
Using DidFail to Analyze Flow of Sensitive Information in
Sets of Android Apps - Lori Flynn & Will Klieber

Table of Contents

Using DidFail to Analyze Flow of Sensitive Information in Sets of Android Apps 3

Overview ... 4

Introduction .. 6

Introduction: Android ... 7

Introduction .. 8

Our Contribution ... 10

Terminology .. 11

Motivating Example .. 12

Analysis Design .. 13

Running Example .. 14

Running Example .. 15

Running Example .. 16

Phase-1 Flow Equations .. 17

Phase-2 Flow Equations .. 18

Phase-2 Taint Equations ... 19

Phase 1 .. 20

Implementation: Phase 1 .. 21

Implementation: Phase 1 .. 22

Implementation: Phase 2 .. 23

Testing DidFail analyzer: App Set 1 ... 24

Page 1 of 44

Limitations... 25

Use of Two-Phase Approach in App Stores .. 26

Policies could come from: App store Security system provider Employer User option 27

DidFail vs IccTA .. 28

Installing DidFail .. 30

https://www.cs.cmu.edu/~ wklieber/didfail/running.html ... 31

Phase-1 Output from FlowDroid (Echoer T oy App) ... 32

Phase-1 Output from FlowDroid: One XML <flow> for Echoer .. 33

Phase-1 Output from Epicc (SendSMS Toy App) .. 34

GraphViz output for DroidBench app set ... 35

Phase-2 Output: JSON-format (excerpts) ... 36

Phase-2 Output: JSON-format (excerpts) ... 38

Extracted Manifest XML (excerpts) .. 39

For More Information ... 40

Carnegie Mellon University... 44

Copyright 2015 Carnegie Mellon University ... 44

Page 2 of 44

Using DidFail to Analyze Flow of Sensitive Information in Sets of Android Apps

© 2015 Carnegie Mellon University

Using DidFail to Analyze
Flow of Sensitive Information
in Sets of Android Apps
Will Klieber*, Lori Flynn*,
Amar Bhosale, Limin Jia, and Lujo Bauer

*presenting
June 2015

**062 Shane: And welcome back to
the SEI virtual event, CERT
Alignment with Cyber COI Challenges
and Gaps. Just a reminder, anybody
that's on Twitter, be sure to follow
@SEInews and use the hashtag
CERTCyber to follow along in the
conversation.

Our next topic is using DidFail to
analyze flow of sensitive information
in sets of Android apps by Dr. Lori
Flynn and Dr. Will Klieber. Dr. Lori
Flynn is a researcher in the secure
coding initiative within CERT. Her
work includes research and
development of new static analyses
and secure coding standards. Dr. Will
Klieber is a researcher within CERT
and author of DidFail. His work is
focused on static analysis of Android
apps and detection of potentially
malicious Java source code. Prior to

Page 3 of 44

joining the CERT division, Klieber was
a doctoral student in CMU's computer
science department. And now, I
would like to turn it over to Dr. Will
Klieber. Will, all yours.

Will Klieber: Thanks. I'm Will
Klieber. Today, Lori Flynn and I will
be talking about using DidFail to
analyze the flow of sensitive information
in sets of Android apps.

Overview

63
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Overview

Problem: Sensitive/private information can be leaked by apps on smartphones.
• Precise detection on Android is made difficult by communication between components of apps.
• Malicious apps could evade detection by collusion or by exploiting a leaky app

using intents (messages to Android app components) to pass sensitive data.
Goal: Precisely detect undesired flows across multiple Android components.
• Remedies if such flows are discovered:

• At present: Refuse to install app
• Future work: Block undesired flows

Our Tool (DidFail):
• Input: set of Android apps (APK files)
• Output: list of flows of sensitive information
Major Achievements:
• First published static taint flow analysis for app sets (not just single apps)
• Fast user response: two-phase method uses phase-1 precomputation

sink
source

**063 The problem that we address
is the leakage of sensitive information
on apps on smartphones, especially
on the Android platform. Android has
a complex communication system,
which can make it difficult to detect
flows of information between apps.
Malicious apps can take
advantage of this.

Page 4 of 44

For example, suppose that you have
one app that has permission to read from
a source of sensitive information and
another app that has Internet
permissions. In that case, if the two
apps can communicate with each
other, you can have a flow from your
sensitive information to the Internet.

So, previously, static analysis tools
were not able to precisely detect
these types of flows. They would
either have many false positives or
many false negatives. The goal of
DidFail, of our project, is to precisely
detect these flows that happen
across multiple Android components.
Currently, if such a flow is
discovered, the only remedy would
be to refuse to install the app. But as
future work, we would like the ability-
we are investigating the ability to
block these undesired flows while still
allowing the user to install the app
and use the remaining functionality.

Our tool, DidFail, takes as input a set
of Android apps' APK files, and as
output, produces a list of flows of
sensitive information. DidFail was the
first published static taint flow
analysis for sets of apps, not just
single apps. DidFail uses a two-phase
computation method, which in many
common use scenarios allows for a
fast user response.

Page 5 of 44

Introduction

64
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Introduction

One billion Android devices (phones and tablets) estimated sold in 2014.1

Goal: Detect malicious apps that leak sensitive data.

• E.g., leak contacts list to marketing company.

• “All or nothing” permission model.

Apps can collude to leak data.

