
Architecture Practices for
Complex Contexts

John R. Klein

2017

SIKS Dissertation Series No. 2017-28
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.
Promotiecommissie:
prof. dr. ir. Paris Avgeriou
prof. dr. Jan Bosch
prof. dr. Sjaak Brinkkemper
dr. Remco de Boer
prof. dr. Patricia Lago
This publication incorporates portions of the following, (c) 2013-2017 Carnegie Mellon University, with special
permission from its Software Engineering Institute:

“A systematic review of system-of-systems architecture research” by J. Klein and H. van Vliet.
“Application-Specific Evaluation of NoSQL Databases” by J. Klein, I. Gorton, N. Ernst, P. Donohoe, K.
Pham, and C. Matser.
“Architecture Knowledge for Evaluating Scalable Databases” by I. Gorton, J. Klein, and A. Nurgaliev.
“Common Platforms in System-of-Systems Architectures: Results from an Exploratory Study” by J. Klein,
S. Cohen, and R. Kazman.
“Design Assistant for NoSQL Technology Selection” by J. Klein and I. Gorton.
“Distribution, Data, Deployment: Software Architecture Convergence in Big Data Systems” by I. Gorton
and J. Klein.
“Model-Driven Observability for Big Data Storage” by J. Klein, I. Gorton, L. Alhmoud, Laila, J. Gao, C.
Gemici, R. Kapoor, P. Nair, and V. Saravagi.
“Performance Evaluation of NoSQL Databases: A Case Study” by J. Klein, I. Gorton, N. Ernst, P. Donohoe,
K. Pham, and C. Matser.
“Runtime Performance Challenges in Big Data Systems” by J. Klein and I. Gorton.
“System-of-Systems Viewpoint for System Architecture Documentation” by J. Klein and H. van Vliet.

ANY MATERIAL OF CARNEGIE MELLON UNIVERSITY AND/OR ITS SOFTWARE ENGINEERING INSTI-
TUTE CONTAINED HEREIN IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVER-
SITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This publication has not been reviewed nor is it endorsed by Carnegie Mellon University or its Software Engi-
neering Institute.

ISBN 978-94-6295-682-7 NUR 982
Copyright © 2017 John Robert Klein
All rights reserved unless otherwise stated
Cover image “Systems of Systems of Systems” by John Klein
Published by ProefschriftMaken || www.proefschriftmaken.nl
Typeset in LATEX by the author

VRIJE UNIVERSITEIT

Architecture Practices for
Complex Contexts

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan
de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus
prof.dr. V. Subramaniam,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie

van de Faculteit der Exacte Wetenschappen
op dinsdag 26 september 2017 om 9.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

John Robert Klein

geboren te Elizabeth, New Jersey, Verenigde Staten

promotor: prof.dr. J.C. van Vliet

Contents

1 Introduction 1
1.1 Background . 2

1.1.1 Systems of Systems . 2
1.1.2 Data-Intensive Systems 4
1.1.3 Software Architecture Practices 6

1.2 Objectives and Research Questions 13
1.3 Research Methods . 16
1.4 Thesis at a Glance . 17
1.5 Outline and Origin of Chapters 17

2 Systematic Review of Systems-of-Systems Architecture Research 21
2.1 Introduction . 22
2.2 Research Method . 23

2.2.1 Search Strategy and Data Sources 23
2.2.2 Search Results . 26
2.2.3 Data Extraction and Synthesis 29

2.3 Results and Discussion . 30
2.3.1 Demographic Data . 30
2.3.2 Type of Research Result Reported 32
2.3.3 Architecture Task Focus 34
2.3.4 Application Domain . 35
2.3.5 Quality Attribute Focus 36
2.3.6 Technology Maturity . 36
2.3.7 Impacts on research and practice 38
2.3.8 Study Limitations and Threats to Validity 41

2.4 Conclusions . 42

3 Common Software Platforms in System-of-Systems Architectures:
The State of the Practice 45
3.1 Introduction . 46

3.1.1 System-of-Systems Context 46
3.1.2 Platforms, Product Platforms, & System-of-Systems

Platforms . 46
3.1.3 Goals of this Study . 48

3.2 Research Method . 48
3.3 Interview Questions . 49

v

CONTENTS

3.4 Results and Discussion . 51
3.4.1 Architecture Framing and Processes 51
3.4.2 Challenges and Patterns of Success 52
3.4.3 Solution constraints . 55

3.5 Conclusions . 56

4 Design Assistant for NoSQL Technology Selection 59
4.1 Introduction . 60
4.2 Related Work . 62
4.3 Feature Taxonomy . 63

4.3.1 Data Model . 64
4.3.2 Query Languages . 65
4.3.3 Consistency . 66
4.3.4 Scalability . 67
4.3.5 Data Distribution . 69
4.3.6 Data Replication . 71
4.3.7 Security . 71

4.4 Knowledge Base Overview . 74
4.4.1 Semantic Knowledge Model 75
4.4.2 QuABaseBD Implementation of Feature Taxonomy . . . 79

4.5 QuABaseBD Use Cases . 83
4.6 Demonstrating Feature Taxonomy Efficacy 85
4.7 User Trials . 87
4.8 Further Work and Conclusions 89

5 Application-Specific Evaluation of NoSQL Databases 91
5.1 Introduction . 92
5.2 Electronic Health Record Case Study 93

5.2.1 Project Context . 93
5.2.2 Evaluation Approach . 93

5.3 Prototype and Evaluation Setup 96
5.3.1 Test Environment . 96
5.3.2 Mapping the data model 97
5.3.3 Generate and Load Data 98
5.3.4 Create Load Test Client 98
5.3.5 Define and Execute Test Scripts 99

5.4 Performance and Scalability Test Results 100
5.4.1 Performance Evaluation—Strong Consistency 101

vi

CONTENTS

5.4.2 Performance Evaluation—Eventual Consistency 104
5.5 Lessons Learned . 106

5.5.1 Essential Issues . 108
5.5.2 Accidental Issues . 110

5.6 Further Work and Conclusions 111

6 System-of-Systems Viewpoint for System Architecture
Documentation 113
6.1 Introduction . 114
6.2 Related Work . 116
6.3 Approach . 117

6.3.1 Problem Investigation—Identify Stakeholders
and Concerns . 117

6.3.2 Treatment Design—Define the Architecture Viewpoint . 119
6.3.3 Treatment Evaluation—Active Design Review by

Expert Panel . 125
6.4 Analysis and Results . 129

6.4.1 Expert Panel Demographics 129
6.4.2 Active Review Question Responses 129
6.4.3 Subjective Questions . 131
6.4.4 Interpretation and Viewpoint Rework 133
6.4.5 Threats to Validity . 135

6.5 Conclusions and Future Work . 136
6.6 Appendix: Viewpoint Definition 137

6.6.1 Viewpoint Name . 138
6.6.2 Viewpoint Overview . 138
6.6.3 Concerns Addressed by this Viewpoint 138
6.6.4 Typical Stakeholders . 138
6.6.5 Model Kinds/Metamodels 138
6.6.6 Correspondence rules . 145
6.6.7 Operations on views . 145
6.6.8 Examples and Notes . 145

7 Runtime Performance Challenges in Big Data Systems 149
7.1 Introduction . 150
7.2 Characteristics of Big Data Systems 151
7.3 The Need for Observability . 153
7.4 Related Work . 155

vii

CONTENTS

7.5 Our Approach . 156
7.5.1 Model-Driven Design Time Toolkit 157
7.5.2 Monitoring and Analysis Runtime Framework 160

7.6 Future Work . 162
7.7 Conclusion . 163

8 Model-Driven Observability for Big Data Storage 165
8.1 Introduction . 165
8.2 Architecture and Implementation 167

8.2.1 Overview of the Observability Architecture 167
8.2.2 Metamodel . 170
8.2.3 Model Editor Client . 170
8.2.4 Runtime Metric Collection 172
8.2.5 Metric Aggregation and Visualization 173

