
1 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Carnegie Mellon University Notice

This video and all related information and materials (“materials”) are owned by Carnegie Mellon
University. These materials are provided on an “as-is” “as available” basis without any warranties. and
solely for your personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of
viewing the video, or using referenced websites, and/or for any consequences or the use by you of such
materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read
and agree to our terms of use (www.sei.cmu.edu/legal/).

© 2015 Carnegie Mellon University.

2 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Copyright 2015 Carnegie Mellon University
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0001669

© 2015 Carnegie Mellon University

Using DidFail to Analyze
Flow of Sensitive Information
in Sets of Android Apps

Will Klieber*, Lori Flynn*,
Amar Bhosale, Limin Jia, and Lujo Bauer

*presenting June 2015

4 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Overview

Problem: Sensitive/private information can be leaked by apps on smartphones.
•  Precise detection on Android is made difficult by communication between components of apps.
•  Malicious apps could evade detection by collusion or by exploiting a leaky app

using intents (messages to Android app components) to pass sensitive data.
Goal: Precisely detect undesired flows across multiple Android components.
•  Remedies if such flows are discovered:

•  At present: Refuse to install app
•  Future work: Block undesired flows

Our Tool (DidFail):
•  Input: set of Android apps (APK files)
•  Output: list of flows of sensitive information
Major Achievements:
•  First published static taint flow analysis for app sets (not just single apps)
•  Fast user response: two-phase method uses phase-1 precomputation

	 	 	 	 	 	

	 	

	 	
sink

source

5 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Introduction

One billion Android devices (phones and tablets) estimated sold in 2014.1

Goal: Detect malicious apps that leak sensitive data.

•  E.g., leak contacts list to marketing company.

•  “All or nothing” permission model.

Apps can collude to leak data.

•  Evades precise detection if only analyzed individually.

1 Gartner Report: http://www.gartner.com/newsroom/id/2665715

6 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Introduction: Android

Android apps have four types of components:
•  Activities
•  Services
•  Content providers
•  Broadcast receivers

Intents are messages to components.
•  Explicit or implicit designation of recipient

Components declare intent filters to receive implicit intents.
Matched based on properties of intents, e.g.:

•  Action string (e.g., “android.intent.action.VIEW”)
•  Data MIME type (e.g., “image/png”)

7 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Introduction

Taint Analysis tracks the flow of sensitive data.
•  Can be static or dynamic.

o  Static analysis: Analyze the code without running it.
o  Dynamic analysis: Analyze the program by running it.

•  Our analysis is static.
Our analysis is built upon existing Android static analyses:

•  FlowDroid [1]: finds intra-component information flow
•  Epicc [2]: identifies intent specifications

[1] S. Arzt et al., “FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis
for Android Apps”. PLDI, 2014.

[2] D. Octeau et al., “Effective inter-component communication mapping in Android with Epicc: An essential
step towards holistic security analysis”. USENIX Security, 2013.

8 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Our Contribution

We developed the DidFail static analyzer
(“Droid Intent Data Flow Analysis for Information Leakage”).

•  Finds flows of sensitive data across app boundaries.

•  Source code available at: (or google “DidFail CERT”)

http://www.cert.org/secure-‐coding/tools/didfail.cfm	
Two-phase analysis:

1.  Analyze each app in isolation.
2.  Use the result of Phase-1 analysis to determine inter-app flows.

We tested our analyzer on sets of apps.

9 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Terminology

Definition. A source is an external resource (external to the component/app, not
necessarily external to the phone) from which data is read.

Definition. A sink is an external resource to which data is written.

For example,
- Sources: Device ID, contacts, photos, location (GPS), intents, etc.
- Sinks: Internet, outbound text messages, file system, intents, etc.

Definition. Data is tainted if it originated from a (sensitive) source.

10 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Analysis of Android App Sets: Sensitive Dataflow

•  If an undesired flow is discovered:
o  User might refuse to install app
o  App store might remove app

Previous tools: taint flow in single component
•  Intents can be treated as sources/sinks.
•  But cannot precisely identify full flows involving multiple components.
Malicious developer strategy:
•  Hide from tools by using multiple apps for tainted data flow (launder)
•  Colluding apps, or combination leaky app and malicious app
DidFail:
•  Defeat multiple-app strategy, detect full tainted flows
•  First published static taint flow analysis for app sets
•  Fast user response: 2 phases

	 C1	

src1

sink1

	 	 	 	 	 	

	 	

	 	
sink

source

11 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Motivating Example

App SendSMS.apk sends an intent (a message) to Echoer.apk,
which sends a result back.

