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Overview 

Problem: Sensitive/private information can be leaked by apps on smartphones. 
•  Precise detection on Android is made difficult by communication between components of apps. 
•  Malicious apps could evade detection by collusion or by exploiting a leaky app 

using intents (messages to Android app components) to pass sensitive data. 
Goal:  Precisely detect undesired flows across multiple Android components.  
•  Remedies if such flows are discovered: 

•  At present: Refuse to install app  
•  Future work: Block undesired flows 

Our Tool (DidFail):  
•  Input: set of Android apps (APK files) 
•  Output: list of flows of sensitive information 
Major Achievements:  
•  First published static taint flow analysis for app sets (not just single apps) 
•  Fast user response: two-phase method uses phase-1 precomputation  
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Introduction 

One billion Android devices (phones and tablets) estimated sold in 2014.1 

Goal: Detect malicious apps that leak sensitive data. 

•  E.g., leak contacts list to marketing company. 

•  “All or nothing” permission model. 

Apps can collude to leak data. 

•  Evades precise detection if only analyzed individually. 

1 Gartner Report: http://www.gartner.com/newsroom/id/2665715 
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Introduction: Android 

Android apps have four types of components: 
•  Activities 
•  Services 
•  Content providers 
•  Broadcast receivers 

Intents are messages to components. 
•  Explicit or implicit designation of recipient 

Components declare intent filters to receive implicit intents. 
Matched based on properties of intents, e.g.: 

•  Action string (e.g., “android.intent.action.VIEW”) 
•  Data MIME type (e.g., “image/png”) 
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Introduction 

Taint Analysis tracks the flow of sensitive data. 
•  Can be static or dynamic. 

o  Static analysis: Analyze the code without running it. 
o  Dynamic analysis: Analyze the program by running it. 

•  Our analysis is static. 
Our analysis is built upon existing Android static analyses: 

•  FlowDroid [1]: finds intra-component information flow 
•  Epicc [2]: identifies intent specifications 

 

[1]  S. Arzt et al., “FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis 
for Android Apps”. PLDI, 2014. 

[2]  D. Octeau et al., “Effective inter-component communication mapping in Android with Epicc: An essential 
step towards holistic security analysis”. USENIX Security, 2013. 
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Our Contribution 

We developed the DidFail static analyzer 
(“Droid Intent Data Flow Analysis for Information Leakage”). 

•  Finds flows of sensitive data across app boundaries. 

•  Source code available at:       (or google “DidFail CERT”)  
 

http://www.cert.org/secure-‐coding/tools/didfail.cfm	  
Two-phase analysis: 

1.  Analyze each app in isolation. 
2.  Use the result of Phase-1 analysis to determine inter-app flows. 

We tested our analyzer on sets of apps. 
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Terminology 

Definition. A source is an external resource (external to the component/app, not 
necessarily external to the phone) from which data is read.  
 
Definition. A sink is an external resource to which data is written.  
 

For example, 
- Sources: Device ID, contacts, photos, location (GPS), intents, etc. 
- Sinks: Internet, outbound text messages, file system, intents, etc. 

Definition. Data is tainted if it originated from a (sensitive) source. 



10 CERT® Alignment with Cyber COI Challenges and Gaps 
SEI Webinar 
© 2015 Carnegie Mellon University 

Analysis of Android App Sets: Sensitive Dataflow 

•  If an undesired flow is discovered:  
o  User might refuse to install app 
o  App store might remove app 

Previous tools: taint flow in single component 
•  Intents can be treated as sources/sinks. 
•  But cannot precisely identify full flows involving multiple components. 
Malicious developer strategy:  
•  Hide from tools by using multiple apps for tainted data flow (launder)  
•  Colluding apps, or combination leaky app and malicious app 
DidFail:  
•  Defeat multiple-app strategy, detect full tainted flows 
•  First published static taint flow analysis for app sets 
•  Fast user response: 2 phases   
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Motivating Example 

App SendSMS.apk sends an intent (a message) to Echoer.apk,  
which sends a result back. 

§  SendSMS.apk tries to launder the taint through Echoer.apk. 
§  Pre-existing static analysis tools could not precisely detect such inter-app data flows. 

setResult() 

getIntent() 

onActivityResult() 

Echoer.apk 
Device ID 
(Source) 

SendSMS.apk 

Text Message 

startActivityForResult() 

  (Sink) 

intent 

result 
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Analysis Design 

Phase 2: Analyze a set of apps:  
•  For each intent sent by a component, determine 

which components can receive the intent. 
•  Generate & solve taint flow equations. 