8.3 Performance Results . 173
8.4 Prior Work . 176
8.5 Conclusions and Future Work . 177

9 Conclusions 179
9.1 Answer to the Research Questions 179

9.1.1 Practice Area—Architecture Design 180
9.1.2 Practice Area—Architecture Documentation 181
9.1.3 Practice Area—Architecture Evaluation 182

9.2 Answering the Main Research Question 183
9.3 Further Research . 184

9.3.1 Continuing this work . 184
9.3.2 Complementing this work 185

10 Samenvatting 187
10.1 Nederlandse samenvatting . 187
10.2 English Summary . 188

viii

Acknowledgements

I am thankful to the many people who have helped me reach this milestone.
My advisor, Hans van Vliet, has shown remarkable patience with this

student. In June, 2011, we sat on a hotel patio in Boulder, Colorado, and I
asked for his advice about pursuing a PhD degree. Hans immediately replied,
“Let’s start working together—we’ll see how it goes,” and so began this journey.
Neither of us thought it would take this long, and I am very grateful that Hans
decided to continue as my advisor after his retirement.

David Weiss has been a friend and mentor for many years. He taught me
that Software Architect was not just a title on a business card, but that there were
specific skills and knowledge that I needed to develop. David first introduced
me to many of the architecture practices that I discuss in this thesis.

David also introduced me to Paul Clements, who brought me to the Soft-
ware Engineering Institute at Carnegie Mellon University, and began my
transition from practitioner to researcher.

I could not have done all this without the support of my managers at the
Software Engineering Institute. Thank you, Linda Northrop, Mark Klein, and
James Ivers.

I have had the opportunity to collaborate with many outstanding re-
searchers. I especially want to thank Ian Gorton for introducing me to data-
intensive systems, which became a focus of the research in this thesis, and Neil
Ernst, who has an encyclopedic knowledge of research methods.

My thesis committee provided insightful comments and feedback.
Thanks to my paranymph, Eltjo Poort, for guiding me through the many

formalities of my defense, and for translating my Thesis Summary from En-
glish to Dutch.

Finally, I thank my wife, Liese Elerin. She has been beside me through all
of the ups and downs of this long adventure, and will stand beside me at my
defense as paranymph. Pack your bags, Liese, we’re going to Amsterdam!

Gloucester, Massachusetts and Mount Desert, Maine
July 2017

ix

1
Introduction

Software architects are trained to apply certain unquestioned principles, such
as “actively engage stakeholders” and “never depend on a particular prod-
uct” [10]. As a community, we have built up practices on top of these these
principles. For example, we employ stakeholder engagement methods such
as the Quality Attribute Workshop [9] to engage with stakeholders and we
apply architecture patterns such as Facade [57] and Layers [28] to reduce
dependencies on specific products.

However, in my practical experience in several complex development
contexts, I encountered cases where some long-held architecture principles do
not apply. This thesis reports my research on new practices to respond to the
forces that cause these principles to fail us.

This thesis focuses on software architecture practices for systems of systems.
The scope includes data-intensive systems, which we consider as a type of
system of systems.

This Introduction begins by introducing three main concepts: Systems of
systems, data-intensive systems, and architecture practices. This is followed
by a statement of my research objectives and research questions. I next present
my research methods, followed by the Thesis at a Glance, which maps the
research methods to the research questions and provides a roadmap for my
work. I finish the introduction with a discussion of the origin of each chapter
and my contribution to each chapter’s original publication.

1

CHAPTER 1. INTRODUCTION

1.1 Background

This section provides background in the three areas that underly the research
in this thesis: Systems of systems, data-intensive systems (framed as a type of
system of systems), and software architecture practices.

1.1.1 Systems of Systems

A system is a collection of elements that together produce some result that
cannot be obtained by the elements operating individually [77]. These ele-
ments of a system may themselves be large and complex, and composed of
sub-elements acting in concert. We use the term system of systems (SoS) for the
case where the constituent elements are collaborating systems that exhibit two
properties [110]:

• Operational Independence—each constituent system is operated to
achieve a useful purpose independent of its participation in the SoS,
and

• Managerial Independence—each constituent system is managed and
evolved, at least in part, to achieve its own goals rather than the SoS
goals.

Maier classifies SoS into three categories, based on the type and degree of
managerial control [110]:

• Directed SoS: The SoS is centrally managed. Constituent systems are
built primarily to fulfill SoS purposes, with independent operation as a
secondary goal. For example, during an SoS failure, a constituent system
may continue to operate in a stand-alone mode that provides degraded
services to its users.

• Collaborative SoS: The SoS has central management, but that manage-
ment it lacks authority over the constituent systems. Constituent systems
voluntarily choose to collaborate to fulfill the SoS purposes. Maier gives
the example of the Internet as a collaborative SoS, with the Internet Engi-
neering Task Force (IETF) setting standards but having no enforcement
authority. Participants choose to comply with the standards if they want
to be part of the Internet SoS.

2

1.1. BACKGROUND

• Virtual SoS: The SoS has no central management and no centrally agreed-
upon purpose. Maier’s example here is the World Wide Web, where
there is no central governance. There are incentives for cooperation and
compliance to core standards, which emerge and evolve based on market
forces.

Later, Dahmann and colleagues identify a fourth SoS category, which they
labeled Acknowledged SoS [40]. This category falls between Directed SoS and
Collaborative SoS: Like a Collaborative SoS, there is central management but
it lacks authority over the constituent systems. However, like a Directed
SoS, constituent systems are managed to balance achieving SoS purposes and
independent purposes.

There are examples of SoS in many domains. Maier’s seminal paper, pub-
lished in 1998, cites diverse examples such as integrated air defense, intelligent
transportation, and the Internet [110]. These examples have endured and
evolved, with defense systems still being a major area of interest for SoS, intel-
ligent transportation now manifesting as self-driving interconnected vehicles
built by multiple manufacturers [112], and the Internet of Things creating
systems of devices interconnected for purposes that range from personal
entertainment and convenience to energy conservation. Recent research in-
vestments by the European Union attest to the continuing importance of SoS
[51].

We also encounter SoS in the enterprise information technology domain.
Ross and colleagues identify four enterprise operating models [136]. Their
Coordination and Diversification models have independent managerial and op-
erational authority over systems, as might occur when systems from different
business units or lines of business are integrated, or as the result of a merger
or acquisition. Although the primary function of these systems is to support a
particular business function (e.g., sales, manufacturing, or customer service),
there is a need to create an SoS to support some top-level organization func-
tions such as finance, or to exchange information such as sales orders feeding
into a manufacturing forecast. Within the taxonomy of SoS types, these are
Collaborative or Acknowledged SoS.

Collaborative and virtual SoS are related to industry platforms and soft-
ware ecosystems. An industry platform provides the core technology that
allows systems constructed by different organizations to interact to produce
some value [39]. In both Collaborative and Virtual SoS, an industry platform
can broker interactions between participating systems and provide incentives

3

CHAPTER 1. INTRODUCTION

to join the SoS and to behave in particular ways in the SoS. The relationships
among the systems using an industry platform and among the organizations
constructing those systems create an ecosystem with cooperation and competi-
tion among participants [117]. We see these today in “virtual” businesses that
outsource product design, manufacturing, marketing, and order fulfillment,
with business operations accomplished by orchestrating APIs on external
systems that independently operate and evolve in response to market forces.

Researchers [22, 113] and practitioners [125] agree that these properties
necessitate treating an SoS as something different from a large, complex sys-
tem. From a software architecture perspective, these properties influence
our architecture drivers, for example, emphasizing quality attributes such as
interoperability while introducing constraints on evolution.