• Evades precise detection if only analyzed individually.

1 Gartner Report: http://www.gartner.com/newsroom/id/2665715

**064 Android is the most
popular mobile operating system in
the world, with an estimated one
billion devices sold last year. The goal
of our project, DidFail, is to detect
malicious apps that can leak a user's
sensitive data. So, for example, a
malicious app might read your list of
contacts and leak that list to a
marketing company.

This problem is made worse by
Android's all-or-nothing permission
model. So, in Android, when you go
to install an app, you're presented
with a list of permissions that the app
needs. And you get to choose to
either install the app and grant it all
permissions or refrain entirely from
installing the app.

Now, with new versions of Android
that are under development, this

Page 6 of 44

situation is being improved where the
user can selectively choose to grant
certain permissions to apps. But
currently, only this all-or-nothing
permission model exists.

Introduction: Android

65
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Introduction: Android

Android apps have four types of components:
• Activities
• Services
• Content providers
• Broadcast receivers

Intents are messages to components.
• Explicit or implicit designation of recipient

Components declare intent filters to receive implicit intents.
Matched based on properties of intents, e.g.:

• Action string (e.g., “android.intent.action.VIEW”)
• Data MIME type (e.g., “image/png”)

**065 Android apps have four types
of components: activities, services,
content providers, and broadcast
receivers. An intent is a message
sent to a component Android app.
An intent may either explicitly
designate its recipient by the name
of the component that's supposed to
receive the intent, or it can implicitly
designate the recipient by listing
properties and letting the Android OS
choose which would be a suitable
receiver for the intent.

Components can declare intent filters
if they wish to receive implicit intents.
And then the Android OS matches a

Page 7 of 44

sent-implicit-intent to a receiver
based on the properties of the sent
intent such as the action string and
the data MIME type.

Introduction

66
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Introduction

Taint Analysis tracks the flow of sensitive data.
• Can be static or dynamic.

o Static analysis: Analyze the code without running it.
o Dynamic analysis: Analyze the program by running it.

• Our analysis is static.
Our analysis is built upon existing Android static analyses:

• FlowDroid [1]: finds intra-component information flow
• Epicc [2]: identifies intent specifications

[1] S. Arzt et al., “FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis
for Android Apps”. PLDI , 2014.

[2] D. Octeau et al., “Effective inter-component communication mapping in Android with Epicc: An essential
step towards holistic security analysis”. USENIX Security, 2013.

**066 Taint analysis tracks the flow
of sensitive data. Taint analysis can
be either static or dynamic. In a
static analysis, the tool analyzes the
source code of the program without
running it. A benefit of static analysis
is that if the static analysis-- if it
faithfully models the program and the
program's environment, then it can
detect all possible behaviors of the
program. A downside of static
analysis is that it is difficult to
completely faithfully model the
environment in which the program is
running, which can lead to both false
positives and false negatives.

Page 8 of 44

In contrast, with dynamic analysis,
we actually run the program and
observe its behavior as its running. A
downside of dynamic analysis is that
you can only detect programs that
are-- you can only detect properties
of the program that are actually
exercised in the particular traces that
you execute. An advantage is that
you always faithfully represent the
environment because you are
running in the actual environment.

So, our analysis, DidFail, is a static
analysis. And it builds upon two
existing standard Android static
Analyses: FlowDroid, which finds
information flow within a single
component, and Epicc, which
identifies properties of intents such
as the action string and the data
MIME type, which are used to-- when
such an intent is sent, Android uses--
the OS uses those properties to
determine which component should
receive the intent.

Page 9 of 44

Our Contribution

67
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Our Contribution

We developed the DidFail static analyzer
(“Droid Intent Data Flow Analysis for Information Leakage”).

• Finds flows of sensitive data across app boundaries.
• Source code available at: (or google “DidFail CERT”)
http://www.cert.org/secure-coding/tools/didfail.cfm

Two-phase analysis:
1. Analyze each app in isolation.
2. Use the result of Phase-1 analysis to determine inter-app flows.

We tested our analyzer on sets of apps.

**067 Our main contribution is the
development of the DidFail analysis
and tool. "DidFail" is an acronym for
Droid Intent Data Flow Analysis for
Information Leakage. DidFail finds
flows of sensitive data across app
boundaries. DidFail is open source.
And the source code is available at
the URLs seen in this slide. Or you
can just Google "DidFail CERT", and it
should be the first result.

DidFail uses a two-phase analysis. In
the first phase, DidFail analyzes each
app in isolation. And then in the
second phase, we use the results of
the first phase to determine what
flows are possible across app
boundaries. We've also tested our
analyzer on several sets of apps.

Page 10 of 44

Terminology

68
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Terminology

Definition. A source is an external resource (external to the component/app, not
necessarily external to the phone) from which data is read.

Definition. A sink is an external resource to which data is written.

For example,
- Sources: Device ID, contacts, photos, location (GPS), intents, etc.
- Sinks: Internet, outbound text messages, file system, intents, etc.

Definition. Data is tainted if it originated from a (sensitive) source.

**068 We say that a source is an
external resource (external to the app
or component, but not necessarily
external to the phone) from which
data is read. And a sink is an external
resource to which data is written. For
example, sources include the device
ID of the phone, the user's list of
contacts that's stored in the phone,
photos that are stored in the phone,
the location, and the physical location of
the device as determined by GPS.
And we also consider intents that are
received to be sources.

