the DCS-935L provided the following information: 

• Firmware Version 
• Hardware Version 
• MAC Address 
• Model 
• Model Number 
• mydlink Number 
• Part Number 
• QR Code 
• Regulatory Identification Numbers for United States, Canada, Europe, and China 
• Serial Number 
• Wi-Fi Password 
• Wi-Fi SSID 

The documents in these regulatory databases did not provide any information that was beneficial to 
this analysis.  

4.3.5.2. Identify the components internal to the device located on printed circuit board (PCB) 

After we opened the case, we examined the components on PCB with the main goal of identifying the 
flash component. We identified five components of interest, then found their respective datasheets and 
information from vendor websites on the Internet. See the Appendix for links to these datasheets. 

• RealTek RTS5826 EAC33H1 GE412  
• RealTek RTL8881AB D9C47P5 GE38 Taiwan 
• Winbond W9751G6KB-25 64535P900B02 516PUA TWN 
• Macronix MXIC MX 25L12835F M21-10G 8B17230 L151 
• Macronix MXIC 25L1006EMI-10G 
• Skyworks SKY11 85703 517W5 

Upon reviewing the datasheets further, we identified the flash memory component as the Macronix 
MXIC MX 25L12835F M21-10G 8B17230 L151. 

4.3.5.3. Dump memory from flash memory component to firmware image binary 

We used a BusPirate in conjunction with flashrom running on a Linux virtual machine to successfully 
extract the firmware image from one of the Macronix flash memory components. This involved 
identifying the pins on the Macronix flash memory component, connecting them to the proper 
BusPirate connections, plugging the BusPirate into the Linux virtual machine, and running flashrom. 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             13  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

Flashrom successfully identified the Macronix flash memory component and successfully extracted 
the contents of the Macronix component to a binary file. We labeled this extracted firmware as v1.04 
because this was the firmware version listed on the case of the DCS-935L. 

4.3.5.4. Extract and analyze the content of firmware image binary 

We used the same techniques outlined in 3.3.1. Binwalk and 3.3.2. TROMMEL to analyze the 
firmware v1.04. Similar to the firmware v.1.10.01, firmware v1.04 contained an out-of-date BusyBox 
version (v1.13.4). The newest version as of this writing is 1.27.2 [BusyBox 2017]. vFeed also assisted 
with further vulnerability analysis of the out-of-date version of Busybox: 

• Six CVEs were found to affect BusyBox version v1.13.4:  
o CVE-2016-2148, CVE-2016-2147, CVE-2014-9645, CVE-2013-1813, CVE-2011-

5325, and CVE-2011-2716 [Toolswatch 2017].  
• At the time of writing this paper, no Exploit-DB entries or Metasploit modules exist for the 

above six CVE [Toolswatch 2017]. This does not negate the fact that the current BusyBox 
version in firmware v1.04 is vulnerable. 

4.3.6. Compare the contents extracted from the flash memory component to relative 
firmware 

We compared files between v1.04 and v1.04.06, the earliest firmware available from D-Link’s 
website, and between v1.04 and v1.10.01, the latest firmware available from D-Link’s website, using 
the MD5 hash values of the respective extracted files. The goal was to see how many files did not 
change between versions. Firmware v1.04 shared 4.3% of the files found in firmware v1.04.06 and 
3.7% of the files found in v1.10.01. The most common files across all firmware versions were shared 
object library files. This could be a future concern if a vulnerability is found in a library file because it 
will affect multiple versions. 

4.3.7. Vulnerability Analysis 

4.3.7.1. Vulnerability and Exploit Research and Testing 

To determine when and if vulnerabilities had been fixed, we first reviewed the firmware updates and 
documentation that had been posted publicly by the vendor. We manually reviewed these documents 
from version 1.04 to version 1.10 for the DCS-935L. This helped us to determine that two of the vul-
nerabilities found that had not previously been reported were not fixed in any of the newer firmware 
versions.  

We then attempted known exploits against the DCS-935L running firmware v1.04. Our research found 
16 different vulnerabilities (some with exploits) for many different model cameras, not including the 
camera being tested. A list of these vulnerabilities is located in the Appendix. The vulnerabilities with 
exploits were tested against the DCS-935L; however, none of these exploits were successful. 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             14  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

4.3.7.2. Vulnerability Disclosure 

We are following the process outlined by the vendor to properly disclose the newly discovered 
vulnerabilities. Like many vendors, D-Link has a dedicated vulnerability disclosure process and we 
have submitted our findings to them [D-Link 2017].   



