
SOFTWARE ENGINEERING INSTITUTE A

Agile Development
in Government:
Myths, Monsters, and Fables

September 2016 ed.

By David Carney, Suzanne Miller,
and Mary Ann Lapham

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES

Myth #1: Agile Is A Fad—If I Wait Long Enough, It Will Go Away 3

Myth #2: Agile Teams Don’t Document Anything 6

Myth #3: Agile Is Cowboy Programming 9

Myth #4: Agile Works Only In Co-Located Environments 12

Myth #5: Agile Is Just Spiral Renamed 15

Myth #6: Agile Won’t Work in Dod or Government Environments 18

Myth #7: Agile Only Works With Small Projects 21

SOFTWARE ENGINEERING INSTITUTE 1

Foreword

This little volume is a somewhat tongue-in-cheek reflection on certain
attitudes toward Agile software development now current in the government
workplace. In an effort to bring these attitudes into relief, we have consciously
avoided the standard trappings of a Software Engineering Institute “technical
report” or any of the other standard report types that we usually use to capture
our research. Instead, we offer some humorous glimpses of these attitudes and
their basis in fact.

But let it be clear at the outset: the authors are not apostles preaching for
the Agile approach. We have studied it, have observed its strengths, and are
well aware of its weaknesses. Our goal is merely to cast some light on some
inaccuracies and misunderstandings about Agile in a light-hearted manner.

The title derives in part from various websites that use the metaphor of a
“monster” when speaking of Agile. For instance, on one website discussing
Agile code design,1 the writer notes that: “Like a monster, Agile software
methodologies scared the hell out of us.” Another, a site called “Fighting
the Monster,” describes the trials and tribulations the author endured while
pleading that Agile could safely be used in programs involving legacy
databases.2

But a far more significant reason for our title is that there are many untrue
assertions commonly being made about the Agile approach, and we feel that
these should be corrected. We term these inaccuracies “Myths,” and wish, with
this little volume, to puncture them. Again: we are not trying to push Agile on
the unwilling. But we are seeking to set some records straight. One compelling
reason is that there is a common realization throughout the Department of
Defense (DoD) that present-day acquisition practice is deeply, perhaps fatally
flawed.3 Numerous attempts at reform have had little success, and a report by
J. Ronald Fox, written at the request of the Center of Military History, offers
damning evidence of how consistently these reform attempts have failed.4
Published in 2011, the report studies numerous acquisition reform attempts
over several decades, and concludes that there is little hope of solving the
chronic problems if the usual attempts at reform are tried once again. And his
conclusion is really no surprise: there is widespread agreement within the DoD
community that “something different needs to be done.”

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES2

Well, the Agile approach seems to be something that fits that bill pretty well. No,
it is not a panacea; like any new practice, it takes thoughtful adoption planning
to decide when it should be used. And its usefulness is highly specific – there are
many DoD projects for which Agile would be a poor fit. But we believe that, for
any program that wants to give it a try, it might be a perfectly reasonable course
of action; that is the essence of our message. Unfortunately, however, we have,
on several occasions in the recent past, observed programs that were specifically
prevented from doing so, and the justification was consistently one or more of
the “myths” we describe herein. Hence this little document.

We note, in describing our list of Agile myths, that this ground is well traveled:
there is a very large number of documents floating around on the Web that list
and debunk Agile myths. A quick Google search on the string “Agile myths,” for
instance, will produce literally dozens of sites that list particular Agile myths
and then describe, often in excellent detail, why they are false. (Interestingly, no
one agrees on how many myths should be punctured; the lists from just the first
page of the Google search vary from five to twelve myths, with seven the most
popular number.) So why are we adding to this already crowded space?

Mostly because these myths persist, no matter how eloquently they have been
shown to be false, no matter how much data has been produced to set the record
straight. And the many, many technical reports that have been written with the
same purpose of beating down these myths have not achieved their goals, at least
not in the manner that their authors (ourselves included) have intended.

Thus this little paper, admittedly written in search of comic relief. We are hoping
that by bringing a rather jocular approach to the fore, we might also bring a
few smiles to our readers, and perhaps even persuade some folks to ponder the
words a bit more thoughtfully.

And finally, and purely to add an additional touch of humor, we append one of
Aesop’s “Fables” to each discussion. Why? His fables, although seemingly light,
folkish tales, are often jewels of wisdom. And as Aesop himself reminds us, in
the fable of the Fisherman:

To do the right thing at the right time is a great art.
PS: like many of the other mythbusters, we chose the number seven.
Why? Well just think of all the nifty things of which there are seven—
Seas, Continents, Dwarves, Hills of Rome, Wonders of the World…..

