
Approaching Security from an "Architecture First"
Perspective

Table of Contents

Approaching Security from an " Architecture First" Perspective ... 3

An Architectural Approach ... 5

An Architectural Approach - 2 .. 6

An Architectural Approach - 3 .. 8

An Architectural Approach - 4. ... 9

Polling Question 1 ... 10

Three Case Studies .. 11

Architectural Foundations .. 12

Tactics ... 13

Security Tactics ... 15

Security Patterns ... 17

Security Frameworks .. 19

Polling Question 2 ... 20

Case Studies .. 22

Case Study Subjects .. 23

Case Study Protocol .. 25

Interview Questions .. 26

Example Questions ... 28

Example Answers .. 30

Example Answers .. 31

Page 1 of 48

Metrics Collected .. 32

Discussion.. 33

Results ... 34

Inferences from the Results .. 36

Inferences from the Results - 2 ... 37

Inferences from the Results - 3. .. 38

Conclusions ... 39

Future Work .. 40

Page 2 of 48

Approaching Security from an " Architecture First" Perspective

© 2015 Carnegie Mellon University

Approaching Security from an
"Architecture First" Perspective
Software Engineering Institute, Carnegie Mellon University

Rick Kazman - University of Hawaii
Jungwoo Ryoo - Penn State University
Humberto Cervantes -
Universidad Autonoma Metropolitana-Itztapalapa

**056 Shane McGraw: So we're going to get on
to our second talk, which will be Security
From an Architecture-First Perspective, by
Rick Kazman, and Rick's going to talk from
about two fifteen to three o'clock.

Rick Kazman is a professor at the
University of Hawaii and a principal
researcher at the SEI. His primary
research interests are software
architecture, design and analysis
tools, software visualization, and
software engineering economics. He
also has interest in human-computer
interaction, and information retrieval.
Kazman has created several highly
influential methods and tools for
architecture analysis, including the
Software Architecture Analysis
method, the ATM, or the Architecture
Trade-off Analysis Method, the Cost-
Benefit Analysis Method, and the Dali

Page 3 of 48

Architecture Reverse Engineering
tool, and he's also the author of over
1150 peer-reviewed papers, and
coauthored several books. Welcome,
all the way from Hawaii. Rick, all
yours. Thank you.

Rick Kazman: Thanks, Shane. So,
in this talk, I'll be reviewing some of
my recent research on architectural
approaches to security, and this is
something that I've become more
and more interested in over the last
couple of years, and I'll be picking up
on several of the threads that Linda
introduced. One is accelerating
capability-- what can we do to not
only include security in our systems,
to architect for security, but to do so
in an efficient way?

The whole notion of assurance. As
Linda mentioned, assurance is not
limited to security assurance, but
clearly security is one of the major
assurance concerns that most people
have in today's networked world.
And also evidence as a technical
challenge. Frequently as software
architects, we are searching for
evidence for how to guide our
decisions, and so hopefully I'll
present a little bit of evidence that
will stimulate some thinking towards
how you might address security from
an architectural perspective. And I
should just say, before moving on,
that this is joint work with Professor
Jungwoo Ryoo at Penn State
University, and Professor Humberto
Cervantes at the UAM-- I'm not going
to attempt to pronounce it-- in
Mexico City.

Page 4 of 48

An Architectural Approach

57
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

An Architectural Approach

Software security is a complex multi-dimensional problem, touching
coding, design, operation, and policy.

Most software engineering effort goes into secure coding.

**057 Security is complex, and
it's a multidimensional problem.
There are aspects of security that
touch operations and training and
policies and process and procedures.
But from a software engineering
perspective, we are primarily
interested in coding and design, and
unfortunately, from my perspective,
most of the research effort and most
of the effort in practice in security
has thus far gone into secure coding.

Page 5 of 48

An Architectural Approach - 2

58
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

An Architectural Approach - 2

But secure coding is not enough.
Why?

1. Security is a “weakest link” phenomenon.
2. Secure coding practices are expensive.

**058 And my contention is that
secure coding is not enough. Yes,
we need secure coding. We
absolutely need secure coding. We
cannot live without it. But it in itself
is not the entirety of the solution. My
contention is that secure coding
alone will not get you where you
need to go when you think about
those multiple challenges, like
assurance and accelerating capability.

And there's a couple reasons why this
is the case. First of all, security is a
weakest-link phenomenon, and what
I mean by that is that if you think
about other quality attributes, like
modifiability or performance-- if you
take on some technical debt in your
system, you do some hacks, you duct
tape some components together to
quickly get some capability to the

Page 6 of 48

market or to make a quick change to
an existing system, perhaps you'll
compromise the modifiability of the
system a little bit in doing so.
Perhaps you'll undermine some of the
modular structure of the system.
And in doing so, that system will
become a little less modifiable, and
you'll have incurred a little bit of
technical debt.

Or, if you maybe made some
changes to an algorithm or data
structure or scaled the system a little
bit, you might compromise the
performance of the system a little bit.
And yes, these are important.
Technical debt is like rust. It never
stops; it keeps on growing. But
security is different. If you introduce
a vulnerability into your system, your
system isn't a little bit more insecure,
your system is insecure. It's binary.
And so we need to address security
flaws much more urgently that
modifiability or performance flaws.
It's all or nothing.

Secondly, secure coding is not
enough because secure coding is
expensive. And again, it's not that
we can do without it, but that should
not be our only approach. As
software engineers, as software
architects, we have to be cognizant
of cost as one of the drivers in
system development.