1.1.2 Data-Intensive Systems

Data-intensive systems, popularly referred to as “big data” systems, are a
type of SoS. Fig. 1.1 shows a typical data-intensive system. Inputs from
sensors, devices, humans, and other systems are delivered to the system,
where they are ingested through a pipeline that translates and transforms the
data and writes it to a persistent store. The persistent store is frequently polygot,
employing a heterogeneous mix of SQL, NoSQL, and NewSQL technologies
[139]. Users query and analyze the stored data through many types of devices
and applications. The system executes in a cloud infrastructure, shared with
other systems.

In most cases, the input sources are under independent operational and
managerial control, often acting as an input source for several overlapping
data-intensive systems. Users of the data-intensive system are autonomous,
presenting a variable and evolving workload to the system. Finally, the under-
lying cloud infrastructure is managed and operated independently, serving
the needs of many SoS.

Considered as an SoS, a data-intensive system presents the same types of
architecture challenges as other SoS, discussed above. In addition, these data-
intensive systems present another set of challenges. Data storage, whether
durable or in-memory, is an essential function of a data-intensive system.
While internet giants like Google and Amazon have developed custom storage
packages such as Bigtable [32] and Dynamo [45], most developers use off-
the-shelf open source packages for this function. Today, these data storage
packages are usually some type of NoSQL or NewSQL [139], which reduce the

4

1.1. BACKGROUND

Figure 1.1: Typical Data-Intensive System

mismatch between programming language data structures (e.g., hash maps or
serialized objects) and the underlying storage mechanisms. These packages
also usually provide fine-grained control—on a request-by-request basis—of
the tradeoff between replica consistency, availability, and network partition
tolerance, which can significantly improve performance for some applications
[1].

These NoSQL data storage packages bundle decisions related to several
architecture concerns, as shown in Fig. 1.2. Each data storage package has an
intrinsic data model (e.g., key-value or structured document), which constrains
the types of data that can be efficiently stored and queried, and thus affects
the complexity and performance of the system. The data storage package
has built-in data distribution (partitioning and replication) that affects the
replica consistency properties and availability of the system. Finally, the
physical deployment of the storage elements in a distributed system at runtime
determines the failure modes that the system must handle, and the ultimate
availability of the system. As we discuss below in §1.1.3, this convergence

5

CHAPTER 1. INTRODUCTION

of concerns within the data storage package creates a significant challenge
for architects: After a data storage package is selected, the decisions that it
embodies about data model, distribution, and deployment ripple through
much of the system architecture.

1.1.3 Software Architecture Practices

Software architecture development has four main practice areas [31]:

1. Identify architecture drivers (for example, quality attribute requirements
and constraints);

2. Design the architecture;

3. Document the architecture;

4. Evaluate the architecture.

In this section, I use the term traditional practices to refer to the practices
codified in textbooks by authors such as Bass and colleagues [10], Bosch [23],
and Gorton [64]. The following sections discuss how the forces present in
the SoS and data-intensive system contexts make these traditional practices
ineffective in each of the architecture practice areas.

Identify Architecture Drivers Practice Area

In identifying architecture drivers, traditional practices assume a hierarchy
of architecture scope and authority, visualized by Malan and Bredemeyer
in Fig. 1.3. An enterprise architecture has the broadest scope, and places
constraints on the software domain architectures, which in turn constrain
the application architectures. This flow down of decisions implies that the
architects at one level have technical authority over the architects at the level
below.

Using traditional software architecture practices, architects reason about
the rationale for architecture decisions as follows [10]: Business or mission
goals are expressed as quality attributes of the system, which are satisfied by
architecture decisions. The hierarchy of scope and decisions in Fig. 1.3 implies
that goals are consistent as we flow down from enterprise to component.
However, in an SoS, the managerial independence of constituent systems
means that SoS goals may not flow down to system goals, and that system

6

1.1. BACKGROUND

Data-Intensive
System

Architecture

Data Model Data
Distribution

Physical
Deployment

 Consistency
Availability

Functionality
 Complexity
 Performance

Failure Modes
Availability

Figure 1.2: Convergence of concerns in data-intensive system architecture

goals may actually conflict with SoS goals. This can produce gaps, where SoS
goals are not covered by any composition of constituent system goals, and
may also create opportunities, when the composition of constituent system
capabilities produces a previously unidentified benefit for the SoS. Both top-
down and bottom-up analysis is needed.

The Identify Architecture Drivers practice area includes identification of
system purpose, key functions, and constraints, which overlaps with require-
ments engineering practices of systems engineering. The concept of SoS was
originally introduced by systems engineers (e.g., Maier [110] and Carlock
[29]), and the systems engineering community has paid significant attention
to requirements engineering practices for SoS, typified by the work of Gorod
and colleagues [63] and Dahmann and colleagues [40]. More recently, work by
Gagliardi and colleagues on the Mission Thread Workshop focuses on software
architecture drivers in an SoS [56]. Compared to the other practice areas, this
practice area is relatively mature.

7

CHAPTER 1. INTRODUCTION

Enterprise scope

Domain A scope

Application scope

Component scope

Enterprise architect
decisionsDomain architect

decisions
Application architect

decisions

Component owner decisions

Figure 1.3: Hierarchical architecture scope and authority (after Malan and
Bredemeyer [114])

Architecture Design Practice Area

Architecture design is a decision-making process [47]. The body of knowledge
that is applied to make architecture decisions comprises a number of elements
[31]:

• Design principles

• Reference architectures

• Architectural design and deployment patterns

• Tactics (fine-grained decision to refine patterns and reference architec-
tures in order to promote a particular quality attribute)

• Externally-developed components

SoS architecture design is compositional, making decisions that involve
selecting systems and then composing those systems. This makes the externally-
developed components knowledge element notable in the SoS context, because
all constituent systems are generally developed (and evolved) external to the
SoS.

When designing with externally-developed components, architects often
apply the fundamental design principle of information hiding [127]. This
principle is used, for example, in the Facade pattern [57] or Layers pattern
[28], to decouple a system from a specific underlying off-the-shelf platform.

8

1.1. BACKGROUND

Furthermore, this approach supports the agile practice to defer decisions until
the last responsible moment [131]. The decision about which off-the-shelf
platform to use does not affect layers above the abstraction layer, and so we
can defer that selection decision until late in the design.

However, in the SoS architecture context, introducing an abstraction for
externally-developed technology can be difficult. An example of such an ab-
straction is the Structured Query Language [78] used for data storage packages
in data-intensive systems. This abstraction is large and complex, and makes
tradeoffs regarding system qualities (for example replica consistency versus
availability [139]) that may not satisfy all designs. More generally, in SoS
architectures, an abstraction layer can incur high development cost and force
undesirable quality tradeoffs, and the principle of information hiding must be
set aside in favor of designing the system around the features and qualities of
a particular selected technology. In this case, the design practice shifts from
creating abstractions to making the best selection early in the architecture
design process.

This shift is shown in Fig. 1.4. On the left side, we see the traditional
practice, where the architecture drivers shape the architecture design, and
technology is selected later based on the desired architectural qualities. In
contrast, the right side shows the flow in an SoS, where the technology must
be selected as one of the first architecture decisions, and here the technology
selection influences the architecture design.

Although technology selection influences architecture design in many
systems, this is a dominant and unavoidable characteristic of SoS architecture
design.

Architecture Documentation Practice Area

Architecture documentation has three main uses: Communication, education,
and analysis [34]. SoS architecture documentation approaches such as the
Department of Defense Architecture Framework (DoDAF) [48] structure the
information to satisfy these uses for an SoS. As noted above, designing an SoS
architecture is a compositional activity, and so the SoS architecture documen-
tation depends on information about the constituent systems. However, the
constituent systems necessarily precede an SoS, and so the scope of system ar-
chitecture documentation is generally limited to the independent stand-alone
operation of each constituent system.