SOFTWARE ENGINEERING INSTITUTE 3

Myth #1: Agile is a Fad—If I Wait Long Enough,
It Will Go Away

This myth5 is the perhaps the most widespread, whether concerning Agile or
any other unfamiliar practice. The myth is that just about any novel software
development approach, especially if it does not appear to bear sufficient
conformance to present acquisition norms, is somehow a passing fad that will
soon be replaced by the next “latest thing.” This viewpoint is supported by a
number of such fads in DoD history that really did appear with great fanfare
only to evaporate very soon afterwards. During the mid-1980s, Ada was
touted as the salvation of DoD programs, and would bring untold efficiencies
to software programs. After a few short years, Ada quietly checked out of the
Pentagon.6 Several years later, CASE tools and integrated CASE environments,
notably such efforts as “I-CASE,” were begun with trumpets and hurrahs,
limped along for several years, and were then sent to oblivion—usually at great
cost—and with little to show except ongoing frustration from end-users.

Thus there is ample evidence that fads in software do exist, that they are costly,
and that such fads should be avoided. But not everything that is new is a fad.
After all, software, and the ideal methods for its development, is barely a few
decades old, and the field is still obviously in a state of maturation. What makes
the maturation process so hard is that, in large organizations such as the DoD,
and given such urgent need for aid and succor, it is inevitable that any new
thing that comes down the pike will immediately be seen by many as having

5 See http://www.versionone.com/pdf/AgileMyths_BetterSoftware.pdf for another valuable
discussion of this issue.

6 But she did leave a forwarding address: Ada has not disappeared. On the contrary, its present
status will surprise anyone who believes that “Ada is dead.” It is a widely used language in many
domains that need hard real-time capabilities. A glance at http://www.seas.gwu.edu/~mfeldman/
ada-project-summary.html will demonstrate quite convincingly that Ada is not at all dead, but is a
very lively lady indeed, despite the failure of its adoption in DoD acquisition.

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES4

messianic powers to suddenly bring acquisition practice to Nirvana. So any new
engineering approach (e.g., Agile practice) will be first hailed as a silver bullet,
and then the reaction will soon occur that labels it a fad.

So, although everyone agrees that “something different needs to be done,” the
belief that no new development practices can be trusted almost inevitably
comes to the conclusion that “…yes, but not this new thing, not Agile, because
it’s just a fad.” Aiding and abetting this contradictory belief is the natural
resistance to change found in any large organization, and the fear of disruption
will typically result in accusations of faddishness, whether warranted or not.7

If we consider this dilemma, it becomes obvious that we need to figure out how
to tell the real from the false, how to discern whether New Approach X will
truly bring substantial value to DoD programs, or whether New Approach X,
while shiny and glistening at first glance, will turn out to be yet another waste
of our fast-diminishing resources. We need the kind of discerning wisdom
that Shakespeare had in mind in “The Merchant of Venice,” when the Prince of
Morocco says:

Men that hazard all do it in hope of fair advantages: A golden mind
stoops not to shows of dross.

We need to learn to tell the gold from the dross, because as we noted above,
everyone knows that “something different really, really needs to be done” to get
acquisition to a healthy state. But we’re presently moribund, afraid that we’ll
wander down the path of another Ada. So how can we solve this problem?

Common sense suggests that one thing that is needed is evidence: tangible
indications of genuine success; believable indications that others within the
wider community are using the new approach not as a faddish practice but
in a real, hard, engineering manner. And, in fact, there is such evidence that
Agile practice is proving itself a reliable, useful, and valuable approach in the right

7 During the 1990s, a very highly placed executive, in a very public memo, was caustically distrustful
of the “latest new thing” that was appearing: the notion of a “service” as a software approach
was being born, and the attendant concept of a “service-oriented architecture” was soon moving
quickly through the software engineering community. Said the executive disdainfully: “We’re
definitely NOT going to get involved with ‘services’ here – they’re just the latest New Thing.” Now,
two decades later, whether or not there are any service-based systems in that guy’s organization
is unclear, but there seem to be a whole lot of other people all over the world doing a whole lot of
service-oriented stuff…

SOFTWARE ENGINEERING INSTITUTE 5

context; it is demonstrating that the accusations of “faddishness” are proving
false. Organizations as diverse as PayPal, Philips Respironics, Intel Corporation,
AFLAC, Nissan North America, and the Social Security Administration are
corporate members of the Agile Alliance8, an organization whose mission is to
“support those who explore and apply Agile values, principles, and practices to
make the software profession productive, humane, and sustainable.”9

The Agile Alliance organizes annual practitioner conferences for sharing
knowledge of techniques and experience, and a number of educational,
technical, and diversity initiatives.

The Project Management Institute has also launched a PMI-Agile Certified
Practitioner (PMI-ACPSM) professional certification.10

Thus, we revisit the myth that started this discussion: “Agile is a fad—if I wait
long enough, it will go away.” Our response is: Bosh! That statement is untrue:
Agile is a useful software development methodology that can be useful for
many projects of many types. To repeat: we are not advocating for Agile in and
of itself. There are many, many projects for which Agile would be inappropriate.
But there also many, many projects where it would indeed be the most
appropriate method to use. And we have observed directors of such projects
shun using Agile for the very reason we describe, the belief that it is nothing
more than a fad.

To that, we reply: the longer DoD waits to make use of proven new approaches
such as Agile software development, the more DoD will condemn itself to
prolonging the present state of failing acquisition practice. The myth about
Agile’s faddishness has been punctured by the facts, and it’s time to realize that.