Sinks include sending information to
the Internet, sending a text message,
writing to the file system, or sending
an intent. We say the data is tainted
if it originated from a sensitive
source. And with DidFail, all sources
are either Android API functions that
can be called and return a value, or

Page 11 of 44

parameters of callback methods. And
DidFail comes with a list of sources
that we consider sensitive. And the
user can add to or remove from that
list.

Motivating Example

70
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Motivating Example

App SendSMS.apk sends an intent (a message) to Echoer.apk,
which sends a result back.

 SendSMS.apk tries to launder the taint through Echoer.apk.
 Pre-existing static analysis tools could not precisely detect such inter-app data flows.

setResult()

getIntent()

onActivityResult()

Echoer.apk
Device ID
(Source)

SendSMS.apk

Text Message

startActivityForResult()

(Sink)

**070 Let's consider a motivating
example where we have a set of two
apps, SendSMS and Echoer. What
happens here is that SendSMS reads
the device ID. And then it sends that
information to Echoer. Echoer takes
the device ID and then just echoes it
back to SendSMS. And then SendSMS
takes that data and writes it as a
text message. So, in effect, what's
happening is that SendSMS is trying
to launder the taint through the
Echoer.

Before DidFail, previously existing
static taint analyses could not
precisely detect these inter-app

Page 12 of 44

flows. They would either have many
false negatives or many false
positives, depending on how they
were set up.

Analysis Design

71
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Analysis Design

Phase 2: Analyze a set of apps:
• For each intent sent by a component, determine

which components can receive the intent.
• Generate & solve taint flow equations.

Phase 1: Each app analyzed once, in isolation.
• FlowDroid: Finds tainted dataflow from sources to sinks.

o Received intents are considered sources.
o Sent intent are considered sinks.

• Epicc: Determines properties of intents.
• Each intent-sending call site is labelled with a unique intent ID.

**071 So, DidFail operates in two
phases. In the first phase, we
analyze each app in isolation once.
We use FlowDroid to find tainted
data flow from sources to sinks inside
components, where received intents
are considered sources and sent
intents are considered sinks.

We also use Epicc to determine
properties of intents that are used in
matching sent intents to receivers.
Each intent-sending call site is labeled
with a unique intent ID.

In phase two, we analyze a set of
apps. For each intent that is sent by
a component, we determine which

Page 13 of 44

components can possibly receive the
intent. We generate and solve taint
flow equations which we use to
calculate the final taints of each
possible sink.

Running Example

72
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Running Example

Three components: C1,
C2, C3.

C1 = SendSMS

C2 = Echoer

C3 is similar to C1

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

• sink1 is tainted with only src1.
• sink3 is tainted with only src3.

**072 So, let's consider a running
example where we have three
components, C1, C2, and C3. C1 is
similar to the SendSMS component
of the previous example. And C2 is
the Echoer. And C3 is similar to C1.

So, let's see what happens in this
example. So, C1 reads data from
Source 1 and sends it to
component C2 via intent I1. Then C2
reads data from intent I1 and sends
the data back to C1. Finally, C1 reads
the data from the results and writes
it to the sink. And of course, C3
operates similarly to C1. So, our final
result is that Sink 1 is tainted only

Page 14 of 44

with Source 1. And C3 is tainted
only with Source 3.

Running Example

73
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Running Example

Notation:

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

**073 Now, let's describe some
notation that we're using. We write
sink arrow-- I'm sorry, we write
"source arrow sink" to denote that
there is a flow from source to sink.
And we write the component in which
the flow happens above the arrow.

As shown on this slide, an intent is
identified by a tuple of three items,
C_TX, which is the component that
sends the intent, C_RX, which is the
component that receives the intent,
and a unique intent ID. So, each line
of the source code that can possibly
send an intent is labeled with a
unique ID.

The next bullet point on the slide: If
you have an intent R, then you write

Page 15 of 44

R of I to denote the result, the
response that is sent for that intent.
And given a source or a sink S, we
write T of S to denote the set of
sources from which S has tainted
data.

Running Example

74
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Running Example

Notation:
Final Sink Taints:
• T(sink1) = {src1}
• T(sink3) = {src3}

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

**074 So, let's write the flow
equations for this example. In here
we have a flow from Source 1 to
an intent. And the intent is sent from
C1 to C2. And it has an ID: ID1.

Then we have a flow from that intent
to component C2. So, it's the same
intent as in the previous equation.
And C2 takes that information and
just echoes it back as a response to
the intent. And then there's a flow
from that response that C2 sends
back. C1 takes that response and
then just writes that data to the sink.
And C3 behaves similarly to C1. So,

Page 16 of 44

our final result is that the taint of Sink 1
consists only of Source 1 and
the taint of Sink 3 consists only of
Source 3.

Phase-1 Flow Equations

75
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

C1

C3

src1

src3

sink1

sink3

C2

Analyze each component separately.

Notation

• An asterisk (“∗”) indicates an unknown component.

Phase 1 Flow Equations:

Phase-1 Flow Equations

**075 So, in phase one, we analyze
each component separately. So, for
C1, we don't know-- we know that C1
sends an intent. But we don't know
what the-- who the recipient is. So,
as shown on this slide, we use an
asterisk in place of the recipient. So,
we said that there's a flow from the
source to an intent, but we don't
know who receives the intent. So, we
use an asterisk for the recipient.