Page 7 of 48

An Architectural Approach - 3

59
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

An Architectural Approach - 3

We advocate an architectural approach to software security.

Specifically we advocate the use of security frameworks
• encapsulate best practices in design and coding

**059 So we advocate-- not
surprisingly, given you're listening to
this webinar-- an architectural
approach to software security.
Specifically what I mean by that is
that we advocate the use of security
frameworks, and I will talk a little bit
more about security frameworks in a
minute, but essentially a framework
is any encapsulation of a set of
functionality, a reasonable set of
functionality, that you're going to use
over and over throughout your
system. This could be your own
framework. It could be something
that you build and you design, or that
you build and use for a small set of
systems within your company. It
could be a commercial framework or
an open source framework. But the
point of a security framework is that
you have a consistent platform upon

Page 8 of 48

which you build your approach to
security. You are not doing security
simply based on coding the right
stuff, but you are allocating the
security concerns to a specific portion
of your architecture.

So this is a proposal. This is an
advocacy statement.

An Architectural Approach - 4.

60
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

An Architectural Approach - 4.

What is the evidence for this advocacy?

Until now … nothing.

**060 What's the evidence for
this advocacy? I would have to say,
until now, nothing. This is an
opinion, but I hope to present some
evidence for this opinion.

Page 9 of 48

Polling Question 1

61
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Polling Question 1

Do you take an architectural approach to security?

1. Never
2. Seldom
3. Occasionally
4. Frequently
5. Always

**061 Shane McGraw: So we're
going to launch the first polling
question, one of two that will take
place during Rick's presentation, and
that is: Do you take an architectural
approach to security? So take about
110 or 15 seconds to vote, and Rick,
you can move on and we'll log in the
results in about a minute or so.

Page 10 of 48

Three Case Studies

62
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Three Case Studies

We now present three case studies.

We examine the effects of using a security framework on:
1. system quality, and
2. development efficiency.

**062 Rick Kazman: Great, thank
you.

So, to address this question, to
provide some evidence for the
advocacy, I'm now going to present
three case studies. So, empirical
evidence is hard to come by in
software engineering, in part because
it's very difficult to isolate the many,
many factors that can vary from
project to project and domain to
domain. So a case study approach is
one that allows us to probe the
details of a software project and
focus on what we think are the
salient details, and try to understand
the relationship between the
decisions that have been made and
the consequences, or the outcomes.

Page 11 of 48

So in this study, we're going to look
at the effects of using a security
framework on both system quality--
specifically on security-- but also on
development efficiency, on how much
effort we spend on that security, on
achieving a particular level of
security.

Architectural Foundations

63
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Architectural Foundations

An architectural approach to software security relies on three related
fundamental design concepts:

• tactics,
• patterns, and
• frameworks.

These concepts could apply to any quality attribute but here we
focus on security.

**063 So let me take a step
backward before we delve into the
details of the study and talk about
what it means to take an
architectural approach to security,
and there are three foundational
design concepts that I will briefly
introduce, and if you're familiar with
the SEI's body of work on software
architecture, none of these will be a
surprise to you. These are tactics,
patterns, and frameworks.

Page 12 of 48

These concepts apply to any quality
attribute-- in the book "Software
Architecture and Practice" we have a
chapter on each of seven quality
attributes-- performance, availability,
security, modifiability,
interoperability, and so forth-- but
here, of course, we're going to focus
on these three concepts as they
apply to security.

Tactics

64
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Tactics

Architectural tactics are techniques
that an architect can employ to
achieve required quality attributes in
a system.

The tactics used here are taken from:

**064 So, for those of you that are
not familiar with this concept, an
architectural tactic is a design
primitive. It is a fundamental design
choice that an architect makes and a
design technique that an architect
employs to achieve some quality
attribute in a system. So, lest you
think these only apply to security, let
me give a quick example from availability.

Page 13 of 48

If I want to architect a system for
high availability, I'm going to have to
make some design choices. I'm
going to have to decide, "How am I
going to detect a fault? Once I've
detected a fault, how am I going to
react to that fault? How am I going
to recover from that fault?" And
perhaps I may also have some desire
to avoid or mask faults entirely.

So the good news is that, for me as a
software architect, I don't have to
start from a blank page to achieve
those desired quality attributes. To
detect a fault, there's a set of tactics
that I can employ. So I could use
Ping Echo, I could use Heartbeat, I
could use a system monitor, I could
use exception detection, and so forth.
So as an architect, I will choose one
or more of those strategies and I will
design to those, I will realize those
strategies.

The tactics that we'll be talking about
today are all available, all
documented in "Software
Architecture and Practice."

Page 14 of 48

Security Tactics

65
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Security Tactics

Tactics provide a useful
vocabulary for design and
analysis.
But realizing them in code
involves lots of interpretation.