§  SendSMS.apk tries to launder the taint through Echoer.apk.
§  Pre-existing static analysis tools could not precisely detect such inter-app data flows.

setResult()

getIntent()

onActivityResult()

Echoer.apk
Device ID
(Source)

SendSMS.apk

Text Message

startActivityForResult()

 (Sink)

intent

result

12 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Analysis Design

Phase 2: Analyze a set of apps:
•  For each intent sent by a component, determine

which components can receive the intent.
•  Generate & solve taint flow equations.

Phase 1: Each app analyzed once, in isolation.
•  FlowDroid: Finds tainted dataflow from sources to sinks.

o Received intents are considered sources.
o Sent intent are considered sinks.

•  Epicc: Determines properties of intents.
•  Each intent-sending call site is labelled with a unique intent ID.

13 Using DidFail to Analyze Flow of Sensitive Information in Sets of Android Apps
SEI Webinar
© 2015 Carnegie Mellon University

Running Example

Three	 components:	 C1,	 C2,	 C3.	 	
C1	 =	 SendSMS	
C2	 =	 Echoer	
C3	 is	 similar	 to	 C1	

	 C1	

	 C3	

	 C2	

src1

src3

sink1

sink3

I1

I3

•  sink1	 is	 tainted	 with	 only	 src1.	 	
•  sink3	 is	 tainted	 with	 only	 src3.	

14 Using DidFail to Analyze Flow of Sensitive Information in Sets of Android Apps
SEI Webinar
© 2015 Carnegie Mellon University

Running Example

Nota(on:	

	 C1	

	 C3	

	 C2	

src1

src3

sink1

sink3

I1

I3

15 Using DidFail to Analyze Flow of Sensitive Information in Sets of Android Apps
SEI Webinar
© 2015 Carnegie Mellon University

Running Example

Nota(on:	
Final	 Sink	 Taints:	
•  T(sink1)	 =	 {src1}	
•  T(sink3)	 =	 {src3}	

	 C1	

	 C3	

	 C2	

src1

src3

sink1

sink3

I1

I3

16 Using DidFail to Analyze Flow of Sensitive Information in Sets of Android Apps
SEI Webinar
© 2015 Carnegie Mellon University

	 C1	

	 C3	

src1

src3

sink1

sink3

	 C2	

Analyze	 each	 component	 separately.

Nota(on	

•	 	 	 An	 asterisk	 (“*”)	 indicates	 an	 unknown	 component.	

Phase	 1	 Flow	 Equa(ons:

Phase-1 Flow Equations

17 Using DidFail to Analyze Flow of Sensitive Information in Sets of Android Apps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-2 Flow Equations

Phase	 1	 Flow	 Equa(ons: Phase	 2	 Flow	 Equa(ons:

Nota(on	

InstanFate	 Phase-‐1	 equaFons	 for	 all	
possible	 sender/receiver	 pairs.

	 C1	

	 C3	

	 C2	

src1

src3

sink1

sink3

I1

I3

Manifest	 and	 Epicc	 info	
(not	 shown)	 are	 used	 to	
match	 intent	 senders	
and	 recipients.

18 Using DidFail to Analyze Flow of Sensitive Information in Sets of Android Apps
SEI Webinar
© 2015 Carnegie Mellon University

Nota(on	

Phase-2 Taint Equations

Phase	 2	 Flow	 Equa(ons: Phase	 2	 Taint	 Equa(ons:

For	 each	 flow	 equaFon	 	 	 src → sink,�
generate	 taint	 equaFon	 	 T(src) ⊆ T(sink).

	 C1	

	 C3	

	 C2	

src1

src3

sink1

sink3

I1

I3

If	 s	 is	 a	 non-‐intent	 source,	
then	 T(s)	 =	 {s}.	

Then,	 solve.	

19 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

TransformAPK
FlowDroid
(modified)

Epicc

 Original APK

Extract manifest

Phase 1

20 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Implementation: Phase 1

APK Transformer
•  Assigns unique Intent ID to each call site of intent-sending methods.

o  Enables matching intents from the output of FlowDroid and Epicc

•  Uses Soot to read APK, modify code (in Jimple), and write new APK.