And then we also know from
analyzing the program that there is a
flow from-- that component C1
accepts a response from that intent.
And then it takes that response and
writes it to Sink 1. Then for C2, we

Page 17 of 44

know that C2 takes an intent from an
unknown sender, and then just
echoes that information back as a
response. And C3 behaves similarly
to C1.

Phase-2 Flow Equations

76
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-2 Flow Equations

Phase 1 Flow Equations: Phase 2 Flow Equations:

Notation

Instantiate Phase-1 equations for all
possible sender/receiver pairs.

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Manifest and Epicc info
(not shown) are used to
match intent senders
and recipients.

**076 In phase two, we take the
information from phase one, we take
those phase-one flow equations and
instantiate them for all possible
sender/receiver pairs. So, for C1,
there's only one possible
instantiation. The only possible
recipient, the asterisk in this flow
equation is C2. And likewise, the
only-- when C1 receives a response,
it's going to be from C2. So, we
substitute in C2 for the asterisk. And
the only possible intent ID is ID1 in
this case.

For C2, there are two possible
instantiations. The first possible

Page 18 of 44

instantiation would be C1 for that
asterisk. And the other possible
instantiation would be for C3. So, this
single equation in phase one gets
instantiated as two equations in
phase two. And then for C3, it
behaves similarly to C1.

Phase-2 Taint Equations

77
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Notation

Phase-2 Taint Equations

Phase 2 Flow Equations: Phase 2 Taint Equations:

For each flow equation src → sink,
generate taint equation T(src) ⊆ T(sink).

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

If s is a non-intent source,
then T(s) = {s}.

Then, solve.

**077 Now, this slide shows the
same two equations that were on the
previous slide. For each one of these
equations that indicate that there's a
flow from a given source to a sink,
we generate a taint equation that
says that the taintedness of this sink
must be at least that of the source.
So, the taint of the source must be a
subset or equal to the taint of the
sink.

So, we just take all of the equations
from all of the phase-two flow
equations and write equivalent taint

Page 19 of 44

equations. And we also, for a non-
intent source, we also have the taint
of that source is just a set consisting
exactly of itself.

And then we take all of these
equations and solve them.

Phase 1

78
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

TransformAPK
FlowDroid
(modified)

Epicc

Original APK

Extract manifest

Phase 1

Phase 1

**078 Lori Flynn: So, in this slide, we
show the processes that happen in
phase one and phase two. At the top,
we see the phase one. It has, as
input, the original APK, or original
app, which gets transformed. And we
extract the manifest from the
transformed APK. We also run the
Epicc tool on the transformed app.
And we run our modified FlowDroid
on the transformed app.

Then phase two is shown on the bottom
of the slide. And its inputs for each
app in the -- for the app set

Page 20 of 44

that we're analyzing, it has three
inputs per app in that set. And
they're just the outputs of phase one.
And in phase two, we analyze for
possible taint flows.

Implementation: Phase 1

79
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Implementation: Phase 1

APK Transformer
• Assigns unique Intent ID to each call site of intent-sending methods.

o Enables matching intents from the output of FlowDroid and Epicc
• Uses Soot to read APK, modify code (in Jimple), and write new APK.

• Problem: Epicc is closed-source. How to make it emit Intent IDs?
• Solution (hack): Add putExtra call with Intent ID.

TransformAPK
FlowDroid
(modified)

Epicc

Original APK

Extract manifest

Phase 1

**079 In phase one, we have an
APK transformer that assigns a
unique intent ID to each call site of
intent sending methods. This enables
matching intents from the output of
FlowDroid and Epicc.

The APK transformer uses the Soot
framework to read the APK to modify
the code in Jimple, which is an
intermediate representation. And
then it writes the new APK back out.

The reason that we do this
transformation is because we have
this problem: We needed Epicc to
emit intent IDs, but Epicc is closed

Page 21 of 44

source. So, we couldn't modify the
code. So, instead, we modified the
APK. Epicc outputs information about
putExtras that are in intents, which
are sent. So, our solution was to add
an extra-- or add a putExtra call with
this unique intent ID to the app code
directly before each intent gets sent.

Implementation: Phase 1

80
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Implementation: Phase 1

FlowDroid Modifications:
• Extract intent IDs inserted by APK Transformer, and include in output.
• When sink is an intent, identify the sending component.

o In base.startActivity, assume base is the sending component.

• For deterministic output: Sort the final list of flows.

TransformAPK
FlowDroid
(modified)

Epicc

Original APK

Extract manifest

Phase 1

**080 In phase one, we modified
FlowDroid-- or we use a modified
FlowDroid in phase one. We modified
FlowDroid to extract the intent
IDs, which we had inserted into that
APK using the transformer. And we
include that in the output.

When the sink is an intent, we
identify the sending component. And
in order to get deterministic output,
we sort the final list of flows that
FlowDroid outputs.

Page 22 of 44

Implementation: Phase 2

81
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Implementation: Phase 2

Phase 2
• Input: Phase 1 output.
• Generate and solve the data-flow equations.
• Output:

1. Directed graph indicating information
flow between sources, intents, intent
results, and sinks.

2. Taintedness of each sink.

**081 The input to phase two is the
phase one output for each of the
apps that we're analyzing. Then in
phase two, we generate and solve
the data flow equations. And our
output consists of a directed graph
that indicates information flow
between sources, intents, intent
results, and sinks, and the
taintedness of each sink.