Security Tactics

Resist Attacks

Encrypt Data

Attack System detects,
resists, reacts,
or recovers

Detect Attacks

Maintain
Audit Trail

Limit Exposure

Recover
from Attacks

React to
Attacks

Revoke
Access

Lock
Computer

Detect
Intrustion
Detect Service
Denial
Verify Message
Integrity
Detect Message
Delay

Change Default
Settings

Separate
Entities

Restore

See
Availability

Identify
Actors

Authenticate
Actors

Authorize
Actors

Limit Access
Inform
Actors

**065 So let's take a quick look at
the tactics for security.

So, here you can see that the
security tactics are divided into four
categories, so we need to think about
what it means to take an
architectural approach to security.
We need a way to detect an attack--
how do we know that we're under
attack right now? Given that we
believe we are being attacked, can
we resist attacks? What are the
architectural strategies we can take
to resist attacks? If we are
unsuccessful in resisting attack, we
need to be able to react to those
attacks. And finally, if all of that
fails-- our system has been
compromised, we've had resources
compromised, we've lost data,
whatever-- we need to be able to

Page 15 of 48

recover from the attacks, respond to
them, and maybe even find the bad
guys who did it.

So as an architect, again, there are
choices that I can make, architectural
decisions that I can make, to achieve
each of those security goals, and
each of those is an architectural
strategy. So the tactics give us a
really useful vocabulary for design,
they give us essentially a checklist for
design, and we've seen in design
exercises in classes that we've taught
for many years in architectural design
that these are really useful resources
for architects; giving them a
checklist, giving them a set of things
that are the primitives of design is
really useful as a starting point. But
they're only a starting point. You still
have to realize an architectural tactic
in code, and this involves a lot of
interpretation.

Page 16 of 48

Security Patterns

66
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Security Patterns

There are a number of well-
established security pattern
catalogs.
Patterns help to structure a
design, but they are difficult to
correctly implement, maintain,
and combine.

**066 So one of the ways that we
do this is by realizing an architectural
tactic via a security pattern. In
general, we realize tactics via
patterns. And patterns are quite
common these days. There are lots
of books published on patterns an
websites devoted to patterns. There
are quality attribute communities
devoted to documenting patterns in
security, availability, performance,
and so forth.

And patterns help us to structure a
design. So when you choose a
security pattern, you are given a
description of the pattern, what it's
for, the various forces that are at
work, the tradeoffs involved, and you
are typically given a design fragment,
a UML diagram showing you the

Page 17 of 48

pieces of that design and how they
interact with each other.

And this is good. This is a big help to
have this reusable design expertise.
But patterns are notoriously difficult
to correctly implement. So a couple
of years ago I did another empirical
study on the implementation of
design patterns. And so we gave our
subjects documented design
patterns, they were taught about the
patterns, they were taught how to
use them, and then we let them
implement them and we studied their
implementations, and we found that
about 70 percent of the
implementations actually violated the
design pattern, and violated them in
ways that undermined the intent of
the design pattern. The students got
the systems to work, but they were
introducing technical debt. So
patterns are a great asset, but
they're often difficult to correctly
implement and maintain. They can
erode over time. And no system is
built from a single pattern. An
architect may choose a number of
patterns, perhaps dozens of patterns,
in implementing an entire system,
and those have to be combined; they
have to live together and play
together nicely.

Page 18 of 48

Security Frameworks

67
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Security Frameworks

A framework is: a reusable
software element that provides
generic functionality addressing
recurring concerns across a broad
range of applications.
There are security frameworks for
many languages and technology
stacks.
Frameworks increase productivity,
but often have a steep learning
curve and "lock-in".

**067 So one of the ways that we
can deal with this complexity is by
using a framework, because
frameworks realize-- frameworks
implement tactics and patterns. So a
framework here is a reusable
software element that provides some
generic functionality, and this generic
functionality addresses a recurring
set of concerns, and these concerns
recur across many applications. And
as I said, you could build your own
framework, for security or for any
other quality attribute, but there are
lots of commercial and open source
security frameworks out there in the
world, and there's just a few
examples on the right-hand side of
your screen right now.

These frameworks exist for many
programming languages and

Page 19 of 48

integrate with many different
technology stacks, but nothing is free
in software engineering; everything's
about tradeoffs. So frameworks will
often increase productivity in the long
run, but they have a steep learning
curve. You have to understand the
concepts of the framework and how
they work and how you can integrate
them. And there's a lock-in. Once
you have committed to a framework,
the cost of switching can be quite
expensive, and so you have to be
very careful when choosing a security
framework, or any framework.

Polling Question 2

68
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Polling Question 2

How often have you employed frameworks as a major aspect of
system development?

1. Never
2. Seldom
3. Occasionally
4. Frequently
5. Always

**068 Shane McGraw: So we'll
launch our third and final polling
question today, and as we're doing
that, Rick, we'll review the results
from the first polling question. So

Page 20 of 48

that polling question is launched.
And then from the first question--
which was "Do you take an
architectural approach to security?"--
we had 8 percent say never, 13
percent seldom, 41 percent
occasionally, 27 percent frequently,
and 11 percent always. So is that
38 percent, looking at this, surprising
to you? Is that something you're
seeing more and more?

Rick Kazman: I'm encouraged. I'm
encouraged by that, but obviously it's
still a minority, and so hopefully the
evidence that I'm presenting will
encourage more of you out there to
at least consider an architectural
approach to security.

Shane McGraw: Okay. We'll
review the next one a little bit later.

Page 21 of 48

Case Studies

69
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Case Studies

Given this wealth of design concepts, we were interested to
understand:

• how architects approach security,
• how well these design approaches “perform” in terms of securing

the system and reducing the cost of creating and maintaining a
secure architecture.