Our Fable: Hercules and the Waggoner
A Waggoner was once driving a heavy load along a very muddy way.
At last he came to a part of the road where the wheels sank halfway
into the mire, and the more the horses pulled, the deeper sank the
wheels. So the Waggoner threw down his whip, and knelt down and
prayed to Hercules the Strong. “O Hercules, help me in this my hour of
distress,” said he. But Hercules appeared to him, and said: “Tut, man,
don’t sprawl there. Get up and put your shoulder to the wheel.”

The gods help them that help themselves.

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES6

Myth #2: Agile Teams Don’t Document Anything

This myth arises from a basic premise that has been part of the Agile
community from its very inception. The seminal Agile concepts were
embedded in the Agile Manifesto, which set forth the basic principles of
the approach in 2001. Introducing the manifesto on behalf of the Agile
Alliance, Jim Highsmith commented that the Agile movement was not
opposed to methodology; in his comments, he directly addresses the issue
of documentation:

The Agile movement is not anti-methodology, in fact, many of us want to
restore credibility to the word methodology. We want to restore a balance. We
embrace modeling, but not in order to file some diagram in a dusty corporate
repository. We embrace documentation, but not hundreds of pages of never-
maintained and rarely-used tomes…. [Emphasis ours]

Thus he established the essential Agile view of documentation: provide just
enough documentation, but don’t provide documentation just for its own sake.

As can easily be imagined, this philosophy found little resonance in the
government community, where exhaustive documentation is a way of
life. Numerous assertions were made, as a result, that Agile teams ignored
documentation; the following describes one well-known attack:

SOFTWARE ENGINEERING INSTITUTE 7

In a letter to IEEE Computer, Steven Rakitin expressed cynicism about agile
development, calling an article supporting agile software development “yet
another attempt to undermine the discipline of software engineering” and
translating “Working software over comprehensive documentation” as “We
want to spend all our time coding. Remember, real programmers don’t write
documentation.”11

But as a rebuttal to this attack, Agile developers asserted that they should write
documentation if that’s the best way to achieve the relevant goals, but that there
are often better ways to achieve those goals than writing static documentation.
Scott Ambler states that documentation should be

“Just Barely Good Enough” (JBGE), that too much or comprehensive
documentation would usually cause waste, and developers rarely trust detailed
documentation because it’s usually out of sync with codes, while too little
documentation may also cause problems for maintenance, communication,
learning and knowledge sharing.12

An IBM website provides a highly useful discussion of this question,
particularly with regard to large projects.13 First, they candidly describe the
difficulty of documentation on large Agile projects:

The goal on agile projects is to keep documentation as simple as possible,
relying on roadmaps, overviews and concepts rather than enterprise-focused
details. But what happens when using an agile approach on more complex
projects? For example, what if the team that writes the software is different
from the team that must maintain it? ….

In such circumstances, they admit the possibility that Agile might come up
short. But then, they state:

As agile teams scale and fit into larger enterprise environments, the
agilest must devise more mature, but equally agile, documentation strategies.

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES8

Thereafter, they propose a useful series of appropriate Agile practices to ensure
that “just enough” documentation is produced no matter how large the project.
Their summary:

Providing documentation that suits different purposes is possible if you take
an agile approach to how you scale. Determine documentation needs as you
progress and include the different documentation builds in your iterations
and you will provide the right documentation solution for all stakeholders,
including maintenance and audits.

Our Fable: The Lioness
A controversy prevailed among the beasts of the field as to which
of the animals deserved the most credit for producing the greatest
number of whelps at a birth. They rushed clamorously into the
presence of the Lioness and demanded of her the settlement of
the dispute. “And you,” they said, “how many sons have you at a
birth?” The Lioness laughed at them, and said: “Why! I have only
one; but that one is a thoroughbred Lion.”

The value is in the worth, not in the number.

SOFTWARE ENGINEERING INSTITUTE 9

Myth #3: Agile Is Cowboy Programming

This myth is based on the well-known phenomenon of the “Code Cowboy,” a
software force of nature who cannot be stopped. He or she is almost always a
great programmer who can do work two or three times faster than anyone else.
The problem is, at least half of that speed comes by cutting corners. The Code
Cowboy feels that checking code into source control takes too long, storing
configuration data outside of the code itself takes too long, communicating
with anyone else takes too long... you get the idea.

The Code Cowboy’s code is a spaghetti code mess, because he or she was
working so quickly that the needed refactoring never happened. Chances are,
seven pages’ worth of core functionality looks like the “don’t do this” example of
a programming textbook, but it magically works. The Code Cowboy definitely
does not play well with others. And if you put two Code Cowboys on the same
project, it is guaranteed to fail, as they trample on each other’s changes and
shoot each other in the foot.