•  Problem: Epicc is closed-source. How to make it emit Intent IDs?
•  Solution (hack): Add putExtra call with Intent ID.

TransformAPK
FlowDroid
(modified)

Epicc

Original APK

Extract manifest

Phase 1

21 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Implementation: Phase 1

FlowDroid Modifications:
•  Extract intent IDs inserted by APK Transformer, and include in output.
•  When sink is an intent, identify the sending component.

o  In base.startActivity, assume base is the sending component.

•  For deterministic output: Sort the final list of flows.

TransformAPK
FlowDroid
(modified)

Epicc

Original APK

Extract manifest

Phase 1

22 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Implementation: Phase 2

Phase 2
•  Input: Phase 1 output.
•  Generate and solve the data-flow equations.
•  Output:

1.  Directed graph indicating information
flow between sources, intents, intent
results, and sinks.

2.  Taintedness of each sink.

23 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Testing DidFail analyzer: App Set 1

SendSMS.apk
•  Reads device ID, passes through Echoer,

and leaks it via SMS

Echoer.apk
•  Echoes the data received via an intent

WriteFile.apk
•  Reads physical location (from GPS),

passes through Echoer, and writes it to a file

Flows found by DidFail

24 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Limitations

Unsoundness
•  Inherited from FlowDroid/Epicc
- Native code, reflection, etc.

•  Shared static fields
- Partially addressed by Jonathan Burket, but with scalability issues

•  Implicit flows
•  Originally only considered activity intents
- Students added partial support for services and broadcast receivers.

Imprecision
•  Inherited from FlowDroid/Epicc
•  DidFail doesn’t consider permissions when matching intents
•  All intents received by a component are conflated together as a single source

25 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Use of Two-Phase Approach in App Stores

We envision that the two-phase analysis can be used as follows:
•  An app store runs the phase-1 analysis for each app it has.
•  When the user wants to download a new app, the store runs the phase-2 analysis

and indicates new flows.
•  Fast response to user.

Policy guidance/enforcement, for usability.

26 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Usability: Policies to Determine Allowed Flows

Example 2 Example 1

Policy:	 Prohibit	 flow	 from	 Src1	 to	 Sink3	

Noncompliant Compliant

Policies could come from:
•  App store
•  Security system provider
•  Employer
•  User option

C1

C3

C2

Src1

Src3

Sink1

Sink3

I(C1, C2,
 id1)

I(C3, C2, id2)

C1

C3

C2

Src1

Src3

Sink1

Sink3

I(C1, C2,
 id1)

I(C3, C2, id2)

27 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

DidFail vs IccTA

IccTA was developed (at roughly the same time as DidFail)
IccTA uses a one-phase analysis

•  IccTA is more precise than DidFail’s two-phase analysis.
- More context-sensitive
- Less overestimation of taints reaching sinks

•  Two-phase DidFail analysis allows fast 2nd-phase computation.
- Pre-computed Phase-1 analysis done ahead of time
- User doesn’t need to wait long for Phase-2 analysis

Typical time for simple apps:
•  DidFail: 2 sec (2nd phase)
•  IccTA: 30 sec

Working together now! Ongoing collaboration between IccTA and DidFail teams

28 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Analysis of Android App Sets: Sensitive Dataflow
Goal: enforce confidentiality and integrity

Novel Android static dataflow analysis “DidFail” combines precise single-component taint analysis (FlowDroid) and
intent analysis (Epicc).
•  Phase 1: Each app analyzed once, in isolation
–  Examine flow of tainted data from sources to sinks (including intents)
–  Examines intent properties to match senders and receivers

•  Phase 2: For a particular set of apps
–  Generate taint flow equations
–  Iteratively solve equations
–  Fast!