**069 Rick Kazman: Thank you.

Okay, so given this set of design
concepts-- tactics, patterns, and
frameworks-- we wanted to
understand how architects approach
security in the real world and how
well these various design approaches
perform. How well do they succeed
in securing the system? How
vulnerable is a system, given that
you've employed one or more of
these concepts? And also, how does
it affect your cost of creating and
maintaining a secure architecture?

Page 22 of 48

Case Study Subjects

70
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Case Study Subjects

Organization
name

Description Case study Frameworks used

CodeOne Creator of a security
framework in Korea

"ACME" web
application

CodeOne Security
Framework (“After”)

Quarksoft Software consulting
firm in Mexico City

Internal project
management web
application

ZK
Spring Security

OpenEMR Open source project Electronic health
records system

None

**070 In our case study, we had
three subjects. These three subjects
were from different domains, located
in different countries, working on
systems of different size. So the first
one was a system maintained by a
company called CodeOne in South
Korea. They've created their own
security framework, and they had
been hired by another company,
whose name we cannot reveal.
CodeOne had been hired to refactor
a system that we've called Acme,
which was a web application. And so
when we look at the Acme system,
we're going to look at Acme before,
where there was no security
framework employed, and Acme
after, where CodeOne had refactored
the system and had inserted their
own security framework.

Page 23 of 48

The second example comes from a
company called Quarksoft-- oh, I
should say that CodeOne in South
Korea, we have direct contact with
that company via Professor Ryoo at
Penn State. The second one,
Quarksoft, is a software consulting
firm in Mexico City, which Professor
Cervantes had a relationship with,
and as a software consulting
company they are dealing with and
managing many projects
simultaneously, and so they had
developed an internal project
management application, a web-
based application, for managing and
monitoring and collecting information
about the progress of these projects;
and they had developed this
application from the ground-up using
two security frameworks, ZK and
Spring Security.

The third example is an open source
project on electronic medical record
system called OpenEMR, and they
had written a system in PHP; they
had not employed any security
framework whatsoever.

So those were our three case studies,
our three subjects.

Page 24 of 48

Case Study Protocol

71
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Case Study Protocol

1. Interview the architect regarding the approach to security,
the size of the system, and the effort expended on security.

2. Scan the system to identify its vulnerabilities using AppScan
from IBM.

Goal: explore tradeoff space between costs and benefits
(effectiveness) of different approaches to security, and determine if
there are optimal project strategies employing the approaches.

**071 And what we did in the case
study is, first of all, we interviewed
the architect. One person in the
team had established a personal
relationship with the architect on
each of these projects. So we
interviewed the architect regarding
their approach to security, we asked
them about the size of the system,
and we asked them about how much
effort they spent on securing the
system, and then we scanned the
system using AppScan, which is a
commercial security scanner from
IBM-- a more or less industry
standard security scanner-- and our
goal was to understand the tradeoff,
the costs and benefits, of the various
approaches to security to determine
whether there's an optimal project
strategy.

Page 25 of 48

Interview Questions

72
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Interview Questions

1. What were your primary drivers
(quality attributes for the
system) and how important is
security among them?

2. With respect to security, what
are the approaches that you
have taken to address this
quality attribute?

3. How do you reason about
tradeoffs?

4. How did you ensure that your
programmers conform to the
security approaches? (policies,
inspections, etc.)

5. What percentage of project
effort do you estimate goes into
security without the use of a
security framework? If using a
security framework, what
percentage of effort does this
take?

6. Other comments

**072 So first of all, our interview:
the interview took about two hours
in total. We started off by asking
the architect what were the primary
drivers, what were the most
important quality attributes for the
system; and among those quality
attributes, where did security rank--
how important was security.

For the second question we asked
what approaches had they taken to
address security in the architecture,
and what we did there is we used our
catalog of security tactics as
interview questions, and I'll show you
examples in a moment. So for each,
we took each security tactic and we
turned it into a question, and we
asked the architect, "Are you doing
this in your architecture? And tell us

Page 26 of 48

something about how you're actually
realizing his tactic."

We asked them how they reason
about tradeoffs in the system, and
we were also interested to
understand how they know that their
programmers conform to the
architectural approaches to security
that they've taken. As an
architect, you can design a beautiful
system with layering and with
patterns and so forth, and then
perhaps your programmers go and
implement whatever they like with
little or no relationship to what you've
designed. One of the jobs of an
architect is to ensure conformance of
the implementation to the design. So
we wanted to know how did they
ensure conformance, how did they
know that the programmers were
really programming what was
expected of them.

Then we asked them to estimate
what percentage of total project
effort goes into security, and if there
was a case, as there was with Acme,
of a before-and-after state, and with-
and without-a-framework state, we
wanted to know an estimate for each
of those cases-- so how much effort
went in with the framework, how
much effort went in when they didn't
use the framework. And finally, we
had an open question portion.

Page 27 of 48

Example Questions

73
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Example Questions

Tactic Description
Detect
Intrusion

Does the system support the detection of intrusions? An example is comparing network traffic or
service request patterns within a system to a set of signatures or known patterns of malicious behavior
stored in a database.

Detect
Service
Denial

Does the system support the detection of denial of service attacks?
An example is the comparison of the pattern or signature of network traffic coming into a system to
historic profiles of known Denial of Service (DoS) attacks.

Verify
Message
Integrity

Does the system support the verification of message integrity? An example is the use of techniques
such as checksums or hash values to verify the integrity of messages, resource files, deployment files,
and configuration files.