If we examine the facts, it is obvious that a good deal of the myth that “Agile
is cowboy programming” is related to speed: both the Cowboy and the Agile
programmer get results fast. But behind this simple façade, the two could not be
more unlike. For the Cowboy, fast is good, period. For the Agile programmer,
the goal is not speed in itself but immediacy: working side by side with testers
and end users, the Agile programmer can, from the very inception of a
program, make clear his initial understanding of the required software. By this
means, misunderstandings can be corrected at the earliest possible moment;
this process of immediate sharing between coders, testers, and users continues
throughout a project. In the same manner, a related element of the myth that

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES10

is easily debunked is related to teamwork: as noted above, the Cowboy is the
antithesis of a team player. By contrast, Agile software development is utterly
dependent on teamwork, and a kind of teamwork in which everyone is a peer.
Any description of any Agile approach is filled with descriptions of how the
participants constantly interact, how teams are fluid, how teams produce results.

The description of the Code Cowboy above also notes his resistance to standard
configuration control practice as a waste of time; equating Cowboys with
Agile implicitly accuses both practices as sharing that opinion. A glance at the
literature of Agile will reveal how false that assertion is: there is a wealth of
books, papers, documents, and websites that provide a clear indication of how
important this topic is for the Agile community.

We shall later (in Myth #7) describe an IBM approach to CM in large
organizations and programs. In addition, CMCrossRoads, a CM solutions
provider, has a similar website with equally useful information on CM practices
in Agile development.14 Websites such as Evocean,15 AgileConnection,16 and
many others provide comparable (and useful) information. And an article in
“The Register,” a UK trade journal, titled “Config management: Enemy of agile
approach or the reason it works?,” makes this telling argument:

CM is sometimes also seen as the enemy of agile development—but what
is the point of deploying a new system quickly if, for instance, it backs out
an important emergency fix for a compliance issue—and your business is
promptly shut down by the regulators? The secret is “just enough” CM to let
the business operate reliably. Good CM is actually fundamental to an agile
approach… and should be built into the process—the secret is having “just
enough” CM to let the business operate reliably… .17

SOFTWARE ENGINEERING INSTITUTE 11

And finally, we have already dismissed, in the previous myth, the assertion that
the Agile practitioner, like the Code Cowboy, sees no need for documentation.
Agile implies less documentation, to be sure. But all the documentation that is
really necessary.

Thus on every facet of the claim that Agile equates to Cowboys, the facts are
clear—the two are light-years apart, and there is ample evidence to show that.
Equating them is simply continuing an unfortunate myth.

Our Fable: The Wolf in Sheep’s Clothing
A Wolf found great difficulty in getting at the sheep owing to the
vigilance of the shepherd and his dogs. But one day it found the
skin of a Sheep that had been flayed and thrown aside, so it put it
on over its own pelt and strolled down among the Sheep. The young
Lamb that belonged to the Sheep whose skin the Wolf was wearing,
thought the Wolf was his mother, and began to follow the Wolf in
the Sheep’s clothing. So, leading the Lamb a little apart, he soon
made a meal of her, and for some time he succeeded in deceiving
the sheep, and enjoying hearty meals.

Appearances are deceptive.

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES12

Myth #4: Agile Works Only In Co-Located
Environments

This myth got an early start, way back when the first descriptions of Agile began
to be circulated. People soon had visions of little clusters of people, all looking
at a screen together, smiling broadly, pointing out this or that to each other, and
so forth.

Well, this image is not all that far wrong, in the sense that such clusters of team
members do often occur in Agile projects. The myth part, however, is that that
kind of cooperation is the only way that an Agile project can unfold—nothing
could be more untrue.

First off, let’s start with some common sense: for any project—whether it
be Agile, or Waterfall, or Spiral—the project is almost always better off if
its participants are co-located. Frequent human interaction is a necessary
element of Agile, no question, but is no less necessary in Waterfall (e.g., when
the designers are trying to make sense of a bunch of haywire or contradictory
requirements), or Spiral (e.g., when making a decision concerning some project
artifact about how much detail is enough). All of those activities, in all of
those projects, become more straightforward when all of the players are sitting
around the same table.

And the lack of co-location can definitely be a serious impediment if a project is
poorly managed. For a humorous anecdote from our experience, the authors of
this report several years ago were members of a “red team.” The team had been
tasked by the Pentagon to investigate why a project that had been underway for
only ten months was already eight months behind schedule. The project was

SOFTWARE ENGINEERING INSTITUTE 13

a traditional Waterfall project, building a familiar type of system. Hence, we
dismissed the notion that unprecedented technology or some wild new design
complexity was the problem.

Upon questioning the management team, it became clear that they were
having trouble finding qualified programmers. The system was to be written
in Ada, and good Ada programmers were, even then, hard to find. “So what
do you plan to do about that?” we asked. The reply was that they had found an
excellent group of Ada programmers in Boston. (We were currently sitting in
California.) “Won’t that be expensive to pay their relocation costs?” we asked.
The response was that the new programmers would stay in Boston, and the
project would simply be a distributed one. “Won’t that cause problems?” said
we. No, they said, we do it all the time and it works like a charm.