9

CHAPTER 1. INTRODUCTION

Identify

Desired Qualities

Shape

Identify

Shape

Desired Qualities +
“Opportunities”-

Gaps

Desired Qualities

Traditional Practices SoS Practices

Figure 1.4: Technology Selection Flow

The SoS architect has both analysis concerns and design concerns. Analysis
of the composed SoS considers functions and qualities such as performance,
security, and availability. In design, the SoS architect focuses on the interfaces
provided and required by the constituent systems, with particular attention to
architecture mismatch [59]. The SoS architect does not focus on the architec-
ture structures within a constituent system. Constituent system architecture
documentation, scoped to address stand-alone operation, may need to be
enhanced to satisfy the needs of the SoS architect. Interface-related behavior
that might be considered private or insignificant when operating stand-alone
can contribute to architecture mismatch in an SoS. For example:

• When servicing a request on a system’s interface, the system locks
records in an external database. During stand-alone operation, this
is considered a private implementation detail, however in the SoS, the
database is shared among several systems and this behavior is visible to
those systems as increased database latency.

• Two constituent systems use the same registry for service discovery,
however each system has different behavior if a request to the registry
times out: One system falls back to cached information, while the other
falls back to a static default configuration. Again, each constituent system
treats this behavior as a private implementation detail, but in an SoS this
behavior can prevent these systems from coordinating.

10

1.1. BACKGROUND

Architecture documentation practices would not usually include these
types of behavior in the system’s architecture documentation. The behavior
may be considered private and is explicitly excluded, or it is not considered
to be architecturally significant, in which case the decision is deferred to
implementation and so it is not included in the architecture documentation.
For example, in the second case above, either approach allows a system to
satisfy its stand-alone functional and quality attribute requirements.

In order to fill these gaps, constituent system architecture documentation
must be enhanced with additional information to meet the needs of the SoS
architect.

Traditional architecture documentation practices are based on collaboration
with stakeholders to explicitly identify and satisfy stakeholder needs (e.g.,
ISO-42010 [79], the Views and Beyond approach [34], and the Viewpoints and
Perspectives approach [137]). These practices would identify the SoS architect
as a stakeholder in the constituent system, and create documentation that
satisfies those needs. However, these practices fail because the SoS does not
usually exist when the documentation for the system architecture is being
created, and so the SoS architect’s concerns cannot be identified. We can adapt
traditional practices to produce additional or enhanced system architecture
documentation to satisfy the SoS stakeholder needs, but this cannot occur until
the SoS is identified.

The managerial independence of the constituent systems can create ad-
ditional stress on stakeholder collaboration. Architecture documentation
stakeholder collaborations include those among architects at different levels
of the hierarchy in Fig. 1.3. However, in an SoS, the constituent systems are
often developed by separate organizations that have competing or conflict-
ing interests that interfere with collaboration among the architects. I was an
SoS architect during several corporate acquisitions, where we were acquir-
ing a company that developed one of our constituent systems. During the
acquisition, communication was restricted: I had my requests for architecture
information reviewed by lawyers and I had to justify the need for each request
to high level corporate executives. As we discuss below in Chapter 6, the
interactions among the architects can become one-time high ceremony events,
with no opportunity for follow-up or clarification.

Even in the case where there is a mutual desire to collaborate, it may not
be feasible because of lifecycle phase differences among the constituent sys-
tems. For example, a constituent system may have no ongoing development
activities, and hence no responsible architect available to represent the sys-

11

CHAPTER 1. INTRODUCTION

tem. In cases like this, the SoS architect must articulate a precise request for
information, and someone must estimate the cost for a representative of the
the constituent system to respond. The SoS owner and the constituent system
owner negotiate to fund the constituent system architect’s work to respond,
and eventually the constituent system representative is directed to supply the
requested information to the SoS architect. Again, there is often little or no
ability to iterate the requests or seek elaboration of the responses.

Architecture Evaluation Practice Area

The purpose of architecture evaluation is to assess whether desired functions
and qualities are likely to be achieved in a system constructed from a particular
architecture [35]. Architecture evaluation practices have evolved from a single
event that occurs prior to beginning implementation [35] to iterative events
that are interwoven with prototyping and development [121]. Practices have
also scaled up from software architecture evaluation, with methods emerging
for system and SoS architecture evaluation [85]. However, the SoS context
creates challenges that are not addressed by these extensions of traditional
practices.

An architecture is produced by a series of decisions (as discussed above in
§1.1.3), with some decisions justified by requirements and assumptions about
the system’s operational environment. In an SoS, one constituent system’s
operational environment is comprised of the other constituent systems. These
other constituent systems will evolve independently and original requirements
and assumptions that were used to evaluate the architecture may no longer
hold true. Garlan labels this mutability of requirements and assumptions as
“uncertainty”, and identifies sources that include humans in the loop, physical
mobility of platforms, and rapid evolution [62], and he notes that traditional
architecture practices that rely on design time analysis to predict and assure
the properties of the system are insufficient in the “uncertain world”. As a
specific example, consider the reference architecture shown in Fig. 1.1. The
inputs, the user workloads, and the shared infrastructure are usually each
under separate operational and management authority, and so each is likely
to evolve independently from the core data-intensive system.

In this context, Garlan calls for closed loop approaches, in which a system
monitors itself to continuously compare the current operating environment
to the design-time assumptions, and reacts by adapting or raising an alarm.
Architecture practices to accomplish this must consider approaches such as

12

1.2. OBJECTIVES AND RESEARCH QUESTIONS

runtime observability to assess system properties. At the scale of many SoS and
data-intensive systems (i.e. 1000s of computer nodes), these approaches point
to architecture design practices that automate the generation of observability
monitoring components, and automate aggregation of telemetry streams to
assess whether the system is achieving the needed properties.

1.2 Objectives and Research Questions

The research reported in this thesis was performed in a consulting context.
The objective was always to improve system development outcomes for my
client, and more specifically, to provide validated architecture practices that
were systematic and would produce successful and repeatable results for the
client’s organization.

My experiences with a number of failed projects in the SoS context inspired
this research. These included:

• The United States Army’s Future Combat System, which was based on
the System of Systems Common Operating Environment platform. This
SoS was to provide battlefield command and control, involving many
system owners and development contractors, all with conflicting goals.
This project was cancelled in 2009.

• The United States Nationwide Health Information Network, which
started in 2004. This system was a highly federated approach to al-
low healthcare providers at any location to securely access a patient’s
healthcare records and to provide aggregation of patient records for
public health monitoring and research. This architecture went through
many iterations and the system is still not widely used.

• My industrial experience, as a chief software architect leading the ar-
chitecture integration of large-scale business systems after corporate
mergers and acquisitions. In these projects, the acquired organizations
often would not cooperate with us or collaborate on the architecture
integration, and these projects always took longer and delivered less
capability than planned.

13

CHAPTER 1. INTRODUCTION

On these and other projects, I saw clients struggle to use traditional soft-
ware architecture practices, such as those described above in §1.1.3, to develop
large and complex SoS. These practices were not producing satisfactory out-
comes: Projects took much longer and delivered less value than planned. This
produces our main research question:

RQ: How should traditional software architecture practices be changed
to address the challenges of large scale, complex SoS contexts?

An initial survey of research and practice literature found little on the
subject, and so I began my research by considering two exploratory sub-
questions. First, B

RQ-0A What is the state of research in SoS architecture?

In order to triangulate my client’s experience with the broader state of the
practice, I asked a second sub-question:

RQ-0B What is the state of the practice in SoS architecture develop-
ment and analysis?