Page 23 of 44

Testing DidFail analyzer: App Set 1

82
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Testing DidFail analyzer: App Set 1

SendSMS.apk
• Reads device ID, passes through Echoer,

and leaks it via SMS

Echoer.apk
• Echoes the data received via an intent

WriteFile.apk
• Reads physical location (from GPS),

passes through Echoer, and writes it to a file
Flows found by DidFail

**082 We tested the DidFail
analyzer on a toy set of apps, which
instantiate the example that Will was
talking about in the previous slides,
that running example. So, we have
the SendSMS app, which reads a
device ID, passes it through the
Echoer, and leaks it via SMS. So,
that's like the C1 in this figure.

We have the Echoer app, which
echoes the data received via an
intent. That's our C2. And our WriteFile
app reads a physical location from
GPS, passes it through the Echoer,
and writes it to a file. So, that's our
C3. And DidFail found those flows.

Page 24 of 44

Limitations

83
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Limitations

Unsoundness
• Inherited from FlowDroid/Epicc

- Native code, reflection, etc.
• Shared static fields

- Partially addressed by Jonathan Burket, but with scalability issues
• Implicit flows
• Originally only considered activity intents

- Students added partial support for services and broadcast receivers.
Imprecision

• Inherited from FlowDroid/Epicc
• DidFail doesn’t consider permissions when matching intents
• All intents received by a component are conflated together as a single source

**083 DidFail has some limitations,
including both sources of
unsoundness and of imprecision.
Some sources of unsoundness are
inherited from FlowDroid and Epicc.
For instance, they don't analyze
native code or reflection. We also
have soundness limitations due to
analysis of taint flow through shared
static fields. Some of those limitations
have been addressed by work by
Jonathan Burket in one of our
branches of DidFail late last year.
However, that work currently has
some scalability issues. It uses a lot
of memory and CPU power. So, we're
working on scalability issues for that
analysis.

DidFail does not analyze implicit
flows. For instance, if receiving or
sending an intent by itself conveys
information aside from data within

Page 25 of 44

the intent, we don't analyze that. Our
original release of DidFail only
considered activity intents. However,
we've worked with some grad
students late last year who added
partial support for services and
broadcast receiver components.

We have some sources of imprecision
which were inherited from FlowDroid
and Epicc. Additionally, currently,
DidFail doesn't consider permissions
when matching intents. However, we
intend to add that analysis in the
future. Also, currently, all intents
received by a component are
conflated together as a single source.
And we intend to enhance DidFail's
precision with regard to that in the
future as well.

Use of Two-Phase Approach in App Stores

84
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Use of Two-Phase Approach in App Stores

We envision that the two-phase analysis can be used as follows:
• An app store runs the phase-1 analysis for each app it has.
• When the user wants to download a new app, the store runs the phase-2 analysis

and indicates new flows.
• Fast response to user.

Policy guidance/enforcement, for usability.

**084 We envision that the
two-phase analysis can be used as

Page 26 of 44

follows. An app store runs the phase-one
analysis for each app that it has
ahead of time. Then when a user
wants to download a new app, the
store would run the phase-two
analysis and indicate new flows.
There would be a fast response to
the user since our phase-two is quite
fast. We would-- for usability
reasons, we think that policy
guidance and enforcement would be
helpful.

Policies could come from: App store Security system provider Employer User option

85
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Usability: Policies to Determine Allowed Flows

Example 2Example 1

Policy: Prohibit flow from Src1 to Sink3

NoncompliantCompliant

Policies could come from:
• App store
• Security system provider
• Employer
• User option

C1

C3

C2

Src1

Src3

Sink1

Sink3

I(C1, C2, id1)

I(C3, C2, id2)

C1

C3

C2

Src1

Src3

Sink1

Sink3

I(C1, C2, id1)

I(C3, C2, id2)

**085 We-- so for instance, policies
could come from an app store, from
a security system provider, from an
employer. Or a user could set an
option aided by an easy-to-use
interface on their phone. An example
policy is shown on this slide. For
instance, there could be a policy
prohibiting a flow from Source One to
Sink Three. In the Example One set of

Page 27 of 44

apps on the left, you can see that the
data flows are compliant. The Source
One's taint is shown as a red arrow.
And you can see that it doesn't reach
the Sink Three.

However, the set of apps on the right
in the Example Two set of apps is
non-compliant. So, you can see that
that Source One's red taint does
indeed reach the Sink Three. And
DidFail would be able to do analysis
to determine if the set of apps was
compliant or non-compliant with that
type of policy.

DidFail vs IccTA

86
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

DidFail vs IccTA

IccTA was developed (at roughly the same time as DidFail)
IccTA uses a one-phase analysis

• IccTA is more precise than DidFail’s two-phase analysis.
- More context-sensitive
- Less overestimation of taints reaching sinks

• Two-phase DidFail analysis allows fast 2nd-phase computation.
- Pre-computed Phase-1 analysis done ahead of time
- User doesn’t need to wait long for Phase-2 analysis

Typical time for simple apps:
• DidFail: 2 sec (2nd phase)
• IccTA: 30 sec

Working together now! Ongoing collaboration between IccTA and DidFail teams

**086 An analyzer named "IccTA"
was developed at roughly the same
time as DidFail. IccTA uses a one-
phase analysis for Android app sets.
And it looks for taint flows. IccTA's
analysis is more precise than DidFail's
analysis. It's more context-sensitive,

Page 28 of 44

and it has less overestimation of
taints reaching sinks.