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             15  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

5.  Future Work 
This paper presents a research methodology that can be applied to many different embedded devices. 
However, this methodology is meant to evolve and grow. Future work could consist of applying this 
methodology to other embedded devices, including other D-Link cameras, cameras from different 
vendors, and completely different types of embedded devices.  

We also intend to develop future phases of the methodology. These phases should include radio 
frequency (RF) analysis, advanced hardware analysis, and binary analysis of ARM and MIPS files. 
These additional phases should provide an even greater analysis footprint for use in analyzing 
embedded devices.  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             16  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

6.  Conclusion 
This methodology was developed to create a holistic, macro-level approach to vulnerability analysis 
of embedded devices. Our goal was to create a methodology that researchers could follow to create 
more comprehensive and actionable results. Our methodology includes embedded device list curation 
and identification, general information gathering, and vulnerability analysis of the firmware, web 
application, mobile application, and hardware.  

We tested this methodology on a class of embedded devices (Wi-Fi camera) and found vulnerabilities 
that had not yet been published. We also developed and published an open-source tool, TROMMEL, 
to aid researchers in embedded device vulnerability analysis. This methodology can be applied to 
other embedded devices such as refrigerators, door locks, light switches, and automobiles.  

This methodology should be treated as a living document. We expect the methodology to not only 
expand with our future work but also with evolution of the embedded device landscape. 

  



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             17  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

Appendix  
Table 4: D-Link Known Camera Vulnerabilities 

Vulnerability Model Affected Link 

Remote Code Execution 930L https://www.exploit-db.com/exploits/39437/  

CVE-2015-2049/ VU#377348 
Arbitrary File Upload 

931L https://www.rapid7.com/db/modules/exploit/
linux/http/dlink_dcs931l_upload  

Unauthenticated Remote Access Non-specific https://www.exploit-db.com/exploits/24442/ 

CVE-2014-9645 Bypass 
Authentication 

Non-specific http://www.cvedetails.com/cve/CVE-2014-
9645/  

CVE-2016-6301 Denial of Service Non-specific https://nvd.nist.gov/vuln/detail/CVE-2016-
6301  

VU#377348 Unrestricted Upload 93*L Family http://www.kb.cert.org/vuls/id/377348  

CVE 2017-7852 CSRF 933L, 5020L https://nvd.nist.gov/vuln/detail/CVE-2017-
7852  

SSL Certificate Vulnerability 
(patched) 

5020L http://news.softpedia.com/news/D-Link-Fixes-
Persistent-SSL-Certificate-Vulnerability-in-
DCS-IP-Cameras-429622.shtml 

CVE-2014-9517 XSS 2103 https://nvd.nist.gov/vuln/detail/CVE-2014-
9517  

CVE-2012-4046 Information 
Exposure 

932L http://www.cvedetails.com/cve/CVE-2012-
4046/  

CVE-2012-5306 Denial of Service 5605 https://www.cvedetails.com/cve/CVE-2012-
5306/  

CVE-2004-1650 Remote Access 900 https://www.cvedetails.com/cve/CVE-2004-
1650/  

CVE-2014-9238 Remote Access 2103 https://www.cvedetails.com/cve/CVE-2014-
9238/  

https://www.exploit-db.com/exploits/39437/
https://www.rapid7.com/db/modules/exploit/linux/http/dlink_dcs931l_upload
https://www.rapid7.com/db/modules/exploit/linux/http/dlink_dcs931l_upload
https://www.exploit-db.com/exploits/24442/
http://www.cvedetails.com/cve/CVE-2014-9645/
http://www.cvedetails.com/cve/CVE-2014-9645/
https://nvd.nist.gov/vuln/detail/CVE-2016-6301
https://nvd.nist.gov/vuln/detail/CVE-2016-6301
http://www.kb.cert.org/vuls/id/377348
https://nvd.nist.gov/vuln/detail/CVE-2017-7852
https://nvd.nist.gov/vuln/detail/CVE-2017-7852
http://news.softpedia.com/news/D-Link-Fixes-Persistent-SSL-Certificate-Vulnerability-in-DCS-IP-Cameras-429622.shtml
http://news.softpedia.com/news/D-Link-Fixes-Persistent-SSL-Certificate-Vulnerability-in-DCS-IP-Cameras-429622.shtml
http://news.softpedia.com/news/D-Link-Fixes-Persistent-SSL-Certificate-Vulnerability-in-DCS-IP-Cameras-429622.shtml
https://nvd.nist.gov/vuln/detail/CVE-2014-9517
https://nvd.nist.gov/vuln/detail/CVE-2014-9517
http://www.cvedetails.com/cve/CVE-2012-4046/
http://www.cvedetails.com/cve/CVE-2012-4046/
https://www.cvedetails.com/cve/CVE-2012-5306/
https://www.cvedetails.com/cve/CVE-2012-5306/
https://www.cvedetails.com/cve/CVE-2004-1650/
https://www.cvedetails.com/cve/CVE-2004-1650/
https://www.cvedetails.com/cve/CVE-2014-9238/
https://www.cvedetails.com/cve/CVE-2014-9238/