Detect
Message
Delay

Does the system support the detection of message delays?
An example is checking the time that it takes to deliver a message.

Limit
Exposure

Does the system support limiting exposure? An example is reducing the probability of a successful
attack, or restricting the amount of potential damage, e.g. concealing facts about a system (“security by
obscurity”) or dividing and distributing critical resources (“don’t put all your eggs in one basket”).

**073 So let's focus on Part 2 of the
interview. This is where we asked
about the tactics.

So, for example one tactic is detect
intrusion. We wanted to know:
Does the system support detecting
an intrusion? So to do this, for
example, you might have patterns of
network traffic or patterns of service
requests within a system that you
store in a database, both normal
usage patterns and patterns of
malicious usage, and the system then
compares the actual traffic with those
patterns to determine if we are under
attack.

Similarly, to detect whether you are
under a denial-of-service attack, you
would store patterns of network
traffic coming into a system and

Page 28 of 48

compare this to the actual patterns to
determine whether there's a denial-
of-service attack going on.

We asked them whether they verify
message integrity. So does the
system have some way, perhaps
using checksums or hash values, to
verify that a message that is being
received by the system hasn't been
tampered with.

Do they detect message delay? So,
this is a way of determining whether
you are subject to a man-in-the-
middle attack, because that man-in-
the-middle has to introduce some
latency in the message delivery time.

Do you have a way of limiting
exposure? So if your system is
compromised, if somebody manage
to break into the system, can you
limit the amount of damage they can
cause? Can you limit the amount of
data that they can steal? So the idea
is don't put all your eggs into one
basket.

As I said, for each of these tactics
we asked them: Are you doing this,
and if so, how are you doing this?

Page 29 of 48

Example Answers

74
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Example Answers

Tactic How is it achieved?
Detect Intrusion - Primarily enforced through the use of hardware firewalls

- Spring Security also guarantees that a session comes from a single place
Detect Service
Denial

- Covered by ZK
- Use of hardware Firewall

Verify Message
Integrity

- Covered by ZK. All requests are associated with a checksum and IDs. Most of the processing is
done on the server.

Detect Message
Delay

- Covered by ZK. When a session is created in ZK, many short-lived objects are created and each
has a UID. The UID is verified by the framework so it would be hard to replicate these IDs.

Identify Actors - Covered by Spring Security
Authenticate
Actors

- Covered by Spring Security. All URLs are handled by Spring Security, transmission of content is a
responsibility of ZK

Authorize Actors - Covered by Spring Security

Limit Access - Covered by Spring Security. The system runs over Tomcat, Spring Security overwrites the JAS
standard from J2EE (just roles were defined in the web.xml configuration file of the web server)

**074 And here's some examples of
the kinds of responses that we got
from the architects. So for Detect
Intrusion, the architect said, "Well,
this is primarily enforced through the
use of hardware firewalls, and Spring
Security guarantees that a session
comes from a single place." For
detecting service denial, this is
covered by the ZK framework and the
use of a hardware firewall. For
identifying and authenticating actors,
this is covered by Spring Security, as
well in part by ZK.

Page 30 of 48

Example Answers

75
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Example Answers

Tactic How is it achieved?
Limit Exposure - Not covered. Perhaps the fact that the application runs in an intranet?

Encrypt Data - Use of HTTPS
Separate
Entities

- Database server is physically separated, Identity Manager is also separated (it uses a Windows
Active Directory).

Change Default
Settings

- Not supported

Revoke access - This can only be performed manually through the Active Directory.

Lock Computer - Spring Security blocks the user if there are several attempts at accessing resources for which
permissions are not granted.

Inform Actors - Not supported
Maintain audit
trail

- Several audit trails: Web server (audits web access), Spring Security (audits access to resources), ZK
also creates logs.

Restore - Not supported

**075 We asked about limiting
exposure, and in this case the
architect said, "Well, we don't really
do that. We don't have an
architectural approach to that." Or,
"We don't have an architectural
approach to automatically revoking
access." So if an actor in the system
appears to be behaving suspiciously
and we would like to revoke their
privileges, we would have to do that
manually.

Do you have a way of informing
actors that the system is under
attack? "Well, no, we don't have a
way within the system of doing that."

Page 31 of 48

Metrics Collected

76
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Metrics Collected

Vulnerability metrics were collected using AppScan which categorizes
vulnerabilities as: High (H), Medium (M), Low (L), or Informational (I).
Application size was measured using CLOC and MetricsReloaded.
Security effort was estimated by the interviewees.

**076 So that was our interview.
We also collected some metrics,
some objective measures of system
quality, of security. And again, we
ran AppScan over each of the
systems, and AppScan categories
vulnerabilities as high, medium, low,
or informational. We were most
interested in the high-consequence
vulnerabilities. We also measured
the application's size using a couple
packages, and security effort was
estimated by the interviewees.

Page 32 of 48

Discussion

77
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Discussion

Our case studies represent three different security approaches,
in terms of their architectural support for security (degree of adoption
of frameworks):

• Full adoption: security framework used throughout the lifetime of
the software, e.g. Quarksoft.

• Partial adoption: security framework is introduced in the middle of
the lifetime, e.g. ACME “After”.

• No adoption: no use of any third-party security framework, e.g.
OpenEMR, ACME “Before”.