OK, we shrugged, and went on to other topics. When we arrived at testing, they
told us it had recently become a difficult issue. “Why?” we asked. {And here it
comes…} “Well,” the Program Manager said, “our lead test guy was working out
fine, but they’ve moved his office into the building across the street, so we can
never get hold of him….” {And then we lost it.}

So sure, co-location is great. But lots of distributed projects succeed, and
succeed quite well. The key as with so many things is good management (which
our California example emphatically did not exhibit).

Enough of anecdotes—let’s look at some data. VersionOne, an Agile tools
and services company, makes an annual survey of the state of Agile-based
companies and projects that is well respected; among the data it seeks is
information on co-located vs. distributed projects. In 2012, its findings
were that “…35% of respondents worked in a company that had distributed
software teams. However, those who answered ‘yes’ had, on average, nine
distributed teams.”18

In the following year, the survey reported that “The number of respondents
who have distributed software teams practicing Agile has more than doubled
in one year. 76% had distributed software teams in 2013 compared to only 35%
in 2012.”19

Given the ongoing growth of interest in Agile that we see within the
community, there is every reason to expect that the 2014 survey will show still
another increase in distributed Agile development.

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES14

And for another tangible example, one of the Agile projects that has been
delivering value to U.S. Air Force customers for more than 10 years, Patriot
Excalibur, has been operating with a distributed team for several years—its
developers are spread across four different locations in the United States.20
Access to specialized expertise makes the geographic distribution worthwhile,
but the projects managers admit that they have to be mindful of the need to
minimize barriers to team communication on an ongoing basis.

So back to our myth. Sure, co-location is probably a preferable way to do things,
whether Agile or anything else. But it’s not the only way, and just as for Spiral
or Waterfall projects, a distributed Agile project is more than feasible. And
the data shows that it’s not just feasible, it’s becoming quite frequent. As is true
for a project of any type, distribution just calls for careful management, and
intelligent awareness of the things that need to be a tad different when some
team members are a few thousand miles away. But the evidence shows that it’s
very, very doable.

Our Fable: The Belly and the Members
The other members of the Body rebelled against the Belly, and said,
“Why should we be perpetually engaged in administering to your
wants, while you do nothing but take your rest, and enjoy yourself in
luxury and self-indulgence?’ The members carried out their resolve
and refused their assistance to the Belly. The whole Body quickly
became debilitated, and the hands, feet, mouth, and eyes, when it
was too late, repented of their folly.

Cooperation for the common good means that, even when they
are so far apart, the belly, the left hand, and the right hand will
work together in harmony.

SOFTWARE ENGINEERING INSTITUTE 15

Myth #5: Agile Is Just Spiral Renamed
(Or Iterative, Or Waterfall...)

Old Bill Shakespeare was pretty smart. Among the gazillions of great lines he
wrote, one that just might be his most famous line happens when poor Juliet
tells Romeo:

What’s in a name? That which we call a rose by any other name
would smell as sweet.21

And, by any measure, he was right (although we’re all probably pretty happy
that the name we use for that pretty red flower above isn’t “flumpwart”).

In any case, this myth brings about a two-part problem. First, when it
is bandied about within a project, it muddies the water about what the
project is actually doing. And second, in a more general sense, it breeds
misunderstanding within the software community about what Agile is, what
Spiral is, and how these two methodologies differ. (We’ll use the Spiral case
here, but the same concepts apply if comparing Agile to iterative or Waterfall
approaches.)

First, let’s start with substance. Agile, in the form of it various method
instantiations (e.g., Scrum), is very well documented in multiple media, from
Wikipedia to books to You Tube. There is copious information about what,
how, why, and just about any other question about what Agile is, what it is
not, and different ways to enact the Agile tenets and principles. Spiral software
development has an equal amount of specific, detailed information concerning
its structure and use. So to assert that one is the other reveals either gross
ignorance or willful mischief. And claiming that one is the other demeans
both methodologies.

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES16

Second, let’s consider motivation. Aside from rank ignorance, someone who
perpetrates this myth must have some purpose for so doing. One such purpose
could be inertia: if management decides that the company will start adopting
Agile practices, for instance, this will mean disruption. And a move to Agile
definitely means disruption. It means that people will be compelled to stop
doing the nice, comfortable things they’ve been doing for years. Being in a rut
isn’t all that bad, some people think, precisely because the amount of thinking
that they presently have to do is quite small.

A very similar motivation for propagating this myth is fear. Moving a company
to a very different development paradigm always brings with it the risk that
the existing personnel profile might change, and perhaps radically. People with
very limited knowledge of Agile development may well have all sorts of half-
baked notions. “Agile means they’ll get rid of coders and double the number
of testers—and I’m a coder!” “Agile means they’ll get rid of all of the testers
because the coders do their own testing—and I’m a tester!” And so forth.

There are several different bad results that occur as a result of this myth. One
is that people believe it, and so continue with what they’ve been doing for
years, but start calling it Agile. (And then, getting the same poor results they’ve
been getting for years, start trashing Agile practice in pained and loud cries.)
Another is they actually do read up on Agile, start out trying to use it, but never
make the mental adjustment needed. So just like they used to, in whatever was
their old methodology, they start delaying the testing for several weeks (“So
that the coders can give the test guys enough to really run some good tests”).
They start telling the Product Owner that he should stay away for a few months
(“Until they have something good enough to show you”). And, inevitably, they
have the same rotten results that the other guys had, and just like them, start
Agile-bashing to high heaven.

