
AADL Webinar

Table of Contents

Carnegie Mellon University – Notices... 4

Architecture Analysis with AADL The Speed Regulation Case-Study ... 4

What this talk is about? .. 7

Agenda .. 8

Agenda .. 9

Polling Question 1 ... 10

Safety-Critical Systems are Intensively Software-Reliant ... 11

Errors are introduced early but detected (too) lately .. 12

Many Errors stems from Architecture or Integration Issues .. 13

Why Model-Based Engineering Matters? ... 15

Architecture Analysis Design Language .. 16

AADL Model Example .. 17

Architecture Analysis Design Language .. 20

Agenda .. 21

Objectives of this Study .. 21

Case-Study Description ... 22

Case-Study Objectives ... 23

Agenda .. 24

Functional Architecture .. 25

Functional Architecture, timing perspective .. 26

Functional Architecture, criticality perspective .. 27

Page 1 of 77

Deployment Alternatives .. 28

Architecture Alternative 1 .. 29

Reduce Fault Impact Might increase production costs .. 30

Agenda .. 31

Modeling Guidelines ... 34

Model Organization – devices .. 35

Model Organization – devices – textual model .. 36

Model Organization – Interfaces Specifications ... 37

Model Organization – platform .. 38

Model Organization – software (1) ... 39

Model Organization – software – textual notation (1) ... 40

Model Organization – software – textual notation (2) ... 41

Model Organization – safety specification ... 41

Model Organization – define error flows – error source.. 43

Model Organization – define error flows – error path ... 44

Model Organization – error sink & define component error behavior .. 45

Model Organization – architecture alternatives .. 46

Architecture Alternative 1: model instance .. 48

Architecture Alternative 2: model instance .. 49

Agenda .. 50

Latency Analysis, principles .. 53

Latency Analysis, results ... 55

Resources Allocation Analysis, principles ... 56

Resources Allocation Analysis, results .. 57

Page 2 of 77

Safety Analyses Overview ... 59

Safety Analysis, FHA, results ... 62

Safety Analysis, FTA results ... 65

Safety Analysis, Fault Impact, results ... 66

Analysis Summary ... 67

Conclusions ... 68

Useful Resources ... 70

Questions & Contact ... 71

Page 3 of 77

Carnegie Mellon University – Notices

57
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

This video and all related information and materials (“materials”) are owned by Carnegie Mellon
University. These materials are provided on an “as-is” “as available” basis without any warranties and
solely for your personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result
of viewing the video, or using referenced websites, and/or for any consequences or the use by you of
such materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read
and agree to our terms of use (www.sei.cmu.edu/legal/).

© 2014 Carnegie Mellon University.

Architecture Analysis with AADL The Speed Regulation Case-Study

© 2014 Carnegie Mellon University

Architecture Analysis with
AADL
The Speed Regulation Case-
Study
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Julien Delange

**001 Shane McGraw: Hello, and
welcome to the Software Engineering
Institute's Webinar Series.

Page 4 of 77

Our presentation today is
Architecture Analysis with AADL.

Depending on your location, we wish
you a good morning, a good
afternoon, a good evening.

My name is Shane McGraw. I'll be
your moderator for the presentation;
and I'd like to thank you for attending.

We want to make today as interactive
as possible. So we will address
questions throughout the
presentation and again at the end of
the presentation. You can submit
questions at any time to our event
staff through the control panel.
You'll see a Questions tab. Simply
type in your question and click Send.
We will also ask a few polling
questions throughout the
presentation. These will appear as a
popup window on your screen.

Another three tabs I'd like to point
out are the Twitter, Survey and
Materials tabs.

The Materials tab has a PDF copy of
the presentation slides now that you
can take today, along with training
information from the SEI on AADL.

For those of you using Twitter, be
sure to use- to follow @saturn_news;
and use the hash tag AADL. Once
again, it's @saturn_news with a hash
tag of SEI AADL.

And lastly the Survey will appear at
the end of the presentation. We

Page 5 of 77

request your feedback as it's always
greatly appreciated.

Now I'd like to introduce our
presenter, Dr. Julien Delange. He is
a member of the Technical Staff at
the SEI where his research interests
are model-based engineering and
improving the development of safety
critical systems by early discovery of
architecture and design issues.

Before joining the SEI, he worked as
a software engineer at the European
Space Agency where he led and
contributed to several research
projects related to software and
system architecture for safety critical
systems.

Dr. Delange got involved with
architecture design and analysis while
designing new methods and
techniques to improve the safety and
critical- safety and security of critical
systems.

And now I'd like to turn it over to
Julien. Julien, all yours.

Julien Delange: Thank you. Thank
you so much for attending this
webinar.

Page 6 of 77

What this talk is about?

3
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

What this talk is about?

1. Actual issues for Safety-Critical systems design

2. Why Model-Based Engineering techniques are helpful

3. How AADL can detect issues early and avoid potential rework

**003 So first of all I would like to
point out what this talk is about. And
beforehand I would like to address
the first polling question to know if
you are familiar or not with model-
based engineering. Shane?

Shane McGraw: Okay so you can
see the polling question on you
r question now. And we'll give you
about 15 or 20 seconds to vote. So
Julien, just keep on going.

Julien Delange: Okay. So this talk
is about- discusses actual issues for
safety-critical system design and why
model-based engineering can help
you to design safety-critical systems.
And after that we'll focus on how
AADL technology can detect issues
early in the development process.

Page 7 of 77

Agenda

4
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Agenda
Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

**004 So first of all we'll introduce
what is model-based engineering;
and also what are the problems
actually when you design your safety-
critical systems.

We'll present a case study; and we
will apply AADL to verify and analyze
safety-critical systems. We will
present this system, present the
AADL model of the system and see
how we can analyze the architecture.

So first of all Shane, what are the
answers of the polling question?

Shane McGraw: So let me launch
the results right now. Take us a
moment.

Page 8 of 77

Agenda

5
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Agenda
Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

**005 And we got 35 percent that
they already work on projects related
to model-based engineering; four
percent that are real experts; 34
percent have read papers but never
investigated; and 27 percent that do
not know about model-based
engineering.

Julien Delange: All right.

Shane McGraw: Quite a mix.