**077 So, what we had in our case
studies was a spectrum of different
security approaches, in terms of the
level of architectural support for
security, the degree of adoption of
frameworks. There was a full
adoption case-- that was Quarksoft,
where they architected from day one
using security frameworks. There
was the partial adoption approach,
and this was what was taken by
CodeOne. They adopted a system
that did not have an architectural
approach to security and they
inserted that partway through the
lifecycle. And there was the no-
adoption approach, where OpenEMR
and Acme before didn't use any
security framework whatsoever.

Page 33 of 48

Results

78
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Results

Case Acme Before Acme After Quarksoft OpenEMR

Approach No adoption Partial adoption
(CodeOne fwk)

Full adoption
(ZK + Spring fwks)

No adoption

Size (KLOC) 7.93 8.55 16.56 255.6

Detected
Vulnerabilities

H: 154
M: 50
L: 99

H: 0
M: 25
L: 99

H: 0
M: 0
L: 0

H: 8
M: 9
L: 475

Tactics
Employed

6 12 13 9

Tactics in
Bus Logic

5 5 0 6

Estimated
security effort

20% 10% 3% (30% without
frameworks)

20%

**078 Here are the results. You
can see we have four systems
represented here. There's Acme
Before, Acme After, Quarksoft and
OpenEMR, along with the approach
of each. In the second row you see
the size of each system in KLOC.

The third row tells an interesting
story. Acme Before suffered from
1154 high-impact vulnerabilities.
Acme After suffered from zero.
Quarksoft, zero. OpenEMR eight.
And again, remember, security is
binary. Any number greater than
zero is potentially a disaster for the
system, so you really want to see
zero high-impact vulnerabilities. That
would be your desire.

We also cataloged the number of
tactics employed by each of the

Page 34 of 48

architects in the architecture, and
you can see that OpenEMR and Acme
Before, again, employed the fewest;
Acme After and Quarksoft employed
the most. But the next row, the
number of tactics in business logic,
tells you how much of the security
was implemented by the
programmers in the stuff that they
had to write versus how much was in
the frameworks. And there you see
Quarksoft wins. All of the security
was handled by the frameworks.
They implemented zero tactics in
their business logic.

Finally, they estimated security effort.
In Acme Before and in OpenEMR, the
two cases of no adoption, they
estimated about 20 percent of total
project effort went into security. In
Acme After, partial adoption, that
number goes down to 10 percent;
and in Quarksoft, full adoption, the
architect estimated 3 percent. These
were independent measurements.
They didn't know about each other,
they didn't know about each other's
responses, but you see a surprising
consistency. Furthermore, the
Quarksoft architect estimated that
had they not used frameworks, based
on their experience with other
systems, it would have been about
30 percent of project effort devoted
to security, which is pretty consistent
with the 20 percent numbers for
Acme Before and for OpenEMR.

Page 35 of 48

Inferences from the Results

79
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Inferences from the Results

1. The superiority of using security frameworks as an architectural
approach, either through partial adoption or through full adoption.

2. The effort required for partial adoption is, however, significant
when compared to the full adoption approach.

**079 So what can we infer from
these results? Well, it's good to take
an architectural approach to security.
As an architect, you probably know
that the thing that you do last sucks
the most, and if you leave security as
an afterthought, it's going to be more
expensive and you will not do as
good a job, and this is exactly what
our case studies demonstrated.

Furthermore, the effort required for
partial adoption, while less than no
adoption, is still significant compared
to the full adoption approach. So
earlier is better.

Page 36 of 48

Inferences from the Results - 2

80
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Inferences from the Results - 2

Thus, we recommend the use of security frameworks from the early
phases of the construction of a system (full adoption).
No big surprise: adopting a framework after the system has been built
will clearly be more costly than doing so from the start.

**080 So we recommend the use of
an architectural approach to security,
as manifested by security
frameworks, from the early phases of
the system. We recommend the full
adoption approach, and this should
not be a big surprise to anyone.

Page 37 of 48

Inferences from the Results - 3.

81
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Inferences from the Results - 3.

Partial Adoption is a sub-optimal but common way of adopting
security frameworks.
⇒ Most developers and architects worry about functionality first
and security (and other quality attributes) later.

**081 Partial adoption is
suboptimal, but very common. Most
developers and most architects worry
about functionality first and security
and other quality attributes later.
That is suboptimal, but that is in fact
the state of the practice, and that's
probably why our polling results
showed only 38 percent adopt
frameworks frequently or, I should
say, take an architectural approach to
security frequently.

Page 38 of 48

Conclusions

82
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Conclusions

Why is it best to address security via frameworks?
1. while application developers may be experts in their domains,

they are typically not security experts
2. even if developers are experienced in security, they should not

write their own security controls
3. using a framework increases the likelihood that security controls

will be applied consistently
4. delegating security issues to frameworks allows developers to

devote their energy to application logic, increasing overall
productivity

**082 So to conclude, why is it best
to address security via frameworks?
Well, first of all, application
developers are typically experts in
their domain. They understand their
domain, but they're typically not
security experts. And even if
developers are experienced in
security, they should not write their
own security controls, just the same
way, for the same reason we have
separate quality assurance groups.
We have separate testers. You
shouldn't be writing your own
security controls.

Using a framework increases the
likelihood that security controls will
be applied consistently. Having all of
the security code in one place means
it can be more intensively tested.
Reusing a framework across many

Page 39 of 48

projects decreases the likelihood that
there are undiscovered bugs in the
framework itself, and this allows the
developers to focus on what they do
best and what adds the most value to
their project, which is application
logic.