 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             18  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

Vulnerability Model Affected Link 

CVE-2014-9234 Directory 
Traversal 

2103 https://www.cvedetails.com/cve/CVE-2014-
9234/  

CVE-2006-5536 Directory 
Traversal 

Non-specific https://nvd.nist.gov/vuln/detail/CVE-2006-
5536 

CVE-2015-2048 CSRF 931L https://www.cvedetails.com/cve/CVE-2015-
2048/ 

 

Table 5: PCB Components and Datasheets 

Component Datasheets 
RealTek 
RTS5826 
EAC33H1 
GE412 

http://www.realtek.com/press/newsViewOne.aspx?NewsID=336 

RealTek 
RTL8881AB 
D9C47P5 GE38 
Taiwan 

http://www.realtek.com/press/newsViewOne.aspx?NewsID=336 

Winbond 
W9751G6KB-25 
64535P900B02 
516PUA TWN 

http://www.winbond.com/resource-files/da00-w9751g6kbg1.pdf 

MXIC MX 
25L12835F 
M21-10G 
8B17230 L151 

http://www.macronix.com/Lists/Datasheet/Attachments/6228/
MX25L12835F,%203V,%20128Mb,%20v1.6.pdf 

MXIC 
25L1006EMI-
10G 

http://www.macronix.com/Lists/Datasheet/Attachments/6189/
MX25L1006E,%203V,%201Mb,%20v1.4.pdf 

SKY11 85703 
517W5 

http://www.skyworksinc.com/uploads/documents/SKY85703_11_202991A.pdf 

 
  

https://www.cvedetails.com/cve/CVE-2014-9234/
https://www.cvedetails.com/cve/CVE-2014-9234/
https://nvd.nist.gov/vuln/detail/CVE-2006-5536
https://nvd.nist.gov/vuln/detail/CVE-2006-5536
https://www.cvedetails.com/cve/CVE-2015-2048/
https://www.cvedetails.com/cve/CVE-2015-2048/
http://www.realtek.com/press/newsViewOne.aspx?NewsID=336
http://www.realtek.com/press/newsViewOne.aspx?NewsID=336
http://www.winbond.com/resource-files/da00-w9751g6kbg1.pdf
http://www.macronix.com/Lists/Datasheet/Attachments/6228/MX25L12835F,%203V,%20128Mb,%20v1.6.pdf
http://www.macronix.com/Lists/Datasheet/Attachments/6228/MX25L12835F,%203V,%20128Mb,%20v1.6.pdf
http://www.macronix.com/Lists/Datasheet/Attachments/6189/MX25L1006E,%203V,%201Mb,%20v1.4.pdf
http://www.macronix.com/Lists/Datasheet/Attachments/6189/MX25L1006E,%203V,%201Mb,%20v1.4.pdf
http://www.skyworksinc.com/uploads/documents/SKY85703_11_202991A.pdf


 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             19  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

References 
[BusyBox 2017] 
BusyBox.net downloads. https://busybox.net/downloads/ October 18, 2017 [accessed] 

[Cencini 2005] 
Software Vulnerabilities: Full-, Responsible-, and Non-Disclosure. 
https://courses.cs.washington.edu/courses/csep590/05au/whitepaper_turnin/
software_vulnerabilities_by_cencini_yu_chan.pdf October 24, 2017 [accessed] 

[D-Link 2017] 
D-Link. Report a Suspected Security Vulnerability. 
http://support.dlink.com/ReportVulnerabilities.aspx November 10, 2017 [accessed] 

[devttys0 2017] 
devttys0. binwalk: fast, easy to use tool for analyzing, reverse engineering, and extracting firmware 
images. GitHub. https://github.com/devttys0/binwalk October 18, 2017 [accessed] 