Julien Delange: All right, so it's
quite a mix.
~~~  

Page 9 of 77



Polling Question 1 

6
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Polling Question 1
Do you know what Model-Based Engineering is?

 

**006 So let me introduce what  
model-based engineering is about. 
  
  

Page 10 of 77



Safety-Critical Systems are Intensively Software-Reliant 

7
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Safety-Critical Systems are Intensively Software-Reliant

Source: “Delivering Military Software Affordably” in Defense AT&L

 

**007 But first of all where we have  
issues presented in cyber-physical systems. 
  
If you look at the size of the code  
of avionics architectures, you see that  
between '74 and 2006 the size-- so in  
32 years - the size of the software  
increased by 5000 percent. 
  
The problem right now is you have  
more and more components; you  
have more components in a plane.  
And all these components are at  
different criticality levels.  So it was  
a problem when you integrate all  
these components. 
  

Page 11 of 77



Errors are introduced early but detected (too) lately 

8
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Errors are introduced early but detected (too) lately

 

**008 And this is exactly the  
problem we find right now.  In fact  
during the system design 70 percent  
of errors are introduced during the  
design.  But we find only three to five  
percent of these errors.  So we  
introduce a lot of errors and we don't  
discover these errors during the  
design. 
  
On the other hand during integration,  
during the tests, we introduce 10  
percent of the errors; but we find 50  
percent of the errors.  In other  
words, we find the errors- the errors  
really lately in the development  
process; and we introduce these  
errors really early. 
  
So we need to address this issue. 
  

Page 12 of 77



Many Errors stems from Architecture or Integration Issues 

9
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Many Errors stems from Architecture or Integration Issues
Global Variable used among different functions

Potential issues: inconsistent values, concurrent accesses
Root Cause: Architecture Design (use of encapsulation)

Use of COTS components without validation
Potential impact: do not fit with the environment, crash
Root Cause: No Validation of Components Integration

Timing issues
Potential impact: deadlines not enforced, bad values
Root Cause: poor integration policy, lack of analysis

Should I continue this list?

 

**009 And also where-- what kind  
of error we find-- during the  
development process?  What kind of  
error are we finding during the  
integration? 
  
First of all, many global variables  
and we have many different  
interactions. 
  
And for example, we have  
inconsistent values, concurrent accesses  
and what you call  
race-condition. 
  
Also we reuse components; and  
sometimes the reuse quality is not so  
good and we have some  
inconsistency when we integrate them 
  
We also have timing issues; for  
example, the deadlines are not  
enforced, the worst-case execution time sometimes is  
wrong and so on. 

Page 13 of 77



So we have a lot of issues we discover  
lately.   And I think I  
should not continue the list because I  
can have a list that is really, really  
long. 
  
Fact number one is that all these  
errors can be detected at design  
time. 
  
And fact number two: Actually we  
detect these errors during  
integration. 
  
And fact number three: They incur a  
lot of rework costs and engineering  
work. 
  
So we need to address these issues  
early in the development process;  
not during integration. 
  
So we have different technologies;  
and a model-based technology will  
help you to discover these errors  
early.  And we have the AADL technology  
to discover these errors  
early during the design of the  
system. 
  
And that's why I would like to ask  
you if you already know AADL.  
would like to know  
if you are familiar with AADL.  Shane? 
  
Shane McGraw:  Okay so you'll see  
a polling question popping up on  
your screen now, asking if you  
already know about AADL. 
  

Page 14 of 77



Why Model-Based Engineering Matters? 

10
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Why Model-Based Engineering Matters?
Capture system architecture with designers requirements

Focus on system structure/organization (e.g. shared components)
Tailor architecture to specific engineering domain (e.g. safety)

Validate the architecture
Check requirements enforcement (e.g. no global variable)
Detect Potential issues (e.g. interfaces consistency)

Early Analysis
Avoid late re-engineering efforts (e.g. less rework after integration)
Support decisions between different architecture variations

 

**010 And that's going to help  
Julien-- kind of where we go with the  
presentation. 
  
Julien Delange: Thank you so  
much.  So why model-based  
engineering is really important?  
Because with a model-based  
approach you can capture the system  
elements with a high-level language;  
and with that you just focus on what  
really matters on your system: time,  
safety, fault errors and stuff like this. 
  
After that, you use this model to  
validate the architecture.  So you  
really focus on what is really  
important.  You check that your  
requirements are enforced.  For  
example, your end-to-end latency,  
the different number of errors.  You  
try to detect potential issues from the  
beginning; and you don't address this  
error later in the development process. 

Page 15 of 77



Architecture Analysis Design Language 

12
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Architecture Analysis Design Language
SAE Standard for Model-Based Engineering

First version in 2003, actual version 2.1
Definition of System and Software Architecture

Specialized components with interfaces (not just “blocks”)
Interaction with the Execution Environment (processor, buses)

Extension mechanisms
User-Defined Properties (integrate your own constraints)
Annexes (existing for safety, behavior, etc.)

 

**012 And for that  
have a language called AADL: The  
Architecture Analysis and Design  
Language. 
  
Are you familiar with that?  Shane,  
what are the answers? 
  
Shane McGraw: So we got 14  
percent are familiar with it; 45  
percent-- let me-- show end results,  
yes-- 45 percent that are- know the  
principles; and then 41 percent have  
not heard of it. 
  
Julien Delange: Okay so let me  
introduce what is AADL.  So the first  
version of the language was in 2003;  
and actually it is version 2.1. 
  
The goal is to define the software  
architecture and the system  
architecture; and not only with blocks  
but with specialized components. 

Page 16 of 77



So we define what is the software,  
what are the tasks, the time  
requirement and so on.  But we also  
have to shape that to the execution  
platform: the processor, buses and so  
on. 
  
And you can also extend the  
language with different extension  
mechanisms; what you call the user-  
defined properties, user can define  
their own properties, or an annex  
mechanism. 
  
For example for safety I will show  
you later on in this presentation how  
we extend AADL with safety  
information. 
  

AADL Model Example 

13
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

AADL Model Example
Tasks Process

Communication
Interfaces

Memory

Processor

Bus

 

**013 So we have a model; an  
AADL model can have a graphical  
notation, as I show, with different  
component types: tasks,  

Page 17 of 77



communication interfaces, process  
and so on. 
  
What is really important is that 
  
We have a real tool set  
that supports the AADL language and  
its notation. 
  
So let me show you what we have  
today.  We have a full tool set that is  
called OSATE; and it's an Eclipse  
platform.  And you can create an  
AADL model directly and edit it.  So  
it's a language; but we also have a  
tool environment. 
  
So let's try to show you how I can  
create an AADL model.  And this is  
really simple.  I create a new AADL  
package and I will call it Example.  All  
right?  And then I can create  
different component types; as you  
see on the right of the screen I have  
different component types.  And I will  
just make a real simple system with a  
producer and a consumer. 
  
So let me add a process type.  Okay?  
And the process will send the data.  
So for that I need first of all to make  
a process that I will call, for example,  
Sender or Producer; and I will make  
a new process, another one-- that  
will be the receiver. 
  
So I have two different processes;  
and what I need after that is to  
define the communication interfaces.  
So I will add what you call a data  
port; and the goal will be to send the  
data through the interface.  And I  
  

Page 18 of 77



can call it Data Out, for the data I'm  
sending.  All right? 
  
And the receiver, I will have to also  
define a communication interface  
here, the out port, and I will call it--  
the in port, sorry-- and I will call it  
Data In; and then it's an in port.  All  
right? 
  
So these two processes are  
component types.  And I can  
integrate them in what I call a  
system.  So I create a system; and  
then I will create an implementation.  
And my system implementation can  
contain my two components,  
Producer and Receiver. 
  
So if I go inside my system, I can  
add the first process; that will be my  
Sender and the second process that  
will be my Receiver.  So I say this is  
my producer; this one will be my  
receiver.  And I can connect the  
interfaces; like this. 
  
So it's really simple.  In just two  
minutes I create a model, the Sender  
and the Receiver.  And after that I  
can use these models to start to  
validate my architecture.  Okay? 
  

Page 19 of 77



Architecture Analysis Design Language 

14
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Architecture Analysis Design Language
Security
•Intrusion
•Integrity
•Confidentiality

Safety & Reliability
•MTBF
•FMEA

•Hazard 
analysis

Real-time Performance
•Execution time/
Deadline 

•Deadlock/starvation

•Latency

Resource
Consumption
•Bandwidth
•CPU time
•Power 
consumption

•Data precision/
accuracy

•Temporal 
correctness

•Confidence

Data Quality

Architecture Model

Auto-generated 
analytical models

 

**014 So in AADL we have different  
plugins in these toolsets to validate  
different aspects of your systems, 
  
Security.  If you are-- for example,  
the producer and the consumer share  
a different security level; the  
resource consumption, bandwidth,  
CPU time.  If you associate different  
tasks to a processor, you will check  
that you have enough processing  
time; also the data quality and safety  
and reliability. 
  

Page 20 of 77



Agenda 

15
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Agenda
Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

 

**015 All right. 
  

Objectives of this Study 

16
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Objectives of this Study
Learn Architecture Modelling with AADL and the OSATE workbench

Model a family of systems with their variability factors

Analyze the Architecture from a performance perspective

Discover Safety Issues using Architecture Models

Support Architecture Alternatives Selection

Illustrate the Process with a relevant case study

 

**016 So today we will use this  

Page 21 of 77



language, AADL, to validate a  
system.  So we'll try to learn what is  
AADL and the different concepts and  
model a system with different  
variations. 
  

Case-Study Description 

17
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Case-Study Description
Self-Driving car speed regulation

Obstacle detection with user warning
Camera detection
Infra-red sensor

Automatic Speed and Brake
Two speed (wheel, laser) sensors
Redundant GPS

 

**017 And we'll discover potential  
issues we can find out in the system. 
  
So the case study is really simple; it's  
a self-driving car.  And in fact you  
have a different device; and it's an  
actuator.  So we can detect  
obstacles; and we can also put an  
alarm for the driver.  And also we  
regulate automatically the speed of  
the car. 
  

Page 22 of 77



Case-Study Objectives 

19
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Case-Study Objectives
Help designers to choose the best Architecture

Best reliability, avoid potential failure/error
Meet timing and performance requirements

Analyze Architecture according to stakeholders criteria
Try to analyze what really matters

Quantify architecture quality from different perspectives
Latency
Resources and Budgets
Safety/Reliability

 

**019 So let me also ask you what  
would you like to investigate in terms  
of analysis? 
  
For this case study we have different  
analysis tools we can use: the  
latency, the resource/budget and the  
safety/reliability.  That's why we're  
asking you what you'd like to  
investigate. 
  
So the objective today is to help designers  
to choose what is the best  
architecture for their system; and for  
the self-driving car, we propose a  
different architecture viability,  
different architecture  candidates. 
  
And then we'll use our tool to analyze  
the architecture so that you can  
choose what's the best architecture.  
And without the implementation we'll  
be able to have some measure and  
analyze the architecture to decide  

Page 23 of 77



what is the best, according to your  
requirements. 
  

Agenda 

20
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Agenda
Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

 

**020 So let me introduce what is the  
system. 
  

Page 24 of 77



Functional Architecture 

21
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Functional Architecture

Sensors
Actuators

GPS devices

Obstacle Detection Speed Sensors

Sensing
Control

Compute

 

**021 So this is a functional  
architecture.  On the left side you  
have all the sensors; the camera that  
will detect an obstacle, radar, speed  
sensor- two speed sensors and two  
GPS.  
~~~  
So the architecture is divided in three
parts: sensing, with the sensor;
compute, we process the value of the
sensors and we control the brakes,
the acceleration and the warning
device for the driver.