These studies indicate that the Identify Architecture Drivers practice area is
relatively mature (as discussed above in §1.1.3); however, there are a number
of open issues in research and practice in the remaining areas. At this point,
I created a research plan that addressed one issue in each of the remaining
practice areas.

In the Architecture Design practice area, there are a number of elements in
the architecture design body of knowledge (discussed above in §1.1.3). As net-
worked distributed systems, SoS software architecture draws from the related
domains of service-oriented architecture, enterprise information technology ar-
chitecture, and distributed system architecture. In these areas, knowledge such
as principles, reference architectures, and patterns have been well studied (e.g.,
Erl [50] and Rischbeck & Erl [135] in service-oriented architecture, Fowler [55]
and Hohpe [74] in enterprise systems, and Dean [44] in large-scale distributed
systems). The remaining design knowledge element, externally-developed
software, is directly relevant to SoS architecture design, because all constituent
systems are externally developed. My consulting work at this point turned

14

1.2. OBJECTIVES AND RESEARCH QUESTIONS

to data-intensive systems. (As discussed in §1.1.3, data-intensive systems
are a type of SoS.) In designing these architectures, technology selection is a
fundamental architecture decision, and this leads to a sub-question about how
to help less experienced architects make these decisions:

RQ-1 What decision support is needed to improve the efficiency and
quality of technology selection designs of scalable data-intensive
systems?

Turning to the Architecture Documentation practice area, the managerial
independence of the constituent systems can limit the stakeholder collabora-
tion that traditional documentation practices depend on (discussed above in
§1.1.3). Without stakeholder collaboration, we can still address concerns such
as performance and availability by observing the constituent system and mak-
ing measurements. However, addressing architecture mismatch concerns can
require access to expert knowledge and documentation about the constituent
systems. In the SoS context, where requests for information can be highly
constrained and scrutinized, an SoS architect needs a validated approach to
scope an information request. This leads to the sub-question:

RQ-2 When an existing system will be introduced into an SoS, what
additional architecture documentation is needed?

The final sub-question addresses the Architecture Evaluation practice area.
I considered focusing on emerging SoS architecture evaluation methods, inves-
tigating issues such as how to assess or improve the coverage of an evaluation
method, or how to adapt evaluation methods when stakeholder participation
is limited by constituent system managerial independence. However, I was
unable to identify data sources to support retrospective analysis or to recruit
participants for an experiment or case study. I decided to focus on runtime
observability as an extension of traditional architecture evaluation practices,
as discussed above in §1.1.3. Runtime observability can provide initial and
ongoing assurance that quality properties of the system are satisfied, which
produces the sub-question:

RQ-3 What approaches can be used to improve the runtime observ-
ability of a large-scale data-intensive system?

15

CHAPTER 1. INTRODUCTION

1.3 Research Methods

My research uses a number of qualitative methods that are common in software
engineering research.

• Systematic Literature Review—This method is an objective and repeat-
able process to critically identify, evaluate, and synthesize findings from
published studies, in order to answer pre-defined research questions
[49, 88]. I use this method to characterize the state of SoS architecture
research and to begin to understand how this context is different from
mainstream software architecture (Chapter 2).

• Semi-structured Interviews—This method mixes open-ended and spe-
cific questions to elicit both foreseen information and unanticipated
information [140, 105]. I use this method to understand the state of the
practice of SoS architecture (Chapter 3) and to understand the state of
the practice of runtime assurance (Chapter 7). In both cases, I use the
constant comparison method for data analysis [140], where each interview
is coded and analyzed, and the results are checked in the next interview.

• Single Case Mechanism Experiment—This method tests a single case of
a treatment (an interaction between a designed artifact and the problem
context that the artifact addresses) [156]. I use this method to evaluate
the documentation viewpoint (Chapter 6), in the mode of an expert
panel solving a simulated problem, and also use this method to evaluate
model-driven observability (Chapter 8) with a real-world development
team.

• Technical Action Research—This method uses an experimental artifact
(an artifact that is still under development) to help a client, and simulta-
neously gain knowledge about the artifact in use [156]. I use this method
to evaluate the QUality At Scale Knowledge Base for Big Data (QuABase-
BD) decision support tool (Chapter 4) and to evaluate the Lightweight
Evaluation and Architecture Prototyping for Big Data (LEAP4BD) tech-
nology selection method (Chapter 5).

16

1.4. THESIS AT A GLANCE

1.4 Thesis at a Glance

The research context is illustrated in Fig. 1.5, which shows how the research
questions and research methods are related to the goals of the thesis. The
main research question is How should traditional software architecture practices
be changed to address the challenges of large scale, complex SoS contexts? The
systematic literature review (SLR) and semi-structured interviews produce
descriptions of the state of the research and state of the practice in SoS archi-
tecture, to answer RQ-0.

The research then continues in three threads, one for each of the practice
areas where the initial study found a need to change architecture practices.

The first thread considers the architecture design practice area. The conver-
gence of concerns shown in Fig. 1.2 drives architects to make early technology
selection decisions. I apply technical action research to develop and evaluate
first a decision support tool, and then a technology selection method. Together,
these answer RQ-1.

The second thread focuses on the architecture documentation practice area.
Here, I develop a viewpoint to enhance documentation for systems to be used
in an SoS, and then perform a single case mechanism experiment to evaluate
that viewpoint to answer RQ-2.

The third thread considers the architecture evaluation practice area. We
create a treatment that used model-driven approaches to implement runtime
observability at scale. Semi-structured interviews support this framing, and a
single case mechanism experiment is used to evaluate the approach.

Together, these three threads produce a set of new architecture practices to
address the challenges of the large scale, complex SoS context, answering the
main research question.

1.5 Outline and Origin of Chapters

The research presented in this thesis has been previously published, or has
been submitted for review for publication. The chapters that follow are based
on the publications listed below. For each, I also describe my contribution to
the research underlying each publication.

17

CHAPTER 1. INTRODUCTION

RQ-1

RQ-0

RQ-3

RQ-2

SLR

Semi-
structured
Interviews

State of SoS
Architecture

Research

State of SoS
Practice

Single Case
Mechanism
Experiment

SoS
Viewpoint

Technical
Action

Research

Technical
Action

Research

Technology
Selection

Tool

Technology
Selection
Method

Semi-
structured
Interviews

Single Case
Mechanism
Experiment

Model-driven
Runtime

Observability
Approach

Diagram Key

Research
Method

Thesis Goal

Figure 1.5: Research Context

• Chapter 2: This chapter addresses research question RQ-0A and reports
the results of a systematic literature review to characterize the state of
SoS architecture research. Parts of this chapter are based on:
J. Klein, H. van Vliet, A systematic review of system-of-systems architec-
ture research, in: Proc. 9th Int. ACM SIGSOFT Conf. on the Quality of
Software Architectures, QoSA’13, Vancouver, BC, Canada, 2013.

Contribution: Planned and conducted the systematic review, and wrote
the paper.

18

1.5. OUTLINE AND ORIGIN OF CHAPTERS

• Chapter 3: This chapter addresses research question RQ-0B and reports
the results of a series of semi-structured interviews to characterize the
state of the practice of SoS architecture practice. Parts of this chapter are
based on:
J. Klein, S. Cohen, R. Kazman, Common platforms in system-of-systems
architectures: Results from an exploratory study, in: Proc. IEEE/SMC
Int. Conf. on System of Systems Eng., SoSE, 2013.

Contribution: Planned the interview protocol and developed the ques-
tions, was the lead interviewer for all interviews, conducted the data
analysis, wrote the paper.