SOFTWARE ENGINEERING INSTITUTE 17

The bottom line is understanding. Agile is Agile, and Spiral is Spiral. They may
not be so different that we would then add “…and never the twain shall meet.”
But different they certainly are, and for software practitioners of every stripe, if
they use those names, they should know what they mean.

Our Fable: The Monkey and the Dolphin
A Sailor, bound on a long voyage, took with him a Monkey to amuse
him while shipboard. As he sailed off the coast of Greece, a violent
tempest arose in which the ship was wrecked and he, his Monkey,
and all the crew were obliged to swim for their lives. A Dolphin saw
the Monkey contending with the waves, and supposing him to be a
man (whom he is always said to befriend), came and placed himself
under him, to convey him on his back in safety to the shore. When the
Dolphin arrived with his burden in sight of land not far from Athens,
he asked the Monkey if he were an Athenian. The latter replied that
he was, and that he was descended from one of the most noble
families in that city. The Dolphin then inquired if he knew the Piraeus
(the famous harbor of Athens). Supposing that a man was meant,
the Monkey answered that he knew him very well and that he was an
intimate friend. The Dolphin, indignant at these falsehoods, dipped
the Monkey under the water and drowned him.

Those who pretend to be what they are not, sooner or later, find
themselves in deep water.

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES18

Myth #6: Agile Won’t Work in DoD or
Government Environments

This one is tough, because it’s sooooooooooooooo pervasive. Even though there’s
ample evidence to the contrary, this is a mantra that is repeated as gospel from
one end of Washington to the other. So let’s consider the supposed reasons why
Agile won’t work for either the suits or the brass.

But first, let’s not ignore reality. There are conditions in government IT that
are wholly unknown to the commercial sector, and that do form barriers to
Agile adoption. For instance, the project controls demanded by traditional
government PMOs are incompatible with Agile without mindful tailoring.
Demanding detailed project plans prior to doing any development is equally
foreign to Agile practice. Everyone knows these things, and many elements
within the government are actively working to lower and even eliminate
those barriers.

And there are other forces in play that can reduce those barriers. One such
is the ongoing budget cuts that began in the recent recession, but are still
continuing, particularly for IT. A paper by Peter Stevens (“Mastering the
Recession with Lean, Agile and Scrum”22) proposes the concept that budget
cuts could drive Agile adoption. Indeed, Better Buying Power 3.0 , acquisition
guidance released in April 2015, makes the case for reducing cycle time,
eliminating unnecessary requirements, and streamlining documentation
requirements and staff reviews.23

SOFTWARE ENGINEERING INSTITUTE 19

But let’s also not ignore another reality: Agile has been used—and successfully
used—in government programs, barriers notwithstanding. Examples of how
Agile has worked in government are documented in a 2013 report published by
the American Council for Technology’s Industry Advisory Council [ACT13].

The report indicates successful uses of Agile by several important users:

NASA’s Jet Propulsion Lab

• U.S. Department of Veterans Affairs

• CIA

• NTIA

• FCC

Next, let’s realize there is significant and growing government support for the
use of Agile. Looming large in that area is a recommendation by the Office of
Management and Budget, and a subsequent report published by the GAO titled
“Effective Practices and Federal Challenges in Applying Agile Methods.”24
The report was written for the following purpose:

Federal agencies depend on IT to support their missions and spent at least
$76 billion on IT in fiscal year 2011. However, long-standing congressional
interest has contributed to the identification of numerous examples of lengthy
IT projects that incurred cost overruns and schedule delays while contributing
little to mission-related outcomes. To reduce the risk of such problems, the
Office of Management and Budget (OMB) recommends modular software
delivery consistent with an approach known as Agile, which calls for producing
software in small, short increments. Recently, several agencies have applied
Agile practices to their software projects.

A further indication of federal support for Agile has been reported by
Information Week, an IT website, where a recent post reported that agencies
typically adopt Agile to avoid large-scale failures in systems development
programs. The Department of Veterans Affairs (VA), an early adopter of Agile
in the federal government, moved to Agile in 2009 for a critical new system
(the New GI Bill) when the department was failing on much of the rest of
its development portfolio. As a result, VA successfully delivered its first new
large-scale system in years, and decided to adopt Agile for the development of a
number of other critical systems.25

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES20

And finally, in terms of all of the regulations, policies, directives, mandates,
and so forth, evidence of change are indications that high-level policies are
incorporating the new practice in regulations, directives, and the like. The
DoDI 5000.02, released in January 2015, includes hybrid lifecycle examples that
more easily accommodate Agile methods implementation.26 The GAO has two
projects in work at the time of this writing to provide guidance on scheduling
Agile projects in government and costing them. In August 2014 the US
Digital Service released the TechFAR Handbook for Procuring Digital
Services Using Agile Processes.27 The TechFAR dispels myths that the use of
Agile is inconsistent with the statutory requirements held forth in the FAR:
“For each stage of the acquisition lifecycle, this document highlights key
regulatory provisions and explains how Agile approaches can be effectively and
successfully implemented consistent with core values of public procurement,
including impartiality, accountability for results, and providing the best value
to the taxpayer.”28 Clearly, they would not invest in these kinds of guidance
activities if they did not see continued use of Agile in government settings.

So sure, getting an Agile government program started up takes some doing.
But it can be done. There are annoying roadblocks. But many have done it, and
many more are getting started.

Our Fable: The Mountain in Labor
A Mountain was once greatly agitated. Loud groans and noises were
heard, and crowds of people came from all parts to see what was the
matter. While they were assembled in anxious expectation of some
terrible calamity, out came a Mouse.

Don’t make much ado about nothing.

28 In this document, “development” refers to software development from scratch, as well as
the configuration and implementation of commercially available off-the-shelf items.

SOFTWARE ENGINEERING INSTITUTE 21

Myth #7: Agile Only Works with Small Projects

This is another myth that dates back to the earliest days. One reason the myth
grew was quite natural: the earliest Agile projects did, in fact, tend to be small.
Further, with the exception of Rational, the preponderance of the makeup of
the original Agile community represented small software organizations. This
view was also supported by such authors as Barry Boehm and Rich Turner: in a
comparison of different development methods published in 2004,29 they clearly
distinguished Agile from other methods by several characteristics; one of those
characteristics was “small number of developers.” So historically, at least, the
myth has some credence.

But that was then, this is now. A decade and more of experience in performing
Agile projects has brought an enormous increase in understanding the many
ways in which Agile methods can apply to large projects of many types. On an
IBM website, Scott Ambler—a highly regarded author and expert on Agile—
states the issue very clearly:

A common misunderstanding about agile software development approaches is
that they’re only applicable to small, co-located teams. Yes, it’s much easier to be
successful with small teams, and with co-located teams, and as a result agilists
being smart people prefer to work this way. After all, why take on extra risk
when you don’t need to do so? But, sometimes reality gets in the way and you
find yourself in a situation where you need a large team, or you need to
distribute your team… . and you would still like to be as agile as possible.
The good news is that it’s still possible to be agile with a large team, although
you will need to go beyond some of the popular “agile in the small” strategies
to succeed.30

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES22

His perspective is echoed by the emergence of several Agile scaling frameworks
that are getting more and more press—Dean Leffingwell’s Scaled Agile
Framework for Enterprises (SAFE), Driving Strategy, Delivering More (DSDM)
Agile Project Framework, and Disciplined Agile Delivery (DAD) are among the
more well-known approaches that government and commercial users are using
for their larger Agile projects. And there is simply too much testimony, from
too many highly reliable sources, that Agile can succeed in large projects. For
example, Steve Denning, writing for Forbes, makes some telling points that are
no less true for government organization than for commercial ones:31

In today’s marketplace, [organizations] will need to change their culture or
they will die. They need to become Agile….It’s true that Agile requires small
teams. The reality as Richard Hackman pointed out in his classic book, Leading
Teams: Setting the Stage for Great Performances, is that all effective teams should
be small. A big effective team is an oxymoron. In any event, there are obvious
solutions to coping with large projects by dividing the work into a number of
relatively independent smaller subprojects then each part can be implemented
by an agile team. As explained by Craig Larman and Bas Vodde in their book,
Practices for Scaling Lean & Agile Development: Large, Multisite, and Offshore
Product Development with Large-Scale Scrum (2010).32

And there is ample advice on the “how-tos.” For example, Ivar Jacobson, one
of the creators of the Unified Modeling Language and the Rational Unified
Process, offers counsel on large Agile projects; the topics he focuses on include
enterprise-scale challenges:33

• Multi-site working including off-shore based teams
• Working with outsource partners
• Large project and program-level agility

and enterprise-scale solutions:

• Scalable project team structures
• Risk-focused governance models
• Focus on user experience and business value
• Focus on architecture

SOFTWARE ENGINEERING INSTITUTE 23

Organizations such as Lego, TomTom, Accenture, Intel, John Deere [SAFe]34,
Panera, Franklin Templeton Investments, Barclays35, Cardiff University &
Napp Pharmaceuticals36, have demonstrated successful use of Agile at the
large scale on large projects.

Finally, since one stated goal in this little book was humor, no one has
taken a better light-hearted approach to this question than Donna Fitzgerald
of Gartner:37

Question: When is a project too large for Agile project management?

Answer: Since the largest project we know about is the creation of the universe,
which we have on good authority only took a single one week sprint (6 days),
we think Agile Project and Program Management can scale beyond what most
IT projects will ever encounter.

All in all, therefore, we think it’s time to put this myth to bed. Large projects can
and do use Agile methods. To assert that they cannot is, as was true in all of the
other assertions in this book, to perpetuate a myth.