So what is important is we have
redundancy. The two GPS are
redundant. Also if a speed sensor
fails we can use the other one.

Page 25 of 77

Functional Architecture, timing perspective

22
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Functional Architecture, timing perspective

Max end-to-end latency = 900 ms

**022 The same for the obstacle
sensor.

And from a timing perspective we are
expecting that the max end-to-end
latency, when we produce data to
the end, is at max 900 milliseconds.
In other words, when data is
produced by the obstacle camera or
the obstacle radar, I want to
make sure that the data is consumed
by the warning device before 900
milliseconds.

Page 26 of 77

Functional Architecture, criticality perspective

23
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Functional Architecture, criticality perspective

Redundancy Groups (performs the same function)

**023 From a criticality perspective,
let me show you that the GPS is not
so important. But the obstacle
camera and radar are really
important and really critical.

That's why you ask if I have a
different criticality level. When I
control the car, the GPS it's: Where is
the car, where is my position? It's
not so critical. But the data about
obstacles, and also the speed of
the car, really matters and is really
highly critical.

Page 27 of 77

Deployment Alternatives

24
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Deployment Alternatives
Alternative 1: reduce cost and complexity

Two processors and one shared bus
Potential interactions for functions collocated on the same

processor

Alternative 2: reduce potential fault impact
Increase potential production cost (more hardware)
Three processors inter-connected with two buses

**024 For that we have two
different alternatives.

So the first alternative for that data
for the system is to reduce the cost
and the complexity. I will only use
two processors connected on a
shared bus. But the problem is in
that case I have to co-locate critical
and non-critical functions on the
same processor. So a non-critical
function can impact a critical
function.

So alternative number two is to
reduce the potential fault impact. So
we'll try to co-locate noncritical
functions on a single processor and
critical functions on other processors.

Page 28 of 77

Architecture Alternative 1

25
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Architecture Alternative 1

50 MIPS 50 MIPS

Bandwidth: 500 kbps
Acquisition time: 10 to 30ms

Transmission time: 1 to 10 us per byte

Reduce Cost and Complexity
Potential interactions for functions collocated
on the same processor

**025 So that a non-critical function
cannot impact a high critical function.

So this is architecture alternative--
sorry-- number one. So in this
architecture alternative I reduce the
cost and the complexity. So I see
that all the sensing functions are
collocated on one processor and all
the other actuating function and
processing function are on another
processor.

So I reduce the cost. I don't need
three processors, only two; and just
one bus.

And I also shared a budget of 50
MIPS on each processor. This is my
computing capacity.

And then for my bus I have a
bandwidth budget.

Page 29 of 77

Reduce Fault Impact Might increase production costs

26
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

50 MIPS
50 MIPS

50 MIPS

Bandwidth: 5 kBps
Acquisition time: 50 to 100ms

Transmission time: 10 to 50 us per byte

Reduce Fault Impact
Might increase production costs

Architecture Alternative 2

**026 For architecture number two
I have three processors and two
buses. So I reduced the fault impact
of non-critical functions; but also I
increased the production costs
because I have more processors. So
it will be more costly to deploy.

And each processor, as the other
one, 50 MIPS; and I have a budget
for each of those.

Page 30 of 77

Agenda

27
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Agenda
Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

**027 So let me-- let's have a look
at the results.

Shane McGraw: Yes. And could
we just pause for a few questions too
after we show the results?

Julien Delange: Sure. Do we have
any questions?