[eHacking 2011] 
Top 6 Web Vulnerability Scanner Tool. https://www.ehacking.net/2011/08/top-6-web-vulnerability-
scanner-tool.html October 18, 2017 [accessed] 
[Householder 2017] 
Householder, Allen D.; Wassermann, Garret; Manion, Art; & King, Chris. "The CERT® Guide to 
Coordinated Vulnerability Disclosure." Software Engineering Institute. Carnegie Mellon University.  
August 2017. CMU/SEI-2017-SR-022. https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=503330 October 18, 2017 [accessed] 

[InfoSec Institute 2017] 
14 Best Open Source Web Application Vulnerability Scanners. [Updated for 2017]. InfoSec Institute. 
May 24, 2017.  http://resources.infosecinstitute.com/14-popular-web-application-vulnerability-
scanners/#gref October 18, 2017 [accessed] 

[Misra 2017] 
Misra, Sridipta; Maheswaran, Muthucumaru; & Hashmi, Salman. Security challenges and approaches 
in internet of things. Springer Briefs in Electrical and Computer Engineering. Springer, 2017. 
https://link.springer.com/content/pdf/10.1007/978-3-319-44230-3.pdf  October 18, 2017 [accessed]  

[OWASP 2016] 
IoT Testing Guide. Open Web Application Security Project (OWASP). May 14, 2016 
https://www.owasp.org/index.php/IoT_Testing_Guides October 18, 2017 [accessed] 

[OWASP 2017] 
OWASP Zed Attack Proxy Project. Open Web Application Security Project (OWASP). August 9, 
2017 https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project October 18, 2017 
[accessed] 

https://busybox.net/downloads/
https://courses.cs.washington.edu/courses/csep590/05au/whitepaper_turnin/%E2%80%8Csoftware_vulnerabilities_by_cencini_yu_chan.pdf
https://courses.cs.washington.edu/courses/csep590/05au/whitepaper_turnin/%E2%80%8Csoftware_vulnerabilities_by_cencini_yu_chan.pdf
http://support.dlink.com/ReportVulnerabilities.aspx
https://github.com/devttys0/binwalk
https://www.ehacking.net/2011/08/top-6-web-vulnerability-scanner-tool.html
https://www.ehacking.net/2011/08/top-6-web-vulnerability-scanner-tool.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=503330
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=503330
http://resources.infosecinstitute.com/14-popular-web-application-vulnerability-scanners/#gref
http://resources.infosecinstitute.com/14-popular-web-application-vulnerability-scanners/#gref
https://link.springer.com/content/pdf/10.1007/978-3-319-44230-3.pdf
https://www.owasp.org/index.php/IoT_Testing_Guides
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project


 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             20  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

[Papp 2015] 
Papp, Dorottya; Ma, Zhendong; & Buttyan, Levente. "Embedded systems security: Threats, 
vulnerabilities, and attack taxonomy." 13th Annual Conference on Privacy, Security and Trust (PST). 
pp. 145-152. 2015. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7232966 October 18, 2017 
[accessed] 

[Seshadri 2004] 
Seshadri, A.; Perrig, A.; Van Doorn, L.; & Khosla, P. (2004, May). Swatt: Software-based attestation 
for embedded devices. Proceedings 2004 IEEE Symposium on Security and Privacy. pp. 272-282. 
http://ieeexplore.ieee.org/document/1301329/ October 18, 2017 [accessed] 

[Sullo 2017] 
Sullo, Chris & Lodge, David. Nikto2. CIRT.net. https://cirt.net/nikto2 October 18, 2017 [accessed] 

[Toolswatch 2017] 
Toolswatch. vFeed The Correlated Vulnerability and Threat Intelligence Database Wrapper. GitHub. 
https://github.com/toolswatch/vFeed October 18, 2017 [accessed] 

[TROMMEL 2017] 
TROMMEL. TROMMEL sifts through directories of files to identify indicators that may contain 
vulnerabilities. GitHub. https://github.com/CERTCC-Vulnerability-Analysis/trommel October 19, 
2017 [accessed] 

[Wiśniewski 2017] 
Wiśniewski, Ryszard & Tumbleson, Connor. Apktool - A tool for reverse engineering Android apk 
files. https://ibotpeaches.github.io/Apktool/ October 18, 2017 [accessed] 
  

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7232966
http://ieeexplore.ieee.org/document/1301329/
https://cirt.net/nikto2
https://github.com/toolswatch/vFeed
https://github.com/CERTCC-Vulnerability-Analysis/trommel
https://ibotpeaches.github.io/Apktool/


