

Architecture Analysis with AADL The Speed Regulation Case-Study

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Julien Delange

Software Engineering Institute Carnegie Mellon University

© 2014 Carnegie Mellon University

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon[®] is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0001524

Carnegie Mellon University

What this talk is about?

1. Actual issues for Safety-Critical systems design

2. Why Model-Based Engineering techniques are helpful

3. How AADL can detect issues early and avoid potential rework

Agenda

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Carnegie Mellon University

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Carnegie Mellon University

Polling Question 1

Do you know what Model-Based Engineering is?

Software Engineering Institute | Carnegie Mellon University

Safety-Critical Systems are Intensively Software-Reliant

7

Errors are introduced early but detected (too) lately

High Fault Leakage Drives Major Increase in Rework Cost

Carnegie Mellon University

Why Model-Based Engineering Matters?

Capture system architecture with designers requirements

Focus on system structure/organization (e.g. shared components) Tailor architecture to specific engineering domain (e.g. safety)

Validate the architecture

Check requirements enforcement (e.g. no global variable) Detect Potential issues (e.g. interfaces consistency)

Early Analysis

Avoid late re-engineering efforts (e.g. less rework after integration) Support decisions between different architecture variations

Polling Question 2

Do you already know AADL?

Software Engineering Institute | Carnegie Mellon University

Architecture Analysis Design Language

SAE Standard for Model-Based Engineering

First version in 2003, actual version 2.1

Definition of System and Software Architecture

Specialized components with interfaces (not just "blocks") Interaction with the Execution Environment (processor, buses)

Extension mechanisms

User-Defined Properties (integrate your own constraints) Annexes (existing for safety, behavior, etc.)

AADL Model Example

Software Engineering Institute | Carnegie Mellon University

Architecture Analysis Design Language

© 2014 Carnegie Mellon University

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Carnegie Mellon University

Objectives of this Study

Learn Architecture Modelling with AADL and the OSATE workbench

Model a family of systems with their variability factors

Analyze the Architecture from a performance perspective

Discover Safety Issues using Architecture Models

Support Architecture Alternatives Selection

Illustrate the Process with a relevant case study

tware Engineering Institute Carnegie Mellon University

Case-Study Description

Self-Driving car speed regulation

Obstacle detection with user warning

Camera detection

Infra-red sensor

Automatic Speed and Brake

Two speed (wheel, laser) sensors Redundant GPS

Polling Question 3

On what aspect would you like to focus?

Case-Study Objectives

Help designers to choose the *best* Architecture Best reliability, avoid potential failure/error Meet timing and performance requirements Analyze Architecture according to stakeholders criteria Try to analyze what really matters Quantify architecture quality from different perspectives Latency **Resources and Budgets** Safety/Reliability

Agenda

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Carnegie Mellon University

Functional Architecture

Functional Architecture, timing perspective

© 2014 Carnegie Mellon University

Functional Architecture, criticality perspective

Redundancy Groups (performs the same function)

Software Engineering Institute | Carnegie Mellon University

Deployment Alternatives

Alternative 1: reduce cost and complexity

Two processors and one shared bus Potential interactions for functions collocated on the same processor

Alternative 2: reduce potential fault impact

Increase potential production cost (more hardware) Three processors inter-connected with two buses

Carnegie Mellon University

Architecture Alternative 1

Software Engineering Institute

Reduce Cost and Complexity Potential interactions for functions collocated on the same processor

Julien Delange

© 2014 Carnegie Mellon University

Reduce Fault Impact

Architecture Alternative 2

Software Engineering Institute

Carnegie Mellon University Speed Regulation Case-Study Julien Delange

© 2014 Carnegie Mellon University

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Carnegie Mellon University

Modeling Guidelines

Separate architecture aspects in different files

Leverage AADL extension and refinement mechanisms

Capture common characteristics, avoid copy/paste Extend generic components

Use properties to quantify quality attributes

Processed by tools to evaluate architecture quality

Specify once, use by several analysis tools

Ensure Analyses Consistency

+ Software Engineering Institute | Carnegie Mellon University

Model Organization – devices

Model Organization – devices – textual model

oftware Engineering Institute

Carnegie Mellon University

Model Organization – Interfaces Specifications

Software Engineering Institute Carnegie Mellon University

Model Organization – platform

Software Engineering Institute Carnegie Mellon University

One software function = 1 AADL process + 1 AADL thread

Software Engineering Institute | Carnegie Mellon University

Model Organization – software – textual notation (2)