Shane McGraw: We do. So while I
cue up the results.

First question was from Don asking:
Does AADL utilize state machines
with arcs and nodes along with
frequency of innovation and
interfacing data types?

Julien Delange: Okay. So in fact
we have an annex. I pointed out
that early that we have annex
extension; and we can associate
state machine in the components to

Page 31 of 77

associate the behavior of the system
with the state machine.

So we have the capability in the tool.
So right now after that we can
already define that and make use of
this state machine to analyze the
system.

Shane McGraw: Okay. And then
from Mark asking about the demo:
Does the SEI license this tool? And
the real important question: Is it
free?

Julien Delange: All right. So we- so
all what I'm showing right now is
available online. We have a model
currently on GitHub; github.com.
And if you go online at
AADL.info/wiki, you have all the
description of the model, how to get
it. The tool is available under
the Eclipse public license and is
available for free online.

Also all the demo and video today I
have done with OSATE version 2.0.8.
So you can reproduce all the demo
on your computer.

Shane McGraw: Okay; and just one
more quickly from Vishal asking:
What are the connectors in a
diagram?

Julien Delange: Okay so the
connectors-- so we have a different
interface in AADL, something that we
call Data Ports; even data ports and
even ports.

Page 32 of 77

So the difference is data ports is only
like sensing ports; will just exchange
data. Even data ports will exchange
data but also events. So you have
the notion, the concept, of an event;
it's new data or not. And even ports
is only an event without any data.

So we have different interfaces. And
in this example I used data ports; like
sampling ports. The reason why I'm
using that is because it's what is
currently used in many safety-critical
systems; we just sample the data. All
right?

Shane McGraw: Okay. And just to
close out the survey: 27 percent
requesting resource/budgets
allocation; 10 percent on latency; and
the majority, 63 percent, at
fault/error propagation.

Julien Delange: All right. So we'll
make a pass quick on the latency;
also I will show how to use the
resource analysis; and then focus on
the safety tools.

Page 33 of 77

Modeling Guidelines

28
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Modeling Guidelines
Separate architecture aspects in different files

Leverage AADL extension and refinement mechanisms
Capture common characteristics, avoid copy/paste
Extend generic components

Use properties to quantify quality attributes
Processed by tools to evaluate architecture quality
Specify once, use by several analysis tools
Ensure Analyses Consistency

**028 All right?

Shane McGraw: Great.

Julien Delange: All right. So some
modeling guidelines we are using;
because we have different
architecture variability. So what we try
to do is to factor the model so all the
common aspects of the architecture
are not duplicated.

So we have a separate architecture
aspects in different files. But what you
try to do is to leverage the AADL
extension mechanism, like any of them, and try
only to capture the different variability
factor of each component.

In other words, if for the two
different variations what is really
important is the number of
processors or the number of buses, I
can make a generic architecture,

Page 34 of 77

extend it and just add two or three
processors.

And we'll use properties, AADL
properties, to quantify the quality
attributes of the system. The MIPS
capacity; so the capacity of the
processor and the software; also
the different error types that are
propagated in the architecture.

Model Organization – devices

29
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – devices
Generic components

Extension and refinements

**029 And so on.

So let me show you quickly what it
looks like. So for all device- for each
device-- sorry-- I have a component
type. And if you look at it, I've given
two different speed sensors. And I
take advantage of the extension, like
any of them, of AADL, to have a
generic speed sensor; and then
refine it with a speed laser sensor
and a speed wheel sensor.

Page 35 of 77

So I have a common speed sensor
that sends data basically. The
interface is exactly the same. But
after that I will have a different
implementation.

I do that with the GPS as well. I
have a common GPS and I have two
different implementations to
distinguish the two different GPS
vendor or GPS implementation.

Model Organization – devices – textual model

30
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – devices – textual model
Component Name

Timing constraints
(latency analysis) Error propagations and flows

Types of faults
(all safety analysis tools)

Documenting the faults
(safety analysis)

**030 So I said before we
had a graphical notation of AADL but
also a textual notation. This is what
the textual notation looks like. I will
not show all the details. And please
have a look on the wiki description if
you want to have a look. Also we
have a video where we make a walk
through- through the model later.

Page 36 of 77

Model Organization – Interfaces Specifications

31
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – Interfaces Specifications

Data size properties
(resource allocation and latency analysis)

One property, several analyses

Ensure Analyses Consistency

Data types being used to
communicate across functions

**031 The interface specification.
We define the data size for each data
type. So the GPS, for example, we
say that the size of the data is 50
bytes; Boolean is 1 bit; and the
common type to accelerate or brake
is 2 bits, but it is just a flag.

Page 37 of 77

Model Organization – platform

32
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – platform

Timing information
(latency analysis)

Generic Processor Component
(common for all the architecture)

Processor extension, specify bus connections
Share properties of inherited component

**032 About the organization of the
platform, we have a processor; and
then we extend the processor ECU
with one connector or two connections
For the bus we associate different properties,
the latency budget, the bandwidth
capacity. We have also a property to
say how much time do you take to
acquire the bus or to transfer a bite.
Okay?

So these kind of information are used
when you analyze the system.
Basically the transmission time will be
used for the latency analysis. Okay?
And in the processor I can say what
type of network I'm using with this
processor. Basically here I say: This
ECU uses a CAN network.

Page 38 of 77

Model Organization – software (1)

33
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – software (1)

One software function = 1 AADL process + 1 AADL thread

AADL Process

AADL Thread

**033 For the software, for each
function I have a process. So one
software function is one AADL
process with one task; what you call
the AADL thread.

Also you can see that the AADL
process just a line; and for the thread
it's a dotted line.

Page 39 of 77

Model Organization – software – textual notation (1)

34
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – software – textual notation (1)

Data flow specification
(latency analysis)

Error specification
(safety analyses)

Subcomponents
and connections

Component type

Component implementation

Communication interfaces

**034 So we also define the
communication interfaces. You see
in the textual language. We have
the features-- okay?-- and we also
define what are the flows. So the
features are the communication
interface; and the flow says that if
you have new data coming on this
interface; or if you are just
transmitting existing data, if it's just a
data flow.

Page 40 of 77

Model Organization – software – textual notation (2)

35
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – software – textual notation (2)

Data flow
(latency analysis)

Time information
(latency analysis)

Resource Budgets
(resource allocation analysis)

**035 All right.

Model Organization – safety specification

36
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – safety specification
Error types that could be raised

Reusable error state machines
to be attached to components

Operational

Failed

Error states

Component-specific error transitions
(to be added on a component-basis)

**036 So this is the same thing.

Page 41 of 77

And for the safety specification we
can distinguish different error types
in the system.

So, for example, if I have no power,
or if I have a value error like out of bound
error and stuff like this, if I have no
value, for example if my component
die and is no longer working, then I
will have no value; or if I have an
invalid value, if my component is
failing and for example I have a static
value, if I have a hardware failure on
the processor, also have to have
failure, for example, of the operating
system.

And I can also specify an error
behavior with different states; if my
component is operational, if the
component is failing or not. And I
can reuse that.