Our Fable:
A Boy put his hand into a pitcher full of filberts.38 He grasped as many
as he could possibly hold, but when he tried to pull out his hand, he
was prevented from doing so by the neck of the pitcher. Unwilling to lose
his filberts, and yet unable to withdraw his hand, he burst into tears
and bitterly lamented his disappointment. A bystander said to him, “Be
satisfied with half the quantity, and you will readily draw out your hand.”

You may have as large a meal as you wish—but do not attempt
too much at once.

38 Another name for hazelnut.

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES24

1 http://www.planetgeek.ch/2011/07/08/presentation-agile-code-design-
how-to-keep-your-code-flexible/

2 http://gojko.net/2007/11/20/fighting-the-monster/

3 http://www.history.army.mil/catalog/pubs/51/51-3.html

4 Ibid.

5 See http://www.versionone.com/pdf/AgileMyths_BetterSoftware.pdf for another valuable discus-
sion of this issue.

6 But she did leave a forwarding address: Ada has not disappeared. On the contrary, its present
status will surprise anyone who believes that “Ada is dead.” It is a widely used language in many
domains that need hard real-time capabilities. A glance at http://www.seas.gwu.edu/~mfeldman/
ada-project-summary.html will demonstrate quite convincingly that Ada is not at all dead, but is a
very lively lady indeed, despite the failure of its adoption in DoD acquisition.

7 During the 1990s, a very highly-placed executive, in a very public memo, was caustically distrustful
of the “latest new thing” that was appearing: the notion of a “service” as a software approach was
being born, and the attendant concept of a “service-oriented architecture” was soon moving quickly
through the software engineering community. Said the executive disdainfully: “We’re definitely NOT
going to get involved with ‘services’ here—they’re just the latest New Thing.” Now, two decades
later, whether or not there are any service-based systems in that guy’s organization is unclear, but
there seem to be a whole lot of other people all over the world doing a whole lot of service-oriented
stuff…

8 https://www.agilealliance.org/organizations/

9 https://www.agilealliance.org/the-alliance/

10 http://www.pmi.org/certification/agile-management-acp.aspx

11 http://en.wikipedia.org/wiki/Agile_software_development

12 Ibid.

13 http://www.ibm.com/developerworks/rational/agile/agile-documentation-oxymoron/

14 http://www.cmcrossroads.com/article/agile-software-configuration-management-communications-
and-documentation

15 http://www.evocean.com/

16 http://www.agileconnection.com

17 http://www.theregister.co.uk/2013/08/22/configuration_management_principles/

18 http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf

19 http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf

20 http://www.dtic.mil/ndia/2011agile/NDIAAgileProcessinDoD.pdf

21 Romeo and Juliet, Act II, scene 2.

22 http://www.scrum-breakfast.com/2009/01/mastering-recession-with-lean-agile-and.html

23 http://www.acq.osd.mil/fo/docs/betterBuyingPower3.0(9Apr15).pdf

24 GAO-12-681: Published: Jul 27, 2012. Publicly Released: Jul 27, 2012.

25 http://www.informationweek.com/applications/why-feds-are-embracing-agile/d/d-id/1111116?

26 http://www.dtic.mil/whs/directives/corres/pdf/500002p.pdf

27 https://playbook.cio.gov/techfar/

28 In this document, “development” refers to software development from scratch, as well as the con-
figuration and implementation of commercially available off-the-shelf items.

29 Boehm, B.; R. Turner (2004). Balancing Agility and Discipline: A Guide for the Perplexed. Boston,
MA: Addison-Wesley.

30 https://www.ibm.com/developerworks/community/blogs/ambler/entry/large_agile_teams?lang=en

31 http://www.forbes.com/sites/stevedenning/2012/04/17/the-case-against-agile-ten-perennial-
management-objections/

32 Ibid.

SOFTWARE ENGINEERING INSTITUTE 25

©Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Internal use: *Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use: *This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is required for
any other external and/or commercial use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

*These restrictions do not apply to U.S. government entities.

DM-0004008

33 http://www.ivarjacobson.com/enterprise_scale_agile_software_development/

34 http://www.scaledagileframework.com/case-studies/

35 http://www.scottambler.com/page_case_studies.html

36 https://www.dsdm.org/resources/case-studies?topic=All&topic=All

37 http://blogs.gartner.com/donna_fitzgerald/2010/04/20/when-is-a-project-too-large-for-agile-
project-management/

38 Another name for hazelnut.

 AGILE DEVELOPMENT IN GOVERNMENT: MYTHS, MONSTERS, AND FABLES26

For more information:
For those wanting more information on the SEI’s work in adoption of Agile
methods in government settings, especially the Department of Defense,
please visit our website: http://resources.sei.cmu.edu/library/ and search on
“Agile.” The left navigation panel will provide pointers to our research papers,
blogs, and podcast series.

To provide feedback on this booklet or our other work products, please
contact one of the SEI principal investigators for this research area:

Eileen Wrubel (eow@sei.cmu.edu) or
Suzanne Miller (smg@sei.cmu.edu).

©2016 Carnegie Mellon University | 4736 | 09.21.2016