Phase 1: Each app analyzed once, in isolation. 
•  FlowDroid: Finds tainted dataflow from sources to sinks. 

o Received intents are considered sources. 
o Sent intent are considered sinks. 

•  Epicc: Determines properties of intents. 
•  Each intent-sending call site is labelled with a unique intent ID. 
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Running Example 

Three	  components:	  C1,	  C2,	  C3.	  	  
C1	  =	  SendSMS	  
C2	  =	  Echoer	  
C3	  is	  similar	  to	  C1	  

	  C1	  

	  C3	  

	  C2	  

src1 

src3 

sink1 

sink3 

I1 

I3 

•  sink1	  is	  tainted	  with	  only	  src1.	  	  
•  sink3	  is	  tainted	  with	  only	  src3.	  
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Running Example 

Nota(on:	  

	  C1	  

	  C3	  

	  C2	  

src1 

src3 

sink1 

sink3 

I1 

I3 
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Running Example 

Nota(on:	  
Final	  Sink	  Taints:	  
•  T(sink1)	  =	  {src1}	  
•  T(sink3)	  =	  {src3}	  

	  C1	  

	  C3	  

	  C2	  

src1 

src3 

sink1 

sink3 

I1 

I3 
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	  C1	  

	  C3	  

src1 

src3 

sink1 

sink3 

	  C2	  

Analyze	  each	  component	  separately. 

Nota(on	  
 
 
 
 

•	  	  	  An	  asterisk	  (“*”)	  indicates	  an	  unknown	  component.	  

Phase	  1	  Flow	  Equa(ons:  

Phase-1 Flow Equations 
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Phase-2 Flow Equations 

Phase	  1	  Flow	  Equa(ons:  Phase	  2	  Flow	  Equa(ons: 

Nota(on	  
 
 
 
 

InstanFate	  Phase-‐1	  equaFons	  for	  all	  
possible	  sender/receiver	  pairs. 

	  C1	  

	  C3	  

	  C2	  

src1 

src3 

sink1 

sink3 

I1 

I3 

Manifest	  and	  Epicc	  info	  
(not	  shown)	  are	  used	  to	  
match	  intent	  senders	  
and	  recipients. 
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Nota(on	  
 
 
 
 
 
 

Phase-2 Taint Equations 

Phase	  2	  Flow	  Equa(ons:  Phase	  2	  Taint	  Equa(ons: 

For	  each	  flow	  equaFon	  	  	  src → sink,�
generate	  taint	  equaFon	  	  T(src) ⊆ T(sink). 

	  C1	  

	  C3	  

	  C2	  

src1 

src3 

sink1 

sink3 

I1 

I3 

If	  s	  is	  a	  non-‐intent	  source,	  
then	  T(s)	  =	  {s}.	  

Then,	  solve.	  
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TransformAPK 
FlowDroid 
(modified) 

Epicc 

 Original APK  

Extract manifest 

Phase 1 
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Implementation: Phase 1 

APK Transformer 
•  Assigns unique Intent ID to each call site of intent-sending methods. 

o  Enables matching intents from the output of FlowDroid and Epicc 

•  Uses Soot to read APK, modify code (in Jimple), and write new APK. 
 

•  Problem: Epicc is closed-source. How to make it emit Intent IDs? 
•  Solution (hack): Add putExtra call with Intent ID. 

TransformAPK 
FlowDroid 
(modified) 

Epicc 

Original APK 

Extract manifest 

Phase 1 
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Implementation: Phase 1  

FlowDroid Modifications: 
•  Extract intent IDs inserted by APK Transformer, and include in output. 
•  When sink is an intent, identify the sending component. 

o  In base.startActivity, assume base is the sending component. 

•  For deterministic output: Sort the final list of flows. 
 

TransformAPK 
FlowDroid 
(modified) 

Epicc 

Original APK 

Extract manifest 

Phase 1 
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Implementation: Phase 2 

Phase 2 
•  Input: Phase 1 output. 
•  Generate and solve the data-flow equations. 
•  Output:  

1.  Directed graph indicating information 
flow between sources, intents, intent 
results, and sinks. 

2.  Taintedness of each sink. 
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Testing DidFail analyzer: App Set 1 

SendSMS.apk 
•  Reads device ID, passes through Echoer, 

and leaks it via SMS 

Echoer.apk 
•  Echoes the data received via an intent 

WriteFile.apk 
•  Reads physical location (from GPS),  

passes through Echoer, and writes it to a file 
 
 
 

Flows found by DidFail 
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Limitations 

Unsoundness 
•  Inherited from FlowDroid/Epicc 
- Native code, reflection, etc. 

•  Shared static fields 
- Partially addressed by Jonathan Burket, but with scalability issues 

•  Implicit flows 
•  Originally only considered activity intents 
- Students added partial support for services and broadcast receivers. 

Imprecision 
•  Inherited from FlowDroid/Epicc 
•  DidFail doesn’t consider permissions when matching intents 
•  All intents received by a component are conflated together as a single source 
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Use of Two-Phase Approach in App Stores 

We envision that the two-phase analysis can be used as follows: 
•  An app store runs the phase-1 analysis for each app it has. 
•  When the user wants to download a new app, the store runs the phase-2 analysis  

and indicates new flows. 
•  Fast response to user. 

 

Policy guidance/enforcement, for usability.  
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Usability: Policies to Determine Allowed Flows 

Example 2 Example 1 

Policy:	  Prohibit	  flow	  from	  Src1	  to	  Sink3	  

Noncompliant Compliant 

Policies could come from: 
•  App store 
•  Security system provider 
•  Employer 
•  User option 

C1 

C3 

C2 

Src1 

Src3 

Sink1 

Sink3 

I(C1, C2,
 id1) 

I(C3, C2, id2) 

C1 

C3 

C2 

Src1 

Src3 

Sink1 

Sink3 

I(C1, C2,
 id1) 

I(C3, C2, id2) 
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DidFail vs IccTA 

IccTA was developed (at roughly the same time as DidFail) 
IccTA uses a one-phase analysis 

•  IccTA is more precise than DidFail’s two-phase analysis. 
- More context-sensitive 
- Less overestimation of taints reaching sinks 

•  Two-phase DidFail analysis allows fast 2nd-phase computation. 
- Pre-computed Phase-1 analysis done ahead of time  
- User doesn’t need to wait long for Phase-2 analysis 

Typical time for simple apps: 
•  DidFail:    2 sec (2nd phase) 
•  IccTA:  30 sec 

Working together now! Ongoing collaboration between IccTA and DidFail teams 
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Analysis of Android App Sets: Sensitive Dataflow 
Goal: enforce confidentiality and integrity 

Novel Android static dataflow analysis “DidFail” combines precise single-component taint analysis (FlowDroid) and 
intent analysis (Epicc). 
•  Phase 1: Each app analyzed once, in isolation 
–  Examine flow of tainted data from sources to sinks (including intents) 
–  Examines intent properties to match senders and receivers  

•  Phase 2: For a particular set of apps 
–  Generate taint flow equations  
–  Iteratively solve equations 
–  Fast! 

 

Phase 2 fast because of Phase 1 
pre-computation  

Source code: 
http://www.cert.org/secure-‐coding/tools/didfail.cfm	  
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Installing DidFail 

Main DidFail website 
•  http://www.cert.org/secure-coding/tools/didfail.cfm 

Detailed install instructions are on the download website 
•  https://www.cs.cmu.edu/~wklieber/didfail/install-latest.html  

There are 3 branches 
•  Static fields (Dec. 2014) 
•  Services and broadcast receivers (Dec. 2014) 
•  Improved DEX conversion (Nov. 2014) 

 



30 CERT® Alignment with Cyber COI Challenges and Gaps 
SEI Webinar 
© 2015 Carnegie Mellon University 

Running DidFail  https://www.cs.cmu.edu/~wklieber/didfail/running.html  
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Phase-1 Output from FlowDroid (Echoer Toy App)   
3 possible flows to sinks found 
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Phase-1 Output from FlowDroid: One XML <flow> for Echoer 
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Phase-1 Output from Epicc (SendSMS Toy App)	  

Epicc provides precision about fields in intents sent 
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GraphViz output for DroidBench app set  

Some flows: 