And it's kind of a state machine, if
you think about it. This was a
question before. I can-- the initial
state is operational; and then I can
switch to the failed state later on.
And this is error state; and I can add
transitions.

Page 42 of 77

Model Organization – define error flows – error source

37
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – define error flows – error source

Reuse predefined types

Define error types propagated
on component interfaces

Define the error sources,
what interfaces initiates an error flow

Component camera picture
NoValue error propagated

**037 We can also define the error
flows. So in the components I can
define where the error can originate
and also propagate in the
architecture.

So for the camera, for example, if I
look at the device camera, I can say
that I use the different error types I
showed you before; and the picture
can have an error propagation that's
no value.

In other words, when my camera is
failing, I will have no value on the
interface. So in other words this
means that I will propagate the no
value error the other components; and
these components we have to take
care of it or it will also impact these
components. So if I have no value
on the camera, maybe I cannot be
able to activate the warning device or
to detect a new obstacle. So this

Page 43 of 77

is an error in my system; and I would
be able to make use of it to see the
different errors in my system.

Model Organization – define error flows – error path

38
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – define error flows – error path
Reuse predefined types and behavior

Define error types propagated on component interfaces

Define the propagations flows

Component

obstacle_distance / NoValue
obstacle_distance / InvalidValue

Processor / SoftwareError
Processor / HardwareError

obstacle_detected / NoValue

obstacle_detected / InvalidValue

**038 So in other words it means
my camera, the value will not be
propagated.

And then I can also describe the in
and out propagation; and describe
the error path.

So for example the obstacle, if I have
no value as the obstacle distance it
means that I don't have the value
between my car and the obstacle,
it would be propagated; and I
have no value for the obstacle
detected. In other words if I'm not
able to evaluate the distance for the
obstacle, I cannot say if I have an
obstacle or not.

Page 44 of 77

These are exactly these kind of
things that will help me to detect the
impact of the faults in the
architecture.

Model Organization – error sink & define component error behavior

39
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – error sink & define component error behavior

Use predefined error types
and component behavior

Define component-specific
error events

Component-specific
error transitions

Operational

Failed

Reset NoValue
InvalidValue

**039 Because I will be able to
analyze the flows of the architecture.

Page 45 of 77

Model Organization – architecture alternatives

40
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Model Organization – architecture alternatives

System implementation with
all common components

Capture architecture
alternatives variability

(processors, buses, etc.)

Common type for all
architecture alternativeCapture common

components characteristics

**040 Let me show- let me show
you the model in a video

So if you import the model on your
computer with the tool, you'll be able
to have these different files; and you will
see that we have the complete AADL
textual model with a camera, and
we add the property to describe what
is the period of the camera, the
compute execution time and all what we call
the quality attributes of your system.

We also defined the error
propagation through the interface;
for example, the picture I can have
no value.

And I added too some properties
about the error. So no value means
the description is no picture from the
camera.

Page 46 of 77

So this is for the device. For the
errors, you'll see that we have
different error types: No power, value
error, no value error, invalid value; and
so on, as we saw before.

In the ICD, this is the interface. I
have all the different data types and
the size of the data; and I will make
use of this data on the interface to
characterize what are the different
data types; exchanged between the
components.

On integration I have a generic
component that integrates all the
common components of the
architecture; and then I will capture
the variability of the system.

So I have the generic component;
and later on I define two different
variations, one called implementation
1, as we see in this video; or
implementation 2. And the
difference, as you see , is the number
of ECU components, over there and
over here, and the number of buses.

Finally we have two other files: platform
and software. Platform will be for
the processors, the buses; and we'll
also add some error description in
the softwares about all the different
processes, tasks with the error
propagation added.

Page 47 of 77

Architecture Alternative 1: model instance

41
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Architecture Alternative 1: model instance

**041 So when you look at the
model, finally it looks like this with
the AADL notation. So the graphical
view of the model is the following for
the architecture alternative number
one: two ECU, two processors
connected through a bus; and all the
different software functions bind to
either ECU1 or ECU2.

Page 48 of 77

Architecture Alternative 2: model instance

42
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Architecture Alternative 2: model instance

Variability Factors with Alternative 1

**042 Alternative number 2, what
we have between the two is we add
another processor and another bus.
This is the only difference we have.

Page 49 of 77

Agenda

43
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Agenda
Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

**043 So right now what we're
going to do is try to analyze the
architecture. But do we have any
questions?

Shane McGraw: We do have a
number of questions coming in.
Johan wants to know: Is the OSATE
tool qualified for being used in the
context of ISO-2626.2, Functional
Safety?

Julien Delange: All right. So it's
interesting because the example is a
car system. So ISO 2626.2 is a
standard for automated system; and
as of today the open-source AADL
toolset can be used to analyze and
validate automated architecture.

On the other hand we didn't have any
qualification status. But I will be glad
to discuss that if there is any requests
to do so and to address that concern.

Page 50 of 77

Shane McGraw: Okay. Han would
like to know: Is there a translator
from AADL to UML or from UML to
AADL?

Julien Delange: So there is-- in
OSATE there is no capability like this;
for many reasons. Software for UML
is mostly graphical language; and we
can't make-- if we make an import or
export function, it should be really
tool dependent.

So we are aware of different
initiatives of people that are
translating AADL into another
notation or importing a notation into
AADL; for example, importing a SCADE
model or a Simulink model. I also
see SysML models with tools
like enterprise architects.

The thing is it's possible. Something
else that's really important is there is
a profile for UML called MARTE; and
MARTE, we have a good contribution
with the UML community to interface
UML and the concept within AADL
with UML.

Shane McGraw: Great. Let's get
one more from Lee-Anise asking: Do
you have security specifications to
prevent bugs inducing into the
system?

Julien Delange: To prevent bugs in
OSATE?

Shane McGraw: Yes.

Julien Delange: Okay. So right
now we have a lot of code review on

Page 51 of 77

OSATE to make sure that the code is-
does not have any security issue;
especially because the code is being
deployed in critical environments. So
we have this kind of concern right
now.

Shane McGraw: Okay. Move on.

Julien Delange: All right, please
continue to ask any question online.
Shane will address them through the
presentation.

So let me right now talk about the
architectural analysis. So we have
these architectures again.

The example is available online.
Please try it; download OSATE and
try it on your own computer. And
contact the AADL community if you
have any question. The community
is really active; and I will give you
some pointers at the end of the
presentation to get support; and also
more examples.

Page 52 of 77

Latency Analysis, principles

44
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Latency Analysis, principles

Potential impact
on latency

Bus characteristics
Alternative1 Alternative2

Acquisition Time 10 to 30 ms 200 to 500 ms

Transmission Time (/B) 1 to 10us 2 to 5 ms

**044 Let me show you how the
system analysis works.

So I know that a few of you were
really concerned and interested by
the latency analysis. Let me show
you the principle.

As we said in the beginning of this
presentation, we want the end-to-
end latency to be less than 900
milliseconds. Okay?

So let's have a look at the flow
between- in these architectures. So we have a flow
for the software architecture and the
similar architecture; and we can see
the different flow contributors.

So this flow goes from the camera,
the obstacle camera, to the warning
alert. And in fact if you have a look,
what is really important is the
execution time of the different tasks.