 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             21  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

Bibliography 
[CERT 2017] 
Vulnerability Disclosure Policy. 2017 CERT. Software Engineering Institute. Carnegie Mellon 
University. https://www.cert.org/vulnerability-analysis/vul-disclosure.cfm October 18, 2017 
[accessed] 

[Chahid 2017] 
Chahid, Y.; Benabdellah, M.; & Azizi, A. "Internet of things security," 2017 International Conference 
on Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez, 2017, pp. 1-6. 
http://ieeexplore.ieee.org/document/7934655/ October 18, 2017 [accessed] 

[Chirgwin 2017] 
Chirgwin, Richard. Dishwasher has directory traversal bug. The Register. March 26, 2017 
https://www.theregister.co.uk/2017/03/26/miele_joins_internetofst_hall_of_shame/ October 18, 2017 
[accessed] 

[FCC 2014] 
FCC Filings for D-Link HD Wi-Fi Camera, model DCS-935L. FCC ID=KA2CS935LA1.  U.S. 
Federal Communication Commission. 
https://apps.fcc.gov/oetcf/eas/reports/ViewExhibitReport.cfm?mode=Exhibits&RequestTimeout=500
&calledFromFrame=N&application_id=sQUCgOD%2BFyf%2FGKTeMBTYWg%3D%3D&fcc_id=
KA2CS935LA1 October 18, 2017 [accessed] 

[FireEye 2017] 
Embedded Hardware Hacking 101 – The Belkin WeMo Link. FireEye. August 22, 2016 
https://www.fireeye.com/blog/threat-research/2016/08/embedded_hardwareha.html November 10, 
2017 [accessed] 

[flashrom 2017] 
flashrom: a utility for identifying, reading, writing, verifying and erasing flash chips. flashrom. 
September 5, 2017. https://www.flashrom.org/Flashrom October 18, 2017 [accessed] 

[IC 2014] 
IC 4216A-CS935LA1 by D-LINK CORPORATION for Wifi Cube H.264 Network Camera 
IC ID: 4216A-CS935LA1 / 4216ACS935LA1. Model:  DCS-935LA1. Industry Canada. October 27, 
2014. https://industrycanada.co/4216A-CS935LA1 October 18, 2017 [accessed] 

[Indiana University 2010] 
ARCHIVED: What is firmware?  Knowledge Base. University Information Technology Services 
(UITS). Indiana University. March 31, 2010. https://kb.iu.edu/d/ahtw October 18, 2017 [accessed] 

[InfoSec Institute 2013] 
Reversing Firmware Part 1. InfoSec Institute. http://resources.infosecinstitute.com/reversing-
firmware-part-1/ October 18, 2017 [accessed] 

https://www.cert.org/vulnerability-analysis/vul-disclosure.cfm
http://ieeexplore.ieee.org/document/7934655/
https://www.theregister.co.uk/Author/Richard-Chirgwin
https://www.theregister.co.uk/2017/03/26/miele_joins_internetofst_hall_of_shame/
https://apps.fcc.gov/oetcf/eas/reports/ViewExhibitReport.cfm?mode=Exhibits&RequestTimeout=500&calledFromFrame=N&application_id=sQUCgOD%2BFyf%2FGKTeMBTYWg%3D%3D&fcc_id=KA2CS935LA1
https://apps.fcc.gov/oetcf/eas/reports/ViewExhibitReport.cfm?mode=Exhibits&RequestTimeout=500&calledFromFrame=N&application_id=sQUCgOD%2BFyf%2FGKTeMBTYWg%3D%3D&fcc_id=KA2CS935LA1
https://apps.fcc.gov/oetcf/eas/reports/ViewExhibitReport.cfm?mode=Exhibits&RequestTimeout=500&calledFromFrame=N&application_id=sQUCgOD%2BFyf%2FGKTeMBTYWg%3D%3D&fcc_id=KA2CS935LA1
https://www.fireeye.com/blog/threat-research/2016/08/embedded_hardwareha.html
https://www.flashrom.org/Flashrom
https://industrycanada.co/4216A-CS935LA1
https://kb.iu.edu/d/ahtw
http://resources.infosecinstitute.com/reversing-firmware-part-1/
http://resources.infosecinstitute.com/reversing-firmware-part-1/


 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             22  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