Future Work

83
Architecting Software in a New Age
SEI Webinar
© 2015 Carnegie Mellon University

Future Work

We are currently pursuing (and actively looking for) additional
case studies

• Interview with the architect
• AppScan vulnerability analysis

**083 So, just a final comment,
we're currently pursuing additional
case studies where we interview the
architect and do an AppScan analysis.
We have one that will be happening
quite shortly with a much larger
system, but if anyone out there is
interested, we can talk about it. So
now I'm happy to take questions.

Shane McGraw: Rick, again, thank
you. Excellent talk. Just to circle
back on that last polling question,

Page 40 of 48

which was "How often have you
employed frameworks as a major
aspect of system development?"--
again, it was about 60 percent that
have not, or occasionally have not
done that. So, similar result to that
question.

Before we dive into our Q&A, let me
just put a quick plug in for our
SATURN conference, which will take
place April 27th through 30th, and it's
going to be in Baltimore, Maryland
this year. SATURN stands for the SEI
Architecture Technology User
Network. It was something started
by Linda. This is the 11th one. It
has grown into one of the largest
software architecture conferences in
North America. There's a great
program that's available now on the
SEI website, or you can just google
SATURN 2015, or go to the SEI
homepage. You'll see a story on
registration being open, and by
registering for today's webinar, you
will all get an invite with a discount
code to attend SATURN 2015.

So let's get on to the questions. First
one for Linda, during her talk. Chris
had a talk about-- you mentioned a
keynote talk from SATURN 2010.
Was it Jim Highsmith? They wanted
to know the last name.

Linda Northrop: It was Highsmith.
H-I-G-H-S-M-I-T-H. And those slides
are on our website, and it was a
great talk.

Shane McGraw: One from
Prasanth asking, "If one is using

Page 41 of 48

domain-driven design, will that help
develop a coherent architecture
without a lot of busy work?"

Rick Kazman: Our perspective is
that architecture is driven by the
quality attributes, not by the domain
functionality. So while it is important
to analyze your domain, and you
need to have a coherent view of your
domain requirements, you will not
get a coherent architecture solely by
focusing on the domain. You in fact
must focus on the quality attributes
because those are what drive the
architecture. And in fact, if you think
about it, when you refactor an
architecture, what you're doing is
packaging the same functionality, the
same domain functionality, in a
different way to change some quality
attribute, to make it more modifiable
or higher-performing. So quality
attributes and domain functionality
are orthogonal to each other, so you
have to pay attention to both, but it's
the architectural concerns, the quality
attributes, that drive the architecture.

Shane McGraw: From Dawn,
asking, "To what extent does the
acceptance of technical debt run
counter to meeting each of the four
technical challenges introduced by
Linda, or does technical debt in fact
comprise a fifth technical challenge?"

Linda Northrop: No, I think that
technical debt is very much
associated with accelerated
capability, because in fact the reason
why people accrue technical debt is
to avoid the cost of delay-- in other

Page 42 of 48

words, to get the system out faster.
And so you make a shortcut. You do
a clone-and-own. You take some
code you've used before and you use
it again, knowing that that will make
a part of your system brittle and will
make it more resistant to change
later on. But in many situations, you
can't afford the delay, and so it's all
about accelerated capability. So I
think it's part and parcel of our move
to get things out the door faster, to
accelerate, to take incremental
approaches, and we make some
decisions. And there are some
companies that would go out of
business if they didn't accrue
technical debt because they have to
get the product out at a certain time,
and they'll take the hit for
architectural decisions that aren't
perfect. But the point about
technical debt is realizing that you've
made that compromise, and if that
system is going to have a longer life
than that release, then over time
you're going to pay. And so you
really need to manage, and to take
not unnecessary technical debt.
Sometimes people get excited about
the metaphor and use it as a blanket
excuse for doing lots of shortcuts,
and that's not what it's meant to do.
It's meant to make visible that we in
life, in software development, will
make shortcuts because-- take some
shortcuts-- because that's life, and
it's all about accelerated capability.
One thing-- if I could add, Shane-- I
concluded my talk but I didn't
address the last couple of slides, and
one gave thanks and
acknowledgement to all the many

Page 43 of 48

people of the SEI who have worked
on the architecture agenda, and their
names are there, and there's a figure
that shows that I stand on the
shoulders of giants, and literally I do,
Rick being one of many at the SEI
who have worked on all these
techniques. So in particular, in
technical debt, Ipek Ozkaya and Rod
Nord are the experts, and there are a
lot of publications out there that you
can find a lot of this information.
The second slide that I didn't talk
about has the URLs for lots of the
work that I gave an overview of. So
if you want to find out more about
technical debt or to get the Hard
Choices game, you can go there and
get that information, find it right on
our website.

Shane McGraw: And before we go
to Rick, just a reminder, those slides
are available now in the Files tab on
the console, so be sure to walk away
with those materials, and also a
reminder to fill out the survey before
exiting today's event. So Rick, you
wanted to chime in as well?

Rick Kazman: Yeah, just to add on
to what Linda said, there is conscious
technical debt that you choose to
accept because you want to
accelerate delivery. But there's also
the unconscious technical debt, what
I referred to as rust earlier, and that
just accumulates, and frequently you
don't realize that it's accumulating,
but you see the consequences of it.
Your system becomes harder and
harder to modify, to debug, to
evolve, to understand. And we have

Page 44 of 48

a suite of tools now that allow us to
identify that technical debt and even
to reason about the economic
consequences of it and the
consequences of refactoring it. So
both kinds of technical debt are
important; the point is you need to
be conscious of it, you need to
measure it, and you need to manage
it.