Page 53 of 77

But they're the same in both
architectures.

What is really different is buses. And
you see that the transmission time is
not the same on both architectures.

So the thing is, if we have a look at
the analysis tool, and if we have a
look at how the tool works, we see
quickly that what matters is the
execution time of the device and also
the bus latency associated with the
different bus.

So if we check the flow latency, the
tool will create automatically a report
in OSATE; and the report is an Excel
report. You can automatically open it
using Excel.

So for the first architecture what is
interesting is if you look at the end-
to-end latency-- remember, the end-
to-end latency, the maximum was
900; and you see at the bottom that
the requirement is captured in the model at 900;
and for these architecture candidates
the max latency was 886. So these
requirements is okay for these
architecture candidates.

But if you think about this, the
difference between the two
architectures was the bus. So let's
have a look at the impacts of the bus
in the second architecture.

And you will see that between the
bus takes more time to be acquired.
Then my latency is one second and
350 milliseconds. So my requirement
is not met. And I find that in

Page 54 of 77

the model; and just by changing a
single component my requirements is
no longer a max.

Latency Analysis, results

45
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Latency Analysis, results

Architecture
Alternative 1

Architecture
Alternative 2

**045 So you see easily with these
architectural descriptions that it's a
perfect picture of the end-to-end
latency is enforced. For the second
architecture I have an issue, just by
changing a component.

Page 55 of 77

Resources Allocation Analysis, principles

46
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Resources Allocation Analysis, principles

**046 If you think about it, the
number of times you change a
component in a system-- somebody
says: Oh it does not work; take another
component. But you don't think
about all the impacts.

So with having these different
integrations, like any of them, you
can detect all these kind of errors.

Right now let's have a look at the
resources allocation analysis. So
remember, we have two different
processors in the first architecture.
Okay? In the second architecture we
have three processors.

So what happens?

Page 56 of 77

Resources Allocation Analysis, results

47
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Resources Allocation Analysis, results

Architecture
Alternative 1

Architecture
Alternative 2

**047 f I look at the resources analysis, I
will analyze the budget, the
processing budget on the processor
and also in the task. In other words,
my processor has to provide enough
processing capacity for my task.

So if I have a look at my processor, I
define what I call the MIPS capacity
that define the processing capacity I
can provide to my task. And in my
task what I'm going to define is the
MIPS budget: How many MIPS I need
to be executed.

And with the information in mind, I
can start to make a resource budget
analysis. And in my architecture I
can see that-- for example, in my
first architecture the total MIPS
for the software size is 54 MIPS, and
my processor can provide only 50.
So I can't execute this architecture
with only one processor.

Page 57 of 77

So I have to make a choice. Either I
use I optimize my software or I use
a more powerful processor. The
second architecture candidate is
okay. With the three processors there
is one function that is really
consuming in terms of processing
capacity and it's executed on the
second processor.

So with three processors I'm fine;
and all the processors are connected
to all the tasks. They have no
problem on that.

So if you have a look at the different
architectures, the first one--

I have an issue- has an issue;
and the second one doesn't have any
issue at all.

For the first one I have a budget
error in terms of processing capacity;
and for the second one I have no
problem at all.

So let's have a look right now at the
safety analysis.

Page 58 of 77

Safety Analyses Overview

48
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Safety Analyses Overview
Functional Hazard Analysis (FHA)

Failures inventory with description, classification, etc.
Fault-Tree Analysis (FTA)

Dependencies between errors event and failure modes
Fault-Impact Analysis

Error propagations from an error source to impacted component
Need to combine analyses

Connect results to see impact on critical components

**048 With a different safety
analysis tool.

The first one is what you call the
Functional Hazard Analysis. And this
is a list of all the errors in my system.

The second one is the Fault-Tree
Analysis. I will show you the top
level faults and see all the
contributors of this faults.

And after that I will have the Fault-
Impact Analysis. So I will show how
an error propagates into the system.

I will show you first how these tools work.

So let's have a look first at the Fault-
Hazard and Impact Analysis.

So when I do the safety analysis,
what I have to provide is what type
of fault I propagate into my system.

Page 59 of 77

For example, for the camera, these
components, I will have to define the
out propagation and the out source.

So I will say: My camera can propagate
a no value error, I can have no value
in my camera, no picture-- and this
will be in here also-- and it will
propagate all of the other systems.

But also to generate safety
documentation, I need to have some
comments, some documents, where
these are already defined: Where in
the specification; what is the impact;
do we have any comments; what is
the reference with the other models
and so on.

So we add this information. And
then when I'm supposed to receive
an error, I have error sink.

So here for the warning device I have
an in propagation for no value and an
error sink. I can say: Hey on my
warning it quits; I have no value; I
don't know if I have to issue a
warning or not.

And finally I have the error source
and the error sink; but I also to
define error path. So how the error
propagates into the architecture.

What I can also do is I can say well I
have no value from the camera,
maybe it will translate it to an invalid
value because maybe I will use the
previous value or something like this.
So I have to define the different
mappings between the error types
when I propagate the faults.

Page 60 of 77

So in fact in the architecture I define
the error flows between the different
components; and I'm able with the
analysis tool in OSATE to process this
information and use the tool to
generate what you call the Functional
OSATE Assessment Report.

It will be a full report available as an
Excel document. And I will list all
the errors in my architecture.

The camera I can just propagate the
no value at all on the picture. The
radar, no distance; anything like this.
Okay?

So I have all the errors. In the
example we have only 20 errors.
But the fact is when you have a real
system, it's thousands of errors; and
most of the time these documents
are made manually. Here it's
automatically generated. You don't
need to do that manually. So you
can update the documents as your
architecture is evolving.

Something else we are doing is to
have the fault impact. It's also an
Excel spreadsheet; but it's not- it's
not only the list of the errors, it's also
how they propagate in the system.

So the obstacle camera, I can have
no value in the picture. But after
that it will propagate in the image
acquisition components; and then it
will also propagate later on to the
obstacle detection and so on.

And finally eventually it will reach the
warning alerts. So even if there was

Page 61 of 77

no value in the camera can impact
the warning alerts, the alert
mechanism, to alert the driver.

So with this simple architecture and
these 20 faults, you can see that
finally with only 20 faults I can have
447- and 45 error paths in my
architecture. So one error will have
different impacts. And it's really
critical because when you are- when
are doing this manually it takes a lot
of effort and a lot of time.

Safety Analysis, FHA, results

49
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Safety Analysis, FHA, results
Architecture Alternative 1: 15 errors contributors

Architecture Alternative 2: 17 errors contributors

Difference stems from additional platform components (ecu)
Have to consider criticality of fault impacts

**049 So for the FHA what we see
is for architecture number 1 I have
only 15 errors; and for architecture
number 2 17 errors.

The thing is the difference comes
from the number of processors.
Okay? In my second architecture I
have more processors. So for sure I

Page 62 of 77

have more faults. But the fact is I
have more processors to isolate in
terms of criticality and safety the
different functions that are really
critical.

Right now let's have a look at what
we call the FTAs, the Fault Tree
Analysis.