• Chapter 4: This chapter addresses part of research question RQ-1. The
chapter presents the design of a decision support tool for big data stor-
age technology selection, and reports on the evaluation of the tool using
technical action research. Parts of this chapter are based on:
I. Gorton, J. Klein, A. Nurgaliev, Architecture knowledge for evaluating
scalable databases, in: Proc. 12th Working IEEE/IFIP Conf. on Software
Architecture, WICSA 2015, 2015.

J. Klein, I. Gorton, Design assistant for NoSQL technology selection,
in: Proc. 1st Int. Workshop on the Future of Software Architecture
Design Assistants, FoSADA’15, 2015.

Contribution: Identified and described the coupling of concerns that mo-
tivated the research. Developed and implemented the knowledge model
that links quality attributes, quality attribute scenarios, architecture tac-
tics, and product implementations. Contributed 80% of the knowledge
base content in the areas of quality attributes, general scenarios, and
tactics. Planned, conducted, and analyzed the results of the evaluation
presented in the second paper. Wrote 60% of the first paper and 100% of
the second paper.

• Chapter 5: This chapter addresses part of research question RQ-1. The
chapter presents the LEAP4BD method for evidence-based selection of
big data storage technology, and reports on the evaluation of the method
using technical action research. Parts of this chapter are based on:
J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, C. Matser, Application-
specific evaluation of NoSQL databases, in: Proc. IEEE Big Data Congress,
2015, pp. 526-534.

19

CHAPTER 1. INTRODUCTION

J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, C. Matser, Perfor-
mance evaluation of NoSQL databases: A case study, in: Proc. of 1st
Workshop on Performance Analysis of Big Data Systems, PABS 2015.

Contribution: Developed 80% of the LEAP4BD method, led the technical
action research that applied the method, conducted the analysis and
interpretation of the performance analysis measurements, and wrote
both papers.

• Chapter 6: This chapter addresses research question RQ-2. The chapter
presents an architecture documentation viewpoint for a system to be
used in an SoS, and reports on the evaluation of the viewpoint using a
single case mechanism experiment on a simulation with an expert panel.
Parts of this chapter were submitted as:
J. Klein, H. van Vliet, System-of-systems viewpoint for system architec-
ture documentation, Submitted to Journal of Systems and Software.

Contribution: Developed the viewpoint, planned and conducted the
expert panel review, analyzed the review results, and wrote the paper.

• Chapter 7: This chapter addresses (in part) research question RQ-3. This
chapter presents an approach to assuring the runtime properties of a
data-intensive SoS, using model-driven engineering to insert runtime
observability at scale. Parts of this chapter are based on:
J. Klein, I. Gorton, Runtime performance challenges in big data systems,
in: Proc. Workshop on Challenges in Performance Methods for Software
Development, WOSP-C’15, 2015.

Contribution: Defined the solution approach presented in this paper,
and wrote the paper.

• Chapter 8: This chapter addresses (in part) research question RQ-3. The
chapter reports on the results of applying the model-driven engineering
approach in a single case mechanism experiment. Parts of this chapter
are based on:
J. Klein, I. Gorton, L. Alhmoud, J. Gao, C. Gemici, R. Kapoor, P. Nair, V.
Saravagi, Model-driven observability for big data storage, in: Proc. 13th
Working IEEE/IFIP Conf. on Software Architecture, WICSA 2016, 2016.

Contribution: Planned and led the experiment, analyzed the results,
wrote the paper.

20

2
Systematic Review of

Systems-of-Systems Architecture
Research

Summary

A system of systems is an assemblage of components which individually may
be regarded as systems, and which possesses the additional properties that
the constituent systems are operationally independent, and are managerially
independent. Much has been published about the field of systems of systems
by researchers and practitioners, often with the assertion that the system-of-
systems design context necessitates the use of architecture approaches that are
somewhat different from system-level architecture. However, no systematic
review has been conducted to provide an extensive overview of system-of-
systems architecture research. This chapter presents such a systematic review.
The objective of this review is to classify and provide a thematic analysis of
the reported results in system-of-systems architecture. The primary studies
for the systematic review were identified using a predefined search strategy
followed by an extensive manual selection process. We found the primary
studies published in a large number of venues, mostly domain-oriented, with
no obvious center of a research community of practice. The field seems to
be maturing more slowly than other software technologies: Most reported
results described individuals or teams working in apparent isolation to de-
velop solutions to particular system-of-systems architecture problems, with no
techniques gaining widespread adoption. A comprehensive research agenda

21

CHAPTER 2. SYSTEMATIC REVIEW

for this field should be developed, and further studies should be performed
to determine whether the information system-related problems of system-of-
systems architecture are covered by existing software architecture knowledge,
and if not, to develop general methods for system-of-systems architecture.

2.1 Introduction

A system is a collection of elements that together produce some result that
cannot be obtained by the elements operating individually [77]. These ele-
ments of a system may themselves be large and complex, and comprised of
sub-elements acting in concert. The term system of systems designates the
case where the constituent elements are collaborating systems that exhibit the
properties of operational independence (each constituent system operates to
achieve a useful purpose independent of its participation in the system of
systems) and managerial independence (each constituent system is managed
and evolved, at least in part, to achieve its own goals rather than the system of
systems goals) [110]. There is consensus among researchers [22, 113] and prac-
titioners [125] that these properties necessitate treating a system of systems
as something different from a large, complex system. While fields such as
enterprise architecture and service-oriented architecture address systems that
include the distinguishing characteristics noted above, “systems of systems”
is treated as a distinct field by many researchers and practitioners, with its
own conferences (e.g., IEEE International Conference on System of Systems
Engineering) and journals (e.g., International Journal of System of Systems
Engineering).

Architecture plays a vital role in a system’s ability to meet stakeholders’
business and mission goals [10], hence we decided to perform a Systematic
Review [88] of the published literature to characterize the state of research on
system-of-systems architecture. We define the architecture of a system as the
set of structures needed to reason about the system, which comprise elements,
relations among them, and properties of both [10]. In the context of a system
of systems, some structures may be comprised of elements and relations that
are purely physical. For example, in structures where the elements are radar
systems, the relationship is their arrangement and orientation to detect targets
in a particular geographic area, and a property is the transmission frequency of

22

2.2. RESEARCH METHOD

each radar so as to avoid electronic interference. While such physical structures
are obviously important to achieving business and mission goals, we confined
our review to research in the information system aspects of system-of-systems
architectures.

The specific research questions that motivated our study are:

1. What research has been published on the subject of system-of-systems
architecture?

2. What is the impact of these studies to the research and practice of system-
of-systems architecture?

Previous literature surveys on systems of systems have focused on the
definition and distinguishing characteristics of systems of systems [22, 63]. Our
research has different goals, as noted above, and we have used a systematic
and rigorous approach to identifying and selecting the reviewed primary
studies. Our study performed a systematic search for publications in multiple
data sources and followed a pre-defined protocol for study selection and data
extraction.

This chapter is organized as follows: Section 2 of this chapter discusses the
research method used for the study. Section 3 presents and discusses the results
of the review. Section 4 discusses threats to validity of these results. Section 5
presents conclusions and identifies opportunities for additional research.

2.2 Research Method

As noted above, this study was conducted according to the systematic review
methodology described by Kitchenham and Charters [88], following all steps
and guidelines. There are many recent publications that describe the method-
ology, mechanics, and advantages and limitations of systematic reviews, so
we discuss here only those aspects of the methodology relevant to the results
reported here.

The specific process that we followed to create the set of primary sources
is shown in Fig. 2.1 and is described in the following sections.