However, our two-phase DidFail
analysis allows very fast second-
phase computation. The
precomputed phase-one analysis gets
done ahead of time. And then the
user, when they want to install an
app, they don't have to wait long for
the phase-two analysis. A typical time
for very simple apps is that DidFail
takes two seconds for the second
phase. And IccTA takes thirty
seconds.

We are currently working with the
IccTA team on a collaborative
project. And we hope to develop an
analyzer that has the best of both
worlds where we still use the two-
phase analysis with a very fast user
response. But we hope to add a lot
more precision to the analysis.

Page 29 of 44

Installing DidFail

88
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Installing DidFail

Main DidFail website
• http://www.cert.org/secure-coding/tools/didfail.cfm

Detailed install instructions are on the download website
• https://www.cs.cmu.edu/~wklieber/didfail/install-latest.html

There are 3 branches
• Static fields (Dec. 2014)
• Services and broadcast receivers (Dec. 2014)
• Improved DEX conversion (Nov. 2014)

**088 In order to install DidFail, you
can go to the main DidFail website
which is on the CERT secure coding
webpage at the URL listed on the
slide. You can see a screenshot of
that webpage on the slide. And if you
click on that big orange button, you
get to the install and download
website.

There are three branches of DidFail.
Two of them were mostly completed
last December. They're the static
fields analysis branch I mentioned
earlier and the services and
broadcast receivers branch which
added the analysis of those two
components to DidFail. In the future,
we plan to integrate those two most
recent branches and simply have an
argument for running DidFail to
determine whether you run the-- you
use the static field analysis or not,

Page 30 of 44

since the static field analysis is a
heavy user of memory and
computation.

And then we have an earlier version
which improved DEX conversion
compared to our original DidFail. And
that improved DEX conversion is
incorporated in both of the most
recent branches.

https://www.cs.cmu.edu/~ wklieber/didfail/running.html

89
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Running DidFail https://www.cs.cmu.edu/~wklieber/didfail/running.html

**089 There are three categories of
running DidFail. And we have-- and
you can see commands for running
DidFail on this slide. The three types
of commands you can use are the
first one is to run both phases one
and two of DidFail all together, or all
with one command. You can also run
just parts of phase one separately.
For instance, you can run just the
transformer. You can run just the
modified FlowDroid tool. You can just

Page 31 of 44

do Epicc or simply extract the
manifest file.

And you can also run phase two
separately. After you've done the
phase-one analysis on each app, you
can look at possible taint flows for
different sets of apps in combination.

Phase-1 Output from FlowDroid (Echoer T oy App)

90
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-1 Output from FlowDroid (Echoer Toy App)
3 possible flows to sinks found

**090 This slide shows output from
FlowDroid for the Echoer toy app.
Three possible flows to sinks were
found where each flow indicates--
where each flow has one sink. We're
going to zoom in on one of these flows.
And you can see that the first line in
the XML flow indicates the sink. In
this case, it's a write to the log.
That's followed by one or more
sources. In this case, the source is a
getIntent. So, the source was a
received intent. And there's a second
source for this flow as well.

Page 32 of 44

Phase-1 Output from FlowDroid: One XML <flow> for Echoer

91
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-1 Output from FlowDroid: One XML <flow> for Echoer

**091 So, there's one tainted data
flow that was found to be possible to
the sink from the intent. And another
flow was found to be possible from
the other source.

Page 33 of 44

Phase-1 Output from Epicc (SendSMS Toy App)

92
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-1 Output from Epicc (SendSMS Toy App)

Epicc provides precision about fields in intents sent

**092 Here we have some of the
output from Epicc. You can see the
output lines start at 485. So, this is
output for the SendSMS toy app
from Epicc. So, Epicc provides
precision about fields in intents which
are sent. And what's found here is
that there's only one set of possible
values for the sent intent from this
app. And those values are that the
action string must be
action.intent.action.SEND. The data
type is text/plain. And there are two
extras, the new_field and the secret,
which for our example set of apps,
that's what we used to send the
tainted data.

Page 34 of 44

GraphViz output for DroidBench app set

93
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

GraphViz output for DroidBench app set

Some flows:

Int3 = I(IntentSink2.apk, IntentSource1.apk, id3)

Int4 = I(IntentSource1.apk, IntentSink1.apk, id4)

Res8 = R(Int4)

Src15 = getDeviceId

Snk13 = Log.i

Graph generated using GraphViz.

**093 Will Klieber: One of the
outputs from DidFail is a GraphViz file
which we can then feed to GraphViz
to generate a visualization of this
graph. So, in this case, all the paths
on this graph from a source to a sink
indicate possible flows of information.
So, for example, here we have Source 15,
which, as shown in the
legend, corresponds to this
getDeviceID function that reads your
phone's device ID. And then there's a
flow from that source to this intent,
Intent 3, which is an intent sent
from one app to another app. And
then from Intent 3, there's
another flow to Sink 13.