So the Fault Tree Analysis starts with
the top level faults. My warning
system or my self-driving car is not
working. And then it will show all the
error contributors.

So I defined my systems as my
system is failing - in the failed
state, if I have no brakes and if I
have no acceleration. So I say my
braking system is failing and my
acceleration is failing. And then in
my brake system I can define also
the reason why the brake failed. So
the brake can fail because I have no
value on the command. Okay? I do
not have break. I have an invalid
value as well; can be an error.

I do exactly the same with the
acceleration. In the acceleration I
can explain what are the different
errors and why I can be failing.

So with this description I have the
top level error, I'm failing; and I can
refine and define what are the
different contributors and the reason
why in the architecture I have this
error that is coming. And I can use
the AADL model to produce this fault
tree with all the dependencies between
the different faults.

Page 63 of 77

So we have this built-in capability in
OSATE; and it generates
automatically the fault tree in
different formats; one for a tool
called Open FTA. That is an open-
source tool to use Fault Tree Analysis
and to visualize Fault Tree Analysis.

Also we have an interface with a
commercial tool like CAFTA to
visualize this fault tree.

So I will show you with OpenFTA;
because it's an open-source tool and
you can use it at home and on your
computer and reproduce the
example.

When you open the generic fault
tree, you will see that-- finally you
think software for that there is
nothing. But if you zoom out, you
see that in fact there are so many
errors that can contribute to this top
level error.

So let's zoom into some faults. So
what this Fault Tree Analysis tool
looks like-- I can see that okay, for
example, I have an error from the
voter; and the voter can
say because I have no value from the
first GPS or no value from the
other GPS. So if my tool was
on the GPS failed, then the position,
what I would be failing.

And I can also associate some
probability. And after that with some
Fault-Tree Analysis tool I can make
analysis about the probabilities that
my system is failing or not.

Page 64 of 77

So I have all the different errors I
introduced in my system; an invalid
value from the wheel sensor, from
the laser sensor, from the camera
and so on.

Safety Analysis, FTA results

50
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Safety Analysis, FTA results
Architecture Alternative 1: 15 errors contributors

Architecture Alternative 2: 17 errors contributors

Difference stems from additional platform components (ecu)
Have to consider criticality of fault impacts

**050 So if I have a look on the-

Page 65 of 77

Safety Analysis, Fault Impact, results

51
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Safety Analysis, Fault Impact, results
Architecture Alternative 1 & 2: 443 error paths

Use the same paths
The additional ECU in alternative 2 covers path from ecu2
in Alternative 1

Impact on components criticality
Defect on the additional bus in Architecture 2 impact low-critical

functions
Isolate defect from low-critical functions to affect high-critical

**051 On the fault impact, for
architecture 1 and 2 I have exactly
the same number of paths- of error
paths.

The thing, and what we have to
consider, is that I have the same
number of paths; that we have to
distinguish the paths according to the
criticality of the components.

Page 66 of 77

Analysis Summary

52
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Analysis Summary

Architecture 1 Architecture 2

Latency

Resources Budgets

Safety

Cost

What is the “best” architecture?

**052 So in terms of safety the
thing is architecture number 2 will be
better because we isolate the
different criticality levels.

For the resource budgets the first
one is not- is not- is the best one
because the processor one is overloaded.
And for architecture number two, in
that case I can enforce all the
resources.

What we have to keep in mind also
is-- something else we didn't capture
in the model-- is the cost. In
Architecture number 1 you need two
processors and one bus. For
Architecture number 2 you need
three processors and two buses.

This is really important because when
you have a car the cost of the
processor, the cables, the bus and so
on really matters; because you have

Page 67 of 77

to produce thousands and thousands
of units. In some other domains,
maybe it doesn't matter all that much
because you only produce a couple of
items, a couple of products.

So the thing is-- the question in the
beginning was: What is the best
architecture? And the best architecture
will depend on your requirements.

If you are cost focused or if you
really care about safety, resource
budget and so on, in that case if you
are really focused on the costs,
maybe the first architecture will be
better; and you just have to have a
more powerful processor just to
optimize your software and then the
resource budget will not be an issue.

Conclusions

54
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Conclusions
Safety-Critical Systems Development issues is not a fatality

Late detection of errors is no longer possible
Need for new methods and tools

AADL supports Architecture Study and Reasoning
Evaluate quality among several architectures
Ease decision making between different architecture variations
Analysis of Architectural change on the whole system

User-friendly and open-source workbench
Graphical Notation
Interface with other Open-Source Tools

**054 So let me conclude. First, I
hope that this demo gave you a good

Page 68 of 77

introduction to model-based system
design and analysis.

So we can see that just with the
model, without implementing the
system, we can already find many
issues that you will find in the
integration of the system.

So this is a new method a new tool.
Okay? And this is evolving. But this
is already ready to use on real
projects; and we have several people
that are already using this kind of
tool to evaluate their systems and
their specific
architecture.

The AADL with the specialized
components really helps you to
reason about the architecture. What
kind of- what kind of components are
you using? You can have your own
products. You can extend the
language; and so on.

And we have a good workbench to
support this language. So we have
the graphical notation;
the textual one
notation. And all these tools are
open-source and available online.

Page 69 of 77

Useful Resources

55
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Useful Resources
AADL wiki – http://www.aadl.info/wiki

Model-Based Engineering with AADL book

SEI blog post series http://blog.sei.cmu.edu

Mailing-List
see. https://wiki.sei.cmu.edu/aadl/index.php/Mailing_List

**055 Useful Resources. Software
for the AADL wiki. You have plenty
of information according to-
according many examples. Case
study and so on you can access for
free online.

A book that was written by Peter
Feiler at the SEI and David Gluch
also at the SEI, about AADL and the
use of the different language
features.

We have also a lot of blog post series
about AADL; and we update the blog
posts with new research we're having
at the SEI.

We are also really active on the AADL
mailing list. The community provides
good support and help you if you
have any questions.

Page 70 of 77

Something else is next- this month--
sorry-- in Valencia there is a Models
Conference; and we have an AADL
workshop. It's called Architecture-
Centric Virtual Integration. We have a
lot of good submissions and good
papers. The proceedings are already
online; and if you want to check- to
check them out please do so.

Also if you want to attend the Models
Conference, or if you are planning to
attend, we would be really happy to
see you at the workshop.

Questions & Contact

56
Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Questions & Contact
Dr. Julien Delange
Member of the Technical Staff
Architecture Practice
Telephone: +1 412-268-9652
Email: info@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

**056 Thanks. And if you have any
questions please let me know.
Shane, I hope that we have many
questions.

Shane McGraw: Sure we have lots
of questions coming in for Julien.
And just before we get to that, just a

Page 71 of 77

reminder folks, before we close out in
about eight minutes, to fill out your
survey as your feedback's always
greatly appreciated.

Julien mentioned the book. If you go
to your Materials tab on your console,
you'll see a discount for that book
available; and also an upcoming
training course on AADL from the
SEI. So we hope you'll look into that
as well.

So let's get into the questions. About
seven minutes left with Julien.

Derek wants to know: Can AADL be
used along with ArchiMate? If you're
familiar with that.