2.2.1 Search Strategy and Data Sources

The search strings used in this review were constructed using the following
strategy:

23

CHAPTER 2. SYSTEMATIC REVIEW

research
questions

identify keywords
and

develop search
query strings

automated search

filter by venue

automated
de-duplication

filter by title

filter by abstract

filter by full text

manual
de-duplication

primary studies

For each search result:

trial
search

iterate
and

refine

final
search strings

Figure 2.1: Primary studies selection process

24

2.2. RESEARCH METHOD

• Identify the main terms based on the research questions and topics being
researched;

• Determine and add synonyms, related terms, and alternative spellings
as appropriate, and incorporate into the string using Boolean “or”;

• Link the main terms using Boolean “and”;

• Pilot the search string and iterate the steps until sufficient sensitivity
[164] was achieved, using a standard constructed of selected references
from a recent textbook [81] surveying the field of systems of systems.

We took the position that systems of systems are an independent field of
research and practice (as discussed above), and focused on studies that were
explicitly in that field.

Our main terms were “system of systems” and “architecture”.
We considered several synonyms for “system of systems”. “Service-ori-

ented architecture” is concerned with interoperation between independent
systems, but was rejected as too narrow in scope since it represents just one
possible architecture style for system integration.

We also considered “enterprise architecture”, but rejected it as being too
broad. An enterprise architecture is usually realized as a set of interoperat-
ing systems; however, these systems may or may not satisfy the criteria of
independence of purpose and evolution that characterize a system of systems.
Furthermore, in practice, an enterprise architecture frequently manifests as
principles and governance processes, rather than the structures (elements
and relationships) that comprise a system-of-systems architecture or a system
architecture [103].

We added alternate spellings, and extended the keywords based on pilot
search results.

This strategy produced the following ideal search string:
("system of systems" OR "systems of systems" OR

"system-of-systems" OR "systems-of-systems") AND

(architecture OR design OR implementation OR model

OR interoperability OR interoperation)

25

CHAPTER 2. SYSTEMATIC REVIEW

Variabilities in the search features provided by the digital literature col-
lections (e.g., ACM Digital Library, IEEEXplore, and Elsevier Science Direct)
required adapting the ideal search string to the capabilities of each particular
search engine, as has been done in other recent systematic reviews (e.g., [33]).
We made every effort to ensure that the adapted search strings were logically
and semantically equivalent. Both authors were involved in this phase of the
review, refining and reviewing the capability of the adapted search strings.

The digital sources searched for this review were:

• IEEExplore (http://www.ieeexplore.org)—IEEE publications only

• ACM Digital Library (http://dl.acm.org)—ACM publications only

• Compendex (http://engineeringvillage2.org)

• Inspec (http://engineeringvillage2.org)

• Wiley (http://onlinelibrary.wiley.com)

• Elsevier Science Direct (http://sciencedirect.com)

• Inderscience (http://inderscience.com)

• SpringerLink (http://springerlink.com)

• IOS Information, Knowledge, Systems Management
(http://iospress.metapress.com/content/105654/)

As noted above, the sensitivity (or inclusiveness) of the search was checked
using a standard of 22 primary studies. These studies were selected from the
references cited in Jamshidi’s recent textbook [81], based on their relevance to
this study’s research questions.

The search results used for this study were generated on 12 July 2012, and
covered published results up to that date.

2.2.2 Search Results

The search strategy used for this study resulted in 1,865 initial candidate
papers. Semantic ambiguity of several of the main search terms resulted in a
strategy that traded off higher sensitivity against lower precision [164]. For
example, the terms “system of systems” and “architecture” are often used in
ways that do not relate to the subject of this systematic review, but we were

26

http://www.ieeexplore.org
http://dl.acm.org
http://engineeringvillage2.org
http://engineeringvillage2.org
http://onlinelibrary.wiley.com
http://sciencedirect.com
http://inderscience.com
http://springerlink.com
http://iospress.metapress.com/content/105654/

2.2. RESEARCH METHOD

unable to automatically detect these semantic differences. Also, some of the
search engines included full text of the paper in the search, so any paper citing
a reference published in the IEEE System of Systems Engineering Conference
was selected by this search strategy.

We performed an automated de-duplication based on first author and
title, which reduced the set to 1,617 papers. Next, one researcher looked at
publication venue, title, and abstract, and applied the following selection
criteria:

1. Include only papers from peer-reviewed journals, conferences, and work-
shops.

2. Include only papers written in English, with full text available.

3. Exclude papers that do not explicitly or implicitly define “system of
systems” as an assemblage of constituent systems that are independently
operated and independently managed (i.e. as defined by Maier [110]).

4. Exclude papers that focus on defining the term “system of systems,”
or on the general implications of a particular definition (unless those
implications explicitly address architecture). There is a rich body of pub-
lications that focus on defining and distinguishing a system of systems,
and several previously published surveys collect and analyze this body
of literature [22, 63]. In the case where a paper discussed definitions
and also explicitly addressed architecture implications of a particular
definition (e.g., the heuristics that Maier presents [110]), we included the
paper.

5. Exclude papers that address architecture concerns unrelated to informa-
tion systems (e.g., papers focused only on physical architecture struc-
tures, or modeling social or political systems as a system of systems.).

6. Exclude papers that are primarily concerned with general distributed
system issues, e.g., agent-based coordination, service-oriented architec-
ture and web services, or system interoperability. From an information
systems architecture perspective, systems of systems are almost always
distributed systems, comprising multiple autonomous computers exe-
cuting software that communicates through a computer network. The
converse is not true—many distributed systems are not systems of sys-
tems, because the constituent systems do not exhibit operational and

27

CHAPTER 2. SYSTEMATIC REVIEW

managerial independence. Many papers addressing issues related to
distributed systems (e.g., coordination or interoperation) make reference
to the system-of-systems context and were selected by the automated
search. We excluded papers that discussed general distributed system
issues, unless the paper focused specifically on those issues within the
system-of-systems context.

7. Exclude papers that deal with domain-specific algorithms, not generaliz-
able architecture approaches (e.g., reformulating a particular algorithm
to operate in a particular system-of-systems architecture).

8. Exclude papers that deal primarily with system-of-systems requirements,
acquisition, test, integration, or certification processes, unless there is also
discussion of how architecture impacts those other lifecycle processes.

9. Exclude papers that deal with general system architecture concerns or
approaches, with only reference to scaling up to a system-of-systems
context.

Applying these inclusion and exclusion criteria looking only at the publica-
tion venue, title, and abstract resulted in 234 papers. At this point, additional
filtering was performed to remove papers that presented the same results.
Where we found the same authors publishing several papers that presented
similar results, we retained only the most recent or most comprehensive pre-
sentation. This excluded an additional 34 papers, resulting in 200 papers.

A single researcher performed the initial exclusion screening, so a “test-
retest” protocol was used to verify the exclusion decisions [88]. At the conclu-
sion of the initial exclusion process, 50 of the excluded papers were selected at
random and re-evaluated. None of the re-evaluated papers was incorrectly
excluded.

Two researchers then read the full text of each of the 200 papers during the
data extraction process. During this step, an additional 6 papers were found to
violate one of the inclusion/exclusion criteria, and so were excluded, leaving
194 primary studies in the review. The full list of primary studies is available at
http://www.andrew.cmu.edu/user/jklein2/primary-sources.pdf.

28

http://www.andrew.cmu.edu/user/jklein2/primary-sources.pdf

2.2. RESEARCH METHOD

2.2.3 Data Extraction and Synthesis

We read the full text of each of the 194 primary studies, and used a predefined
spreadsheet form to extract and store the following data related to the research
questions:

• Type of research result reported by the study, categorized using Shaw’s
scheme [143];

• The architecture task(s) that were the focus of the primary study, based
on the categorization developed by Bass and colleagues [11];

• The system application domain (if any) that was the focus of the primary
study or was used in any examples presented in the study. This was an
emergent classification, with no pre-defined categories.

• The quality attributes (if any) that were the focus of the primary study.
This was also an emergent classification, with no pre-defined categories.
We limited the data extraction to no more than 3 discrete quality at-
tributes for any of the studies.