Linda Northrop: Right, and the
tools that Rick just mentioned are
part of this workbench that I
described, and there are other tools
that you can get from vendors. The
point is, be aware, and be prudent.

Shane McGraw: Okay, from Carl,
asking, "Linda touched on
architecture for cloud computing. I
agree that failing fast and cheap is a
desired objective. Can she share
more thoughts regarding software
architecture to enable resiliency? I
understand web services, service-
oriented, is key, and interested in any
additional thoughts.

Linda Northrop: Right. Well, it's a
web services approach. But my point
is, really the primary architectural
precepts don't change here. People
always think that they're getting
something free. So, "I'm going to
use the cloud so I get this SLA and
automatically I get free performance,
free security. Life is good." There's
very little in life that's free, and
certainly not in cloud computing,
certainly not in a lot of the
frameworks you're bringing on, and a
lot of the tech stacks you embrace.

Page 45 of 48

We develop software in a very
different way than we used to.
Almost nobody I know starts with a
blank sheet of paper and does
development and design the way we
used to. We shop. We look for
frameworks, open source, tech stack.
We use web services that are tried
and true. We go to cloud providers
for storage and for computation
power that we used to provide in-
house. But in doing all of that, you
are not excused from architecting
your solution, and that's what I was
talking about. And a lot of the
principles that we address in terms of
architecture are very relevant in
cloud computing. Now, specifically,
in taking so approaches, there is
again a lot of information on the SEI
website. I have about how, in fact,
to take a service-oriented-based
approach. But you see, lots of
organizations who are building up
their IT solutions, who are building
their enterprise systems, and what
we see more than ever is people who
want to modernize their IT systems,
who want to move from a non-cloud
situation to a cloud situation, people
who want to take some legacy
systems and somehow give them a
facelift-- and in doing so, you have to
look at the architecture of those
systems before you suddenly give up
a lot of what you had done in-house
before to the cloud. So.

Shane McGraw: From Richard--
this is one for Rick here-- "I am a
SharePoint architect and considering
security. SharePoint forces you to
consider access, permission, security

Page 46 of 48

to the farm, and how that is
accomplished. So how do we, or
should we, enhance that thinking?"
And these questions come in-- they
maybe came in before your talk, so
maybe recap your talk, or your
thoughts on that.

Rick Kazman: Yeah. So, I can't
speak to the specifics of SharePoint,
because I'm not familiar with its
security architecture, but anytime
you're employing a major component
in your system, you have to evaluate
the degree to which that component
provides those security dimensions to
you. So SharePoint provides, let's
say, authentication and authorization,
but it doesn't provide intrusion
detection. I'm making this up, but I
think that's probably plausible. So as
an architect, you could use the list of
security tactics as a checklist, a
design checklist, determine which
security aspects are missing from the
component, like SharePoint, that you
are adopting, and then figure out
how to plug the gaps. Because if you
don't plug the gaps, your-- the
attackers will find them. Right?
That's an assumption you have to
make in designing for security, is if
there is a gap, a bad person out
there will exploit it. So the tactics
used as a checklist gives you at least
a starting point for reasoning about
where the gaps are, and then you
can think about what other tools or
frameworks you might employ to
address those shortcomings.

Shane McGraw: There's a couple
questions we're not going to be able

Page 47 of 48

to get to because we're down to
about a minute, so I would invite you
all to join the SATURN LinkedIn
group, post your questions there.
We can try to keep the-- continue the
conversation there. So if you just go
to LinkedIn and look for Groups, and
check for SATURN, you can post your
question there. So we'll end it with a
quick one for Rick: "Is there a list of
available security frameworks and
their respective features and qualities
that we can reference?"

Rick Kazman: Is there a list? I'm
not aware of a publicly available list,
but feel free to send me an email and
I can send you a list of the
frameworks that I'm familiar with,
and we've now built up a pretty big
list of those. But I don't know of any
public resource at the moment for
that.

Shane McGraw: Okay. Folks, it's
three o'clock. That's all the time we
have for today. Linda, Rick, thank
you very much for your excellent
presentations. We thank you again
for attending today's event, and just
a reminder, our next webinar will be
on January 27, and the topic will be
Advancing Cyber Intelligence
Practices Through the SEI's
Consortium, by Jay McAllister and
Melissa Kasan Ludwick. We hope to
see you there. Thanks, everyone.

Page 48 of 48

	Approaching Security from an "Architecture First" Perspective
	Table of Contents Page 1
	Table of Contents Page 2

	Approaching Security from an " Architecture First" Perspective
	An Architectural Approach
	An Architectural Approach - 2
	An Architectural Approach - 3
	An Architectural Approach - 4.
	Polling Question 1
	Three Case Studies
	Architectural Foundations
	Tactics
	Security Tactics
	Security Patterns
	Security Frameworks
	Polling Question 2
	Case Studies
	Case Study Subjects
	Case Study Protocol
	Interview Questions
	Example Questions
	Example Answers
	Example Answers
	Metrics Collected
	Discussion
	Results
	Inferences from the Results
	Inferences from the Results - 2
	Inferences from the Results - 3.
	Conclusions
	Future Work