Julien Delange: I'm not familiar
with ArchiMate. So if Derek can send
me some pointers, I will be really
happy to answer.

Shane McGraw: Okay. Let's move
on to Anon. He wants to know: Will
models add metadata to systems?

Julien Delange: What? Sorry
Shane.

Shane McGraw: One more time
from Anon: Will models add
metadata to systems?

Julien Delange: Okay. So in other
words, if I understand correctly, it's
what are the metadata associated to
the model? So in that case this is
what we call- what we have with the
different AADL properties; and we
can capture different metadata in the

Page 72 of 77

different components in the system.
Or with the different extensions; we
can use them, like the AADL Annex
and so on.

Shane McGraw: Okay. Johan
asked: For the latency calculation do
you support randomization? Can you
then model check the results?

Julien Delange: All right. So that
is- this is really interesting because
we have different work for the
latency.

First of all there is something with
the model checker. In that case you
have to export the AADL model in the
formal notation; like Petri nets or another
formal language

The thing is right now we are not
doing that. We are really checking at
the high level. But there is many
tools that export the AADL notation
into this formal language and do so.

The thing is we are-- the tool that is
working on OSATE is a tool that is
using the AADL properties. So it's a
really high language verification. And
then you can refine it with model-
appropriate model checker. And
some- we have some users in some
companies that they are working
with.

Shane McGraw: So just a
reminder. So Julien talked about the
OSATE tool earlier. We'll send out a
follow-up email tomorrow of where to
get the archive and the recording;
and we'll include that information

Page 73 of 77

where they can go and get that, the
tool, for free there.

Okay next question from Jong-Wai
asking: Can the end-to-end latency
analysis be integrated with
scheduling analysis in OSATE?

Julien Delange: So again this is
something that can be integrated for
sure. This is not something that is
provided right now in the toolset and
available in the open-source version.
But this is something that can be
done; and some tool like AADL
Inspector from a vendor in France
provides also latency analysis,
scheduling analysis and so on. In
OSATE right now we have the budget
analysis, the latency analysis, that
are available.

Shane McGraw: Just a follow-up in
case it's relevant here. And this is
also from Jong-Wai asking: Does
OSATE scheduling analysis support
hierarchical scheduling mechanisms
such as ARINC 653?

Julien Delange: All right. This is a
really good question. So right now
ARINC 653 can be used for the
resource budgets. For the scheduling
analysis, we don't have scheduling
simulation. We have validation; like
the tool I showed.

But we have also some export to a
scheduling validation tool like AADL
Inspector or Cheddar or MAST.

So this is something that already
exists. Unfortunately it's not

Page 74 of 77

available in the OSATE toolset. But
the semantics of AADL can provide
everything that you need to do so.

Shane McGraw: Okay. From
Johan asking: is there an FMEA
module planned as well?

Julien Delange: Yes. In fact if you
look at the safety analysis tool, what
is done by the fault impact is really
similar to the FMEA; and customizing
the fault impact reports will provide
the ability to generate the FMEA
report as well.

Shane McGraw: Okay. Rob would
like to know: For a system- for a
system with thousands of signals and
hundreds of tasks and multiple
processors, each under a safety
critical scheduler, one, how much
effort and time is required to set up
such a model without being overcome
by events; and two, how hard is it to
verify a complex model is correct?

Julien Delange: I love this question.
I love it. Thank you for asking.

Shane McGraw: And that was--
yes Rob; yes so yes.

Julien Delange: All right. Thanks
again for asking.

Scalability is a big issue for many
model-based tools. And in fact we
have many users that are asking
several questions: How scalable is
your tool?; and second, what is the
learning curve?

Page 75 of 77

And I understand. Because when
you- when you have to incorporate a
new technology, a new language,
you are looking at the cost of
acquiring- getting the new
technology; how much it costs you
and what are the benefits?

We have a blog post on that topic
that shows that within a couple of
days or weeks a team of students,
Master's students, were able to
acquire the main concepts of AADL,
to also learn the safety annex of
AADL, access information and
generate all the documentation for a
real generic system.

So we have that on the SEI blog
post. You can check out at
blog.sei.cmu.edu.

As for the scalability of the system,
some years ago we had a request
from a customer; and the customer
had thousands and thousands of
components. And OSATE had a hard
time to process that because of many
internal notation details; for example,
the Java heap and so on.

And we make a lot of improvements
into the OSATE toolset. And right
now we are scalable to analyze a
system with more than- with a couple
of thousand components.

Shane McGraw: Okay got a minute
left. We're going to do one more
question for Julien from Anon asking:
Are there supporting design patterns
in AADL to support analysis and
provide proven ways?

Page 76 of 77

Julien Delange: Yes. So we are
working also on this. And if you look
at the AADL wiki we have a special
section dedicated to modeling
patterns.

So we have different patterns; and
with these patterns we provide
different properties. And it's already
filled. So you just have to customize
the different properties, okay, with
your own requirements; and also the
different safety aspects and so on.
So please check aadl.info/wiki.
Thank you.

Shane McGraw: Julien, great
presentation. Thank you very much
for your time today.

Folks, we appreciate you joining the
SEI Webinar Series. Look for an
email tomorrow with some follow-up
information on this topic and how to
retrieve the archives. Have a great
day.

Julien Delange: Thank you.

Page 77 of 77

	AADL Webinar
	Table of Contents Page 1
	Table of Contents Page 2
	Table of Contents Page 3

	Carnegie Mellon University – Notices
	Architecture Analysis with AADL The Speed Regulation Case-Study
	What this talk is about?
	Agenda
	Agenda
	Polling Question 1
	Safety-Critical Systems are Intensively Software-Reliant
	Errors are introduced early but detected (too) lately
	Many Errors stems from Architecture or Integration Issues
	Why Model-Based Engineering Matters?
	Architecture Analysis Design Language
	AADL Model Example
	Architecture Analysis Design Language
	Agenda
	Objectives of this Study
	Case-Study Description
	Case-Study Objectives
	Agenda
	Functional Architecture
	Functional Architecture, timing perspective
	Functional Architecture, criticality perspective
	Deployment Alternatives
	Architecture Alternative 1
	Reduce Fault Impact Might increase production costs
	Agenda
	Modeling Guidelines
	Model Organization – devices
	Model Organization – devices – textual model
	Model Organization – Interfaces Specifications
	Model Organization – platform
	Model Organization – software (1)
	Model Organization – software – textual notation (1)
	Model Organization – software – textual notation (2)
	Model Organization – safety specification
	Model Organization – define error flows – error source
	Model Organization – define error flows – error path
	Model Organization – error sink & define component error behavior
	Model Organization – architecture alternatives
	Architecture Alternative 1: model instance
	Architecture Alternative 2: model instance
	Agenda
	Latency Analysis, principles
	Latency Analysis, results
	Resources Allocation Analysis, principles
	Resources Allocation Analysis, results
	Safety Analyses Overview
	Safety Analysis, FHA, results
	Safety Analysis, FTA results
	Safety Analysis, Fault Impact, results
	Analysis Summary
	Conclusions
	Useful Resources
	Questions & Contact