• The technology maturity level indicated by the results presented in the
primary study, using the classification scheme of Redwine and Riddle
[133].

Each researcher initially performed data extraction independently on a set of
20 studies, and these results were discussed in detail. This led to the creation
of decision trees for the Result Type and Technology Maturity data extraction,
to assist the two researchers in making more consistent classification. The
researchers then independently performed data extraction for the entire set
of 194 primary studies. Results were compared, and disagreements were
discussed and resolved.

29

CHAPTER 2. SYSTEMATIC REVIEW

2.3 Results and Discussion

2.3.1 Demographic Data

The 194 primary studies were published in 95 different venues. However,
just 12 venues account for 104 of the published papers, as shown in Table 2.1,
with each of the other 83 venues having just 1 or 2 published papers. Most of
the primary studies were published in conference proceedings (143), with 35
published in journals and 16 published in workshop proceedings.

Table 2.1: Most frequent publication venues

Venue # of studies

Int. Conf. on System of Systems Eng. (SoSE) 27
IEEE Systems Conf. 13
Systems Engineering 10
IEEE Aerospace Conf. 9
Int. Conf. on Systems, Man and Cybernetics (SMC) 11
IEEE Military Communications Conf. (MILCOM) 8
IEEE Systems Journal 8
Winter Simulation Conf. (WSC) 5
Proc. SPIE 4
Digital Avionics Systems Conf. 3
Information, Knowledge, Systems Management 3
MTS/IEEE Biloxi Conference (OCEANS) 3

Subtotal 104

The year of publication is shown in Table 2.2. Our systematic review reveals
that there was a sharp increase in the number of publications in 2008, and the
number of publications has held steady each year since then.

The first International Conference on System of Systems Engineering (SoSE)
was held in 2005. Although no papers from that conference were selected as
primary studies for this systematic review, the creation of a new conference
indicates that the community of researchers in the field had reached a tipping
point and was sufficient to support a stand-alone event. Another milestone
event occurred in 2008, when the United States Department of Defense (US
DOD) published its System Engineering Guide for Systems of Systems, clearly

30

2.3. RESULTS AND DISCUSSION

Table 2.2: Number of primary studies published each year

Year #

1993 2
1994 2
1995 0
1996 0
1997 0
1998 3
1999 0
2000 2
2001 4
2002 3
2003 4
2004 5
2006 12
2007 10
2008 13
2009 28
2010 34
2011 30
2012 13*

*This study included papers published
through 12 July 2012, approximately 1

2 of the
year 2012.

distinguishing and highlighting the significance of systems of systems. Also
in 2008, the US DOD funded and launched the Systems Engineering Research
Center. This focus of attention and infusion of funding may have contributed
to the higher publication rates since 2008.

31

CHAPTER 2. SYSTEMATIC REVIEW

2.3.2 Type of Research Result Reported

The research results reported in each primary study were classified by select-
ing one of the categories defined by Shaw [143]. Shaw’s categorization was
originally created to explain how software engineering research strategies—
questions, type of results, and validations—shift as the field matures. We
apply the categorization to understand where researchers are focusing their
effort.

We used the following decision tree to perform the classification: The spe-
cific solution category included studies that presented an architecture in some
detail, with no generalization of the results as method, model, or notation.
Taxonomies, frameworks, or well-argued generalizations were classified as
a qualitative or descriptive model. Studies presenting a repeatable way to per-
form an architecture task were classified as procedure or technique. A model
supporting formal or automatic analysis or code generation was classified as
an analytic model; a graphical or textual notation for an analytic model, or a
tool supporting such a notation, was classified as notation or tool. The report cat-
egory included experience reports and guidelines for applying a technique or
procedure. Benchmarks and trade studies were classified as answer or judgment.
Finally, predictive models based on observed data were classified as empirical
model. In cases where a study reported multiple result types, we selected a
single one that was the focus of the paper.

Although these categories appear to be distinct, we found some difficulty
in applying this scheme to the primary studies in this systematic review. We
observed that researchers publishing their results tended to clearly define the
result type in a paper’s abstract, and tended to organize a paper around a
single result type. On the other hand, practitioners were often less precise in
defining the type of result reported in a paper, and published papers covering
several result types. We did not attempt to classify authors as “researcher”
or “practitioner” (this would have to be based on the affiliation reported
in the publication, which itself does not necessarily distinguish researchers
from practitioners, and may not be representative of the organization that the
author belonged to when the reported work was conducted). In the initial data
extraction from practitioner studies, there was frequent disagreement between
the authors, which was resolved by independently re-reading the study and
discussing the categorization until agreement was reached.

32

2.3. RESULTS AND DISCUSSION

As shown in Table 2.3, the most frequently reported result type was a
procedure or technique (61 studies). These procedures were presented at multiple
task levels, ranging from specific single tasks in the system development
process like analyzing a particular quality attribute, up to comprehensive
approaches for performing architecture design and evaluation for a system
of systems. We found that most of these procedures seemed to be created in
isolation—there was almost no reference to, or building on, the work of others.

Table 2.3: Type of research result reported

Result Type #

Procedure or technique 61
Qualitative or descriptive model 43
Specific solution 36
Analytic model 29
Notation or tool 11
Report 10
Answer or judgment 4
Empirical model 0

The second most frequently reported result type was a qualitative or descrip-
tive model (43 studies). Many of these models were aimed at dealing with the
scale and complexity of the system-of-systems architecture context. Examples
include informal taxonomies of element types and identification of significant
element properties related to a particular type of analysis. Applying the ISO-
42010 metamodel [79], many of these qualitative or descriptive models were
framed in terms of stakeholder concerns, and partially define a viewpoint.

Specific solutions were frequently published (36 studies). These primary
studies presented the architecture of a particular system of systems, usu-
ally with some accompanying discussion of drivers, notable quality attribute
achievements, or particular challenges. While many primary studies presented
a system-of-system architecture to demonstrate or validate another result type,
we applied this category to studies where the primary focus was presentation
of a completed architecture, with only incidental discussion of other types of
results.

33

CHAPTER 2. SYSTEMATIC REVIEW

There were a number of analytic models published (29 studies), focused
mostly on automatic manipulation of the architecture related to a particular
quality attribute. We applied this category to papers that reported both an
analytic model and an accompanying tool.

Finally, there were a smaller number of results in the notation or tool category
(11 studies), report category (10 studies), and answer or judgment category (4
studies). Our systematic review found no papers reporting an empirical model.

2.3.3 Architecture Task Focus

We grouped the architecture tasks defined by Bass and colleagues [11] into
a smaller number of composite categories, reflecting that in practice, the
tasks of design, analysis, modeling, and documentation are often performed
concurrently. Each primary study was classified into a single category, as
shown in Table 2.4.

Table 2.4: Architecture task focus

Architecture Task #

Design/Analysis/Modeling/Documentation 137
Model-driven architecture 19
Evaluation/Analysis 12
All tasks (not model-driven architecture) 18
No architecture task 5
Test (design for test, testability analysis of an architecture) 3

Most of the primary studies focused on the design/analysis/modeling/-
documentation tasks that are core to creating an architecture. This category
included primary studies that reported specific solution results (as described
in the previous section) in which the authors discussed issues related to these
architecture tasks.

There were 19 primary studies that presented results related to model-
driven architecture (MDA) methods. The models created in applying MDA
methods are used in many architecture tasks, but we chose to distinguish
MDA results from other studies that focused on all architecture tasks, but did
not apply an MDA approach. There were 18 studies in this category.

Architecture evaluation and the analysis related to evaluation were the
focus of 12 primary studies.

34

2.3. RESULTS AND DISCUSSION

A small number of studies (3) focused specifically on architecture tasks
related to test and integration