Phase 2 fast because of Phase 1
pre-computation

Source code:
http://www.cert.org/secure-‐coding/tools/didfail.cfm	

29 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Installing DidFail

Main DidFail website
•  http://www.cert.org/secure-coding/tools/didfail.cfm

Detailed install instructions are on the download website
•  https://www.cs.cmu.edu/~wklieber/didfail/install-latest.html

There are 3 branches
•  Static fields (Dec. 2014)
•  Services and broadcast receivers (Dec. 2014)
•  Improved DEX conversion (Nov. 2014)

30 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Running DidFail https://www.cs.cmu.edu/~wklieber/didfail/running.html

31 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-1 Output from FlowDroid (Echoer Toy App)
3 possible flows to sinks found

32 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-1 Output from FlowDroid: One XML <flow> for Echoer

33 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-1 Output from Epicc (SendSMS Toy App)	

Epicc provides precision about fields in intents sent

34 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

GraphViz output for DroidBench app set

Some flows:

Int3	 	 =	 I(IntentSink2.apk, IntentSource1.apk, id3)	

Int4	 	 =	 I(IntentSource1.apk, IntentSink1.apk, id4)	

Res8	 	 =	 R(Int4)	

Src15	 =	 getDeviceId	

Snk13	 =	 Log.i	

Graph generated using GraphViz.

35 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-2 Output: JSON-format (excerpts)
1.  {	
2.  	 	 	 	 "Flows":	 [
3.  	 	 	 	 	 	 	 	 [
4.  	 	 	 	 	 	 	 	 	 	 	 	 "Src:	 <android.telephony.TelephonyManager:	 java.lang.String	 getDeviceId()>",	
5.  	 	 	 	 	 	 	 	 	 	 	 	 "org.cert.sendsms",	
6.  	 	 	 	 	 	 	 	 	 	 	 	 "Sink:	 <android.util.Log:	 int	 i(java.lang.String,java.lang.String)>"	
7. ],	
8.  	 	 	 	 	 	 	 	 [
9.  	 	 	 	 	 	 	 	 	 	 	 	 "Src:	 <android.telephony.TelephonyManager:	 java.lang.String	 getDeviceId()>",	
10. 	 	 	 	 	 	 	 	 	 	 	 	 null,	
11. 	 	 	 	 	 	 	 	 	 	 	 	 "Intent(tx=('org.cert.sendsms',	 'MainActivity'),	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 rx=('org.cert.echoer',	 	 'MainActivity'),	 intent_id='newField_6')"	
12. ],	
13. 	 	 	 	 	 	 	 	 [
14. 	 	 	 	 	 	 	 	 	 	 	 	 "Intent(tx=('org.cert.sendsms',	 'MainActivity'),	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 rx=('org.cert.echoer',	 	 'MainActivity'),	 intent_id='newField_6')",	
15. 	 	 	 	 	 	 	 	 	 	 	 	 null,	
16. 	 	 	 	 	 	 	 	 	 	 	 	 "Sink:	 <android.util.Log:	 int	 i(java.lang.String,java.lang.String)>"	
17. ],	
18. ],	

36 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Phase-2 Output: JSON-format (excerpts)
19. 	 	 	 	 "Taints":	 {	

20. 	 	 	 	 	 	 	 	 "Intent(tx=('org.cert.sendsms',	 'MainActivity'),	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 rx=('org.cert.echoer',	 	 'MainActivity'),	 intent_id='newField_6')":	 	
	 	 	 	 	 	 	 	 [

21. 	 	 	 	 	 	 	 	 	 	 	 	 "Src:	 <android.telephony.TelephonyManager:	 java.lang.String	 getDeviceId()>"	
22. ],	
23. 	 	 	 	 	 	 	 	 "Sink:	 <android.telephony.SmsManager:	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 void	 sendTextMessage(java.lang.String,java.lang.String,java.lang.String,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 android.app.PendingIntent,	 android.app.PendingIntent)>":	 	
	 	 	 	 	 	 	 	 [

24. 	 	 	 	 	 	 	 	 	 	 	 	 "Src:	 <android.os.Bundle:	 java.lang.String	 getString(java.lang.String)>",	
25. 	 	 	 	 	 	 	 	 	 	 	 	 "Src:	 <android.telephony.TelephonyManager:	 java.lang.String	 getDeviceId()>"	
26. ],	
27. 	 	 	 	 }	
28. }	

37 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

Extracted Manifest XML
(excerpts)

38 CERT® Alignment with Cyber COI Challenges and Gaps
SEI Webinar
© 2015 Carnegie Mellon University

For More Information

Secure Coding Initiative
•  Will Klieber, Lori Flynn

{weklieber,lflynn}@cert.org	

Web
•  www.cert.org/secure-coding
•  www.securecoding.cert.org

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Subscribe to the CERT Secure Coding
eNewsletter
mailto: info@sei.cmu.edu