Model Organization – safety specification

Model Organization – define error flows – error source

Model Organization – define error flows – error path

Model Organization – error sink & define component error behavior

oftware Engineering Institute | Carnegie Mellon University

© 2014 Carnegie Mellon University

Architecture Alternative 1: model instance

Architecture Alternative 2: model instance

Variability Factors with Alternative 1

Software Engineering Institute Carnegie Mellon University

Agenda

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Latency Analysis, principles

Software Engineering Institute

Carnegie Mellon University

Latency Analysis, results

Architecture Alternative 1

flow	model element	name	deadline or conn delay	total	expected
f0: End to End Latency	report				
f0 (Synchronous)	device	obstacle_camera:f0	200.0 ms	200.0 ms	900.0 ms
f0 (Synchronous)	Connection	obstacle_camera.pictur	0.0 us	200.0 ms	900.0 ms
f0 (Synchronous)	thread	image_acquisition.thr:f	50.0 ms	250.0 ms	900.0 ms
f0 (Synchronous)	Connection	image_acquisition.thr.	0.0 us	250.0 ms	900.0 ms
f0 (Synchronous)	thread	obstacle_detection.thr	100.0 ms	350.0 ms	900.0 ms
f0 (Synchronous)	Connection	obstacle_detection.thr	. 30.00125 ms	380.00125 ms	900.0 ms
f0 (Synchronous)	thread	obstacle_distance_eval	10.0 ms	390.00125 ms	900.0 ms
f0 (Synchronous)	Connection	obstacle_distance_eval	0.0 us	390.00125 ms	900.0 ms
f0 (Synchronous)	thread	emergency_detection.	t 4.0 ms	394.00125 ms	900.0 ms
f0 (Synchronous)	Connection	emergency_detection.	0.0 us	394.00125 ms	900.0 ms
f0 (Synchronous)	thread	warning_activation.thr	2.0 ms	396.00125 ms	900.0 ms
f0 (Synchronous)	Connection	warning_activation.thr.	0.0 us	396.00125 ms	900.0 ms
f0 (Synchronous)	device	warning_alert:f0	500.0 ms	896.00125 ms	900.0 ms
f0 (Synchronous)	Total		0.0 us	896.00125 ms	900.0 ms
				(

f0: End-to-end flow f0 calculated latency (Synchronous) 896.00125 ms is less than expected latency 900.0 ms

flow	model elemer	name	deadline or con	total	expected	
f0: End to End Latency	report					
f0 (Synchronous)	device	obstacle_camera:f0	200.0 ms	200.0 ms	900.0 ms	
f0 (Synchronous)	Connection	obstacle_camera.picture -	0.0 us	200.0 ms	900.0 ms	
f0 (Synchronous)	thread	image_acquisition.thr:f0	50.0 ms	250.0 ms	900.0 ms	1
f0 (Synchronous)	Connection	image_acquisition.thr.obs	0.0 us	250.0 ms	900.0 ms	
f0 (Synchronous)	thread	obstacle_detection.thr:f0	100.0 ms	350.0 ms	900.0 ms	
f0 (Synchronous)	Connection	obstacle_detection.thr.ob	100.00625 ms	450.00625 ms	900.0 ms	
f0 (Synchronous)	thread	obstacle_distance_evalua	10.0 ms	460.00625 ms	900.0 ms	
f0 (Synchronous)	Connection	obstacle_distance_evalua	0.0 us	460.00625 ms	900.0 ms	
f0 (Synchronous)	thread	emergency_detection.thr	4.0 ms	464.00625 ms	900.0 ms	
f0 (Synchronous)	Connection	emergency_detection.thr	0.0 us	464.00625 ms	900.0 ms	
f0 (Synchronous)	thread	warning_activation.thr:f0	2.0 ms	466.00625 ms	900.0 ms	
f0 (Synchronous)	Connection	warning_activation.thr.ac	0.0 us	466.00625 ms	900.0 ms	
f0 (Synchronous)	device	warning_alert:f0	500.0 ms	966.00625 ms	900.0 ms	
f0 (Synchronous)	Total		0.0 us	966.00625 ms	900.0 ms	