Int3	  	  =	  I(IntentSink2.apk, IntentSource1.apk, id3)	  

Int4	  	  =	  I(IntentSource1.apk, IntentSink1.apk, id4)	  

Res8	  	  =	  R(Int4)	  

Src15	  =	  getDeviceId	  

Snk13	  =	  Log.i	  

Graph generated using GraphViz. 
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Phase-2 Output: JSON-format (excerpts) 
1.  {	  
2.  	  	  	  	  "Flows":	  [	  
3.  	  	  	  	  	  	  	  	  [	  
4.  	  	  	  	  	  	  	  	  	  	  	  	  "Src:	  <android.telephony.TelephonyManager:	  java.lang.String	  getDeviceId()>",	  
5.  	  	  	  	  	  	  	  	  	  	  	  	  "org.cert.sendsms",	  
6.  	  	  	  	  	  	  	  	  	  	  	  	  "Sink:	  <android.util.Log:	  int	  i(java.lang.String,java.lang.String)>"	  
7.  	  	  	  	  	  	  	  	  ],	  
8.  	  	  	  	  	  	  	  	  [	  
9.  	  	  	  	  	  	  	  	  	  	  	  	  "Src:	  <android.telephony.TelephonyManager:	  java.lang.String	  getDeviceId()>",	  
10. 	  	  	  	  	  	  	  	  	  	  	  	  null,	  
11. 	  	  	  	  	  	  	  	  	  	  	  	  "Intent(tx=('org.cert.sendsms',	  'MainActivity'),	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  rx=('org.cert.echoer',	  	  'MainActivity'),	  intent_id='newField_6')"	  
12. 	  	  	  	  	  	  	  	  ],	  
13. 	  	  	  	  	  	  	  	  [	  
14. 	  	  	  	  	  	  	  	  	  	  	  	  "Intent(tx=('org.cert.sendsms',	  'MainActivity'),	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  rx=('org.cert.echoer',	  	  'MainActivity'),	  intent_id='newField_6')",	  
15. 	  	  	  	  	  	  	  	  	  	  	  	  null,	  
16. 	  	  	  	  	  	  	  	  	  	  	  	  "Sink:	  <android.util.Log:	  int	  i(java.lang.String,java.lang.String)>"	  
17. 	  	  	  	  	  	  	  	  ],	  
18. 	  	  	  	  ],	  
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Phase-2 Output: JSON-format (excerpts) 
19. 	  	  	  	  "Taints":	  {	  

20. 	  	  	  	  	  	  	  	  "Intent(tx=('org.cert.sendsms',	  'MainActivity'),	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  rx=('org.cert.echoer',	  	  'MainActivity'),	  intent_id='newField_6')":	  	  
	  	  	  	  	  	  	  	  [	  

21. 	  	  	  	  	  	  	  	  	  	  	  	  "Src:	  <android.telephony.TelephonyManager:	  java.lang.String	  getDeviceId()>"	  
22. 	  	  	  	  	  	  	  	  ],	  
23. 	  	  	  	  	  	  	  	  "Sink:	  <android.telephony.SmsManager:	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  void	  sendTextMessage(java.lang.String,java.lang.String,java.lang.String,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  android.app.PendingIntent,	  android.app.PendingIntent)>":	  	  
	  	  	  	  	  	  	  	  [	  

24. 	  	  	  	  	  	  	  	  	  	  	  	  "Src:	  <android.os.Bundle:	  java.lang.String	  getString(java.lang.String)>",	  
25. 	  	  	  	  	  	  	  	  	  	  	  	  "Src:	  <android.telephony.TelephonyManager:	  java.lang.String	  getDeviceId()>"	  
26. 	  	  	  	  	  	  	  	  ],	  
27. 	  	  	  	  }	  
28. }	  
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Extracted Manifest XML 
(excerpts) 
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For More Information 

Secure Coding Initiative 
•  Will Klieber, Lori Flynn 

{weklieber,lflynn}@cert.org	  

  
Web 
•  www.cert.org/secure-coding  
•  www.securecoding.cert.org 
 

U.S. Mail 
Software Engineering Institute 
Customer Relations 
4500 Fifth Avenue 
Pittsburgh, PA 15213-2612 
 
Subscribe to the CERT Secure Coding 
eNewsletter 
mailto: info@sei.cmu.edu 