And Sink 13 is this log function.
And the log function is considered a
sensitive source because at least in
some older versions of Android, if an
app writes to a log, then other apps

Page 35 of 44

can also read that log function. So, in
a sense, logs are not private to an
app. They're basically public
information on the phone that any
app can read. So, they're considered-
- so that function is considered, at
least in older versions of Android, to
be a sensitive sink.

And then we can show these flows
here. Like here's the flow from Source 15
to intent three to Sink 13.

Phase-2 Output: JSON-format (excerpts)

94
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-2 Output: JSON-format (excerpts)
1. {
2. "Flows": [
3. [
4. "Src: <android.telephony.TelephonyManager: java.lang.String getDeviceId()>",
5. "org.cert.sendsms",
6. "Sink: <android.util.Log: int i(java.lang.String,java.lang.String)>"
7.],
8. [
9. "Src: <android.telephony.TelephonyManager: java.lang.String getDeviceId()>",
10. null,
11. "Intent(tx=('org.cert.sendsms', 'MainActivity'),

rx=('org.cert.echoer', 'MainActivity'), intent_id='newField_6')"
12.],
13. [
14. "Intent(tx=('org.cert.sendsms', 'MainActivity'),

rx=('org.cert.echoer', 'MainActivity'), intent_id='newField_6')",
15. null,
16. "Sink: <android.util.Log: int i(java.lang.String,java.lang.String)>"
17.],
18.],

**094 In addition, we generate a list
of flows in JSON format, JavaScript
Object Notation. So, here you can
see there's a flow within a
component. So, we identify each flow
by a tuple of three items, the source,
the component in which the flow
happens, and the sink. So, in this
case, we have a sink-- the source is
this getDeviceID function. And data

Page 36 of 44

flows from the source to this log
function. And it happens within this
one component.

Here, shown on this slide, we have a
source-- a flow that involves an
intent. So, our source is going to be
the getDeviceID method of this
TelephonyManager object. Now,
when a source or a sink is an intent,
we don't include a component in the
second field because, in a sense, the
flow doesn't really happen within a
single component. So, it doesn't
make sense to have one here.

And here the intent, we show that it's
being transmitted by this SendSMS
application. It's being received by the
Echoer. And it has intent ID 6. Here,
the final flow on this slide, the source
is an intent. In fact, it's the same
intent that was a sink on the previous
flow. It's being sent from SMS to
Echoer. And then Echoer is reading
that information and writing it to this
sink, this log function.

Page 37 of 44

Phase-2 Output: JSON-format (excerpts)

95
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-2 Output: JSON-format (excerpts)
19. "Taints": {

20. "Intent(tx=('org.cert.sendsms', 'MainActivity'),
rx=('org.cert.echoer', 'MainActivity'), intent_id='newField_6')":

[
21. "Src: <android.telephony.TelephonyManager: java.lang.String getDeviceId()>"
22.],
23. "Sink: <android.telephony.SmsManager:

void sendTextMessage(java.lang.String,java.lang.String,java.lang.String,
android.app.PendingIntent, android.app.PendingIntent)>":

[
24. "Src: <android.os.Bundle: java.lang.String getString(java.lang.String)>",
25. "Src: <android.telephony.TelephonyManager: java.lang.String getDeviceId()>"
26.],
27. }
28. }

**095 We also include the final
taints of each sink. So, the first sink
up here is this intent, the same intent
that was shown on the previous slide.
And it is tainted only with this
getDeviceID function. Here we
consider another sink, the
sendTextMessage function, which is
considered a sink here. And it is
tainted with two sources, this
os.Bundle.getString, which we don't
really care too much about. But what
we do care about is the second
source, which is the getDeviceID
method of this TelephonyManager.

Page 38 of 44

Extracted Manifest XML (excerpts)

96
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Extracted Manifest XML
(excerpts)

**096 We also produce excerpts
from the-- we also extract the
manifest XML file and use that-- we
use information from the manifest in
determining which possible
components can receive implicit
intents.

So, let's take a look here. I'm going
to zoom in. So, we have this activity
component. And we have the intent
filter. So, this activity component can
receive implicit intents that have this
action string and this data type and this
category.

And I'm going to zoom in on this part
over here, services. So, this app also
defines a service and gives an intent
filter for it. It can receive implicit
intents with the given action string and
the given data MIME type.

Page 39 of 44

For More Information

97
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

For More Information

Secure Coding Initiative
• Will Klieber, Lori Flynn

{weklieber,lflynn}@cert.org

Web
• www.cert.org/secure-coding
• www.securecoding.cert.org

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Subscribe to the CERT Secure Coding
eNewsletter
mailto: info@sei.cmu.edu

**097 And this slide shows our
contact information. Thank you for
listening. Are there any questions?

Shane: All right, before we get to
questions for Lori and Will, we've got
a number of questions just rolling in
through the day asking about
whether the slides were available and
if the archive is available. The event
is being archived. An email will be
sent out to all registrants within the
next day or two with the location of
the archive and how to access that.
The slides are available now for
anyone. If you just look at the
webinar console, you'll see a files tab.
And you can download all the
presentation files today along with
other work that CERT has done in
cyber security.

Page 40 of 44

So, one of the first questions for Lori
and Will asking from-- John wanted to
know: Will DidFail be available for
other operating systems?