ERROR: f0: End-to-end flow f0 calculated latency (Synchronous) 966.00625 ms exceeds expected latency 900.0 ms

Software Engineering Institute

Architecture Alternative 2

Carnegie Mellon University

Resources Allocation Analysis, principles

Software Engineering Institute

Carnegie Mellon University

Resources Allocation Analysis, results

Architecture Alternative 1

Resou	arce Budget Statistics	
D	Processor Report ** Total MIPS 56.000 MIPS of bound tasks exceeds MIPS capacity 50.000 MIPS of ecu1 Total MIPS 35.000 MIPS of bound tasks within MIPS capacity 50.000 MIPS of ecu2	
	Virtual Processor Report	
	RAM/ROM Report	
	ОК	

	Resource Budget Statistics		
Architecture Alternative 2	Processor Report Total MIPS 48.000 MIPS of bound tasks within MIPS capacity 50.000 MIPS of ecu1 Total MIPS 8.000 MIPS of bound tasks within MIPS capacity 50.000 MIPS of ecu2 Total MIPS 35.000 MIPS of bound tasks within MIPS capacity 50.000 MIPS of ecu3 Virtual Processor Report RAM/ROM Report OK		

Software Engineering Institute Carnegi

Carnegie Mellon University

Safety Analyses Overview

Functional Hazard Analysis (FHA)

Failures inventory with description, classification, etc.

Fault-Tree Analysis (FTA)

Dependencies between errors event and failure modes

Fault-Impact Analysis

Error propagations from an error source to impacted component **Need to combine analyses**

Connect results to see impact on critical components

Safety Analysis, FHA, results

Architecture Alternative 1: 15 errors contributors

Architecture Alternative 2: 17 errors contributors

Difference stems from additional platform components (ecu) Have to consider criticality of fault impacts

Carnegie Mellon University

Safety Analysis, FTA results

Architecture Alternative 1: 15 errors contributors

Architecture Alternative 2: 17 errors contributors

Difference stems from additional platform components (ecu) Have to consider criticality of fault impacts

Carnegie Mellon University

Safety Analysis, Fault Impact, results

Architecture Alternative 1 & 2: 443 error paths

Use the same paths

The additional ECU in alternative 2 covers path from ecu2 in Alternative 1

Impact on components criticality

Defect on the additional bus in Architecture 2 impact low-critical functions

Isolate defect from low-critical functions to affect high-critical

Analysis Summary

	Architecture 1	Architecture 2
Latency		×
Resources Budgets	×	
Safety	×	
Cost		×

What is the *"best"* architecture?

Carnegie Mellon University

Agenda

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Software Engineering Institute Carnegie Mellon University

Conclusions

Safety-Critical Systems Development issues is not a fatality

Late detection of errors is no longer possible

Need for new methods and tools

AADL supports Architecture Study and Reasoning

Evaluate quality among several architectures

Ease decision making between different architecture variations

Analysis of Architectural change on the whole system

User-friendly and open-source workbench

Graphical Notation

Interface with other Open-Source Tools

• Software Engineering Institute | Carnegie Mellon University

Useful Resources

AADL wiki - http://www.aadl.info/wiki

Model-Based Engineering with AADL book

SEI blog post series http://blog.sei.cmu.edu

Mailing-List see. <u>https://wiki.sei.cmu.edu/aadl/index.php/Mailing_List</u>

Software Engineering Institute Carnegie Mellon University

Questions & Contact

Dr. Julien Delange Member of the Technical Staff Architecture Practice Telephone: +1 412-268-9652 Email: info@sei.cmu.edu

Web

www.sei.cmu.edu/contact.cfm

U.S. Mail Software Engineering Institute Customer Relations 4500 Fifth Avenue Pittsburgh, PA 15213-2612 USA

Customer Relations

Email: info@sei.cmu.edu Telephone: +1 412-268-5800 SEI Phone: +1 412-268-5800 SEI Fax: +1 412-268-6257

So So

oftware Engineering Institute | Carnegie Mellon University