
© 2015 Carnegie Mellon University

Approaching Security from
an "Architecture First"
Perspective

Software Engineering Institute
Carnegie Mellon University

Rick Kazman - University of Hawaii
Jungwoo Ryoo - Penn State University
Humberto Cervantes - Universidad Autonoma
Metropolitana-Itztapalapa

2
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

§  Software security is a complex multi-
dimensional problem, touching coding, design,
operation, and policy.

§  Most software engineering effort goes into
secure coding.

An Architectural Approach

3
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

§  But secure coding is not enough.
§  Why?

1.  Security is a “weakest link” phenomenon.
2.  Secure coding practices are expensive.

An Architectural Approach - 2

4
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

We advocate an architectural approach to
software security.

Specifically we advocate the use of security
frameworks
§  encapsulate best practices in design and coding

An Architectural Approach - 3

5
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

What is the evidence for this advocacy?

Until now … nothing.

An Architectural Approach - 4.

6
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Three Case Studies

§  We now present three case studies.

§  We examine the effects of using a security
framework on:

1.  system quality, and
2.  development efficiency.

7
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Architectural Foundations

An architectural approach to software security
relies on three related fundamental design
concepts:
•  tactics,
•  patterns, and
•  frameworks.

These concepts could apply to any quality
attribute but here we focus on security.

8
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Tactics

Architectural tactics are
techniques that an
architect can employ to
achieve required quality
attributes in a system.

The tactics used here
are taken from:

9
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Security Tactics

Tactics provide a useful
vocabulary for design
and analysis.
But realizing them in
code involves lots of
interpretation.

Security Tactics

Resist Attacks

Encrypt Data

Attack System detects,
resists, reacts,
or recovers

Detect Attacks

Maintain
Audit Trail

Limit Exposure

Recover
from Attacks

React to
Attacks

Revoke
Access

Lock
Computer

Detect
Intrustion
Detect Service
Denial
Verify Message
Integrity
Detect Message
Delay

Change Default
Settings

Separate
Entities

Restore

See
Availability

Identify
Actors

Authenticate
Actors

Authorize
Actors

Limit Access
Inform
Actors

10
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Security Patterns

There are a number of
well-established security
pattern catalogs.
Patterns help to structure
a design, but they are
difficult to correctly
implement, maintain,
and combine.

11
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Security Frameworks

A framework is: a reusable
software element that provides
generic functionality addressing
recurring concerns across a
broad range of applications.
There are security frameworks
for many languages and
technology stacks.
Frameworks increase
productivity, but often have
a steep learning curve and
"lock-in".

12
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Case Studies

Given this wealth of design concepts, we were
interested to understand:
•  how architects approach security,
•  how well these design approaches “perform” in

terms of securing the system and reducing the
cost of creating and maintaining a secure
architecture.

13
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Case Study Subjects

Organization
name

Description Case study Frameworks
used

CodeOne Creator of a security
framework in Korea

"ACME" web
application

CodeOne Security
Framework
(“After”)

Quarksoft Software consulting
firm in Mexico City

Internal project
management web
application

ZK
Spring Security

OpenEMR Open source project Electronic health
records system

None

14
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Case Study Protocol

1.  Interview the architect regarding the approach
to security, the size of the system, and the
effort expended on security.

2.  Scan the system to identify its vulnerabilities
using AppScan from IBM.

Goal: explore tradeoff space between costs and
benefits (effectiveness) of different approaches to
security, and determine if there are optimal project
strategies employing the approaches.

15
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Interview Questions

1.  What were your primary
drivers (quality attributes for
the system) and how
important is security among
them?

2.  With respect to security,
what are the approaches that
you have taken to address
this quality attribute?

3.  How do you reason about
tradeoffs?

4.  How did you ensure that
your programmers conform
to the security approaches?
(policies, inspections, etc.)

5.  What percentage of project
effort do you estimate goes
into security without the use
of a security framework? If
using a security framework,
what percentage of effort
does this take?

6.  Other comments

16
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Example Questions
Tactic Description
Detect
Intrusion

Does the system support the detection of intrusions? An example is comparing
network traffic or service request patterns within a system to a set of signatures or
known patterns of malicious behavior stored in a database.

Detect
Service
Denial

Does the system support the detection of denial of service attacks?
An example is the comparison of the pattern or signature of network traffic coming into
a system to historic profiles of known Denial of Service (DoS) attacks.

Verify
Message
Integrity

Does the system support the verification of message integrity? An example is the use
of techniques such as checksums or hash values to verify the integrity of messages,
resource files, deployment files, and configuration files.

Detect
Message
Delay

Does the system support the detection of message delays?
An example is checking the time that it takes to deliver a message.

Limit
Exposure

Does the system support limiting exposure? An example is reducing the probability of
a successful attack, or restricting the amount of potential damage, e.g. concealing facts
about a system (“security by obscurity”) or dividing and distributing critical resources
(“don’t put all your eggs in one basket”).

17
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Example Answers
Tactic How is it achieved?
Detect Intrusion - Primarily enforced through the use of hardware firewalls

- Spring Security also guarantees that a session comes from a single place

Detect Service
Denial

- Covered by ZK
- Use of hardware Firewall

Verify Message
Integrity

- Covered by ZK. All requests are associated with a checksum and IDs. Most of the
processing is done on the server.

Detect Message
Delay

- Covered by ZK. When a session is created in ZK, many short-lived objects are created
and each has a UID. The UID is verified by the framework so it would be hard to
replicate these IDs.

Identify Actors - Covered by Spring Security
Authenticate
Actors

- Covered by Spring Security. All URLs are handled by Spring Security, transmission of
content is a responsibility of ZK

Authorize
Actors

- Covered by Spring Security

Limit Access - Covered by Spring Security. The system runs over Tomcat, Spring Security overwrites
the JAS standard from J2EE (just roles were defined in the web.xml configuration file of
the web server)

18
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Example Answers
Tactic How is it achieved?

Limit
Exposure

- Not covered. Perhaps the fact that the application runs in an intranet?

Encrypt Data - Use of HTTPS

Separate
Entities

- Database server is physically separated, Identity Manager is also separated (it uses a
Windows Active Directory).

Change
Default
Settings

- Not supported

Revoke access - This can only be performed manually through the Active Directory.

Lock
Computer

- Spring Security blocks the user if there are several attempts at accessing resources for
which permissions are not granted.

Inform Actors - Not supported

Maintain audit
trail

- Several audit trails: Web server (audits web access), Spring Security (audits access to
resources), ZK also creates logs.

Restore - Not supported

19
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Metrics Collected

Vulnerability metrics were collected using AppScan
which categorizes vulnerabilities as: High (H),
Medium (M), Low (L), or Informational (I).
Application size was measured using CLOC and
MetricsReloaded. Security effort was estimated by
the interviewees.

20
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Discussion

Our case studies represent three different security
approaches, in terms of their architectural support for
security (degree of adoption of frameworks):
•  Full adoption: security framework used throughout

the lifetime of the software, e.g. Quarksoft.
•  Partial adoption: security framework is introduced

in the middle of the lifetime, e.g. ACME “After”.
•  No adoption: no use of any third-party security

framework, e.g. OpenEMR, ACME “Before”.

21
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Results
Case Acme Before Acme After Quarksoft OpenEMR

Approach No adoption Partial adoption
(CodeOne fwk)

Full adoption (ZK
+ Spring fwks)

No adoption

Size (KLOC) 7.93 8.55 16.56 255.6

Detected
Vulnerabilities

H: 154
M: 50
L: 99

H: 0
M: 25
L: 99

H: 0
M: 0
L: 0

H: 8
M: 9
L: 475

Tactics
Employed

6 12 13 9

Tactics in
Bus Logic

5 5 0 6

Estimated
security effort

20% 10% 3% (30% without
frameworks)

20%

22
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Inferences from the Results

1.  The superiority of using security frameworks as
an architectural approach, either through partial
adoption or through full adoption.

2.  The effort required for partial adoption is,
however, significant when compared to the full
adoption approach.

23
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Inferences from the Results - 2

Thus, we recommend the use of security
frameworks from the early phases of the
construction of a system (full adoption).
No big surprise: adopting a framework after the
system has been built will clearly be more costly
than doing so from the start.

24
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Inferences from the Results - 3.

Partial Adoption is a sub-optimal but common way
of adopting security frameworks.
⇒ Most developers and architects worry about
functionality first and security (and other quality
attributes) later.

25
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Conclusions

Why is it best to address security via frameworks?
1.  while application developers may be experts in their

domains, they are typically not security experts
2.  even if developers are experienced in security, they

should not write their own security controls
3.  using a framework increases the likelihood that

security controls will be applied consistently
4.  delegating security issues to frameworks allows

developers to devote their energy to application logic,
increasing overall productivity

26
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Future Work

We are currently pursuing (and actively looking for)
additional case studies

•  Interview with the architect
•  AppScan vulnerability analysis

27
Rick Kazman
January 21, 2015

© 2015 Carnegie Mellon University

Questions?

Feel free to contact me:
•  kazman@sei.cmu.edu