Lori Flynn: DidFail is an Android-specific
analysis tool. It's created for
the Android lifecycle. It takes into
account the Android API calls,
Android sources and sinks, and
Android communication mechanisms
intents. So, at this point, I don't think
we would be able to modify DidFail
for other operating systems. But--

Shane: Would that make it a new
tool? Or is it just a matter of
stakeholders and funding to-- new
research? What would it take to draw
that out?

Lori Flynn: Definitely funding is
always good. And similar taint flow
analysis tools could be created for
other systems.

Shane: We had another question
come in. What about other platforms
like Linux? Could DidFail run on that?

Lori Flynn: No, DidFail is definitely
specific to the Android operating
system.

Shane: Okay, all right, let's get to
our next question here. Let me pull
them back up. And from Greg asking
about I believe a tool called
CyanogenMod has some privacy
enhancing capabilities. How would
you compare CyanogenMod to
DidFail? And is there any potential for
them to be used together? I guess

Page 41 of 44

first of all, are you familiar with
CyanogenMod?

Will Klieber: Mm-hmm.

Shane: Okay. Is there any potential
for them to be used together?

Will Klieber: Yes. So, what
CyanogenMod is is it enables existing
Android devices to-- it enables the
user to selectively enable or disable
certain permissions, which can't be
done on a stock Android phone. So,
the way that you could use them
together is you could see if you install
certain apps, and there's a flow
that you don't want to happen, what
you can do is you can use
CyanogenMod to disable permissions
of these certain apps so as to disable
that flow. So, for example, if you
have one app that reads from a
sensitive data source, and it
communicates it to another app, then
writes it to the Internet, then you can
either disable the Internet
functionality of the sender. Or you
can disable the functionality of the
app that reads the sensitive
information so that it cannot read
that sensitive information.

Shane: Okay. And just one last
question we have in the queue is
mentioning the SCALe method, which I
know you guys are familiar with. How
does that play into DidFail? Or is that
a part of it? What is the relationship
between the SCALe method, which I'm
sure some of our viewers are not
familiar with? How is that related to
DidFail if at all?

Page 42 of 44

Lori Flynn: So, SCALe uses multiple
analyzers on source code or binaries
in order to diagnose coding flaws,
coding flaws relevant to security that
can be mapped to the CERT secure
coding rules, to violations of the
CERT secure coding rules. So, DidFail
does indeed find a violation of a
CERT secure coding rule which has to
do with sensitive data not going to
places it's not supposed to go to.
However, currently DidFail is not fully
integrated with the SCALe system,
which has a web interface. And it's
less-- the SCALe system is not so
much geared toward tracing data
flow as to analyzing particular
diagnostics from multiple tools. Do
you have anything to add?

Will Klieber: No, I think that covers
it.

Lori Flynn: Okay.

Shane: Okay, that's all we have in
the queue. So, Lori and Will, you
guys are off the hot seat a little early.
It will give us some time to set up for
our final panel today, which will be
our DevOps panel, which will be
moderated by SEI CTO Dr. Kevin Fall.
And we're going to have joining him
will be Hasan Yasar and Joseph
Yankel. So, again, thank you guys for
your presentation today, very well
done. And folks, we'll be back
sharply-- or I guess, yeah. We'll be
back at four oh five sharp to start the
DevOps panel. So, look forward to
starting it back up then.

Page 43 of 44

Carnegie Mellon University

1
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Carnegie Mellon University Notice

This video and all related information and materials (“materials”) are owned by Carnegie Mellon
University. These materials are provided on an “as-is” “as available” basis without any warranties and
solely for your personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of
viewing the video, or using referenced websites, and/or for any consequences or the use by you of
such materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read
and agree to our terms of use (www.sei.cmu.edu/legal/).

© 2015 Carnegie Mellon University.

Copyright 2015 Carnegie Mellon University

2
CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Copyright 2015 Carnegie Mellon University
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0002555

Page 44 of 44

	Using DidFail to Analyze Flow of Sensitive Information in Sets of Android Apps - Lori Flynn & Will Klieber
	Table of Contents
	Using DidFail to Analyze Flow of Sensitive Information in Sets of Android Apps
	Overview
	Introduction
	Introduction: Android
	Introduction
	Our Contribution
	Terminology
	Motivating Example
	Analysis Design
	Running Example
	Running Example
	Running Example
	Phase-1 Flow Equations
	Phase-2 Flow Equations
	Phase-2 Taint Equations
	Phase 1
	Implementation: Phase 1
	Implementation: Phase 1
	Implementation: Phase 2
	Testing DidFail analyzer: App Set 1
	Limitations
	Use of Two-Phase Approach in App Stores
	Policies could come from: App store Security system provider Employer User option
	DidFail vs IccTA
	Installing DidFail
	https://www.cs.cmu.edu/~ wklieber/didfail/running.html
	Phase-1 Output from FlowDroid (Echoer T oy App)
	Phase-1 Output from FlowDroid: One XML <flow> for Echoer
	Phase-1 Output from Epicc (SendSMS Toy App)
	GraphViz output for DroidBench app set
	Phase-2 Output: JSON-format (excerpts)
	Phase-2 Output: JSON-format (excerpts)
	Extracted Manifest XML (excerpts)
	For More Information
	Carnegie Mellon University
	Copyright 2015 Carnegie Mellon University