[Murphy 2009] 
Firmware and You: A Comprehensive Guide to Updating Your Hardware. PC World. June 29, 209 
http://www.pcworld.com/article/165867/firmware_guide.html October 18, 2017 [accessed] 

[SENRIO 2017] 
Home, Secure, Home? SENRIO blog. June 8, 2016 http://blog.senr.io/blog/home-secure-home 
October 18, 2017 [accessed] 

[Where Labs 2011] 
Bus Pirate: an open source hacker multi-tool that talks to electronic stuff. Dangerous Prototypes. 
Where Labs, LLC.  http://dangerousprototypes.com/docs/Bus_Pirate October 18, 2017 [accessed]  
 
  

http://www.pcworld.com/article/165867/firmware_guide.html
http://blog.senr.io/blog/home-secure-home
http://dangerousprototypes.com/docs/Bus_Pirate


 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY                                                                             23  
Embedded Device Vulnerability Analysis Case Study Using TROMMEL: Approved for public release and unlimited distribution. 

Contact Us 
Software Engineering Institute 
4500 Fifth Avenue, Pittsburgh, PA 15213-2612 

Phone: 412/268.5800 | 888.201.4479 
Web: www.sei.cmu.edu  | www.cert.org 
Email: info@sei.cmu.edu  

Copyright 2017 Carnegie Mellon University. All Rights Reserved. 
This material is based upon work funded and supported by the Department of Defense under Contract 
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center. 
The view, opinions, and/or findings contained in this material are those of the author(s) and should not 
be construed as an official Government position, policy, or decision, unless designated by other docu-
mentation. 
References herein to any specific commercial product, process, or service by trade name, trade mark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by Carnegie Mellon University or its Software Engineering Institute. 
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE 
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE 
MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR 
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF 
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS 
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT 
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, 
TRADEMARK, OR COPYRIGHT INFRINGEMENT. 
 
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited 
distribution.  Please see Copyright notice for non-US Government use and distribution. 
Internal use:* Permission to reproduce this material and to prepare derivative works from this material 
for internal use is granted, provided the copyright and “No Warranty” statements are included with all 
reproductions and derivative works. 
External use:* This material may be reproduced in its entirety, without modification, and freely dis-
tributed in written or electronic form without requesting formal permission. Permission is required for 
any other external and/or commercial use. Requests for permission should be directed to the Software 
Engineering Institute at permission@sei.cmu.edu. 
* These restrictions do not apply to U.S. government entities. 
CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by 
Carnegie Mellon University. 
DM17-0753 
 

http://www.sei.cmu.edu/
http://www.cert.org/
mailto:info@sei.cmu.edu

	Executive Summary
	1.  Introduction
	2. TROMMEL
	3.  Methodology
	3.1. Embedded Device List Curation and Identification
	3.2. General Information Gathering
	3.3. Firmware Analysis
	3.3.1. Binwalk
	3.3.2. TROMMEL

	3.4. Web Application Analysis
	3.5. Android Mobile Application Analysis
	3.5.1. Apktool
	3.5.2. TROMMEL

	3.6. Hardware Analysis
	3.6.1. Step 1: Identify all markings on the case of the device
	3.6.2. Step 2: Identify the components internal to the device located on printed circuit board (PCB)
	3.6.3. Step 3: Dump memory from flash memory component to firmware image binary
	3.6.4. Step 4: Extract and analyze the content of firmware image binary
	3.6.5. Step 5: Compare the contents extracted from the flash memory component to relative firmware

	3.7. Vulnerability Analysis
	3.7.1. Vulnerability and Exploit Testing
	3.7.2. Vulnerability Disclosure


	4. Case Study Application and Results
	4.1. Embedded Device List Curation and Identification
	4.2. General Information Gathering
	4.3. Firmware Analysis
	4.3.1. Binwalk
	4.3.2. TROMMEL
	4.3.3. Web Application Analysis
	4.3.4. Android Mobile Application Analysis
	4.3.4.1. Apktool
	4.3.4.2. TROMMEL

	4.3.5. Hardware Analysis
	4.3.5.1. Identify all markings on the physical case of the device
	4.3.5.2. Identify the components internal to the device located on printed circuit board (PCB)
	4.3.5.3. Dump memory from flash memory component to firmware image binary
	4.3.5.4. Extract and analyze the content of firmware image binary
	4.3.6. Compare the contents extracted from the flash memory component to relative firmware

	4.3.7. Vulnerability Analysis


	5.  Future Work
	6.  Conclusion
	Appendix
	Bibliography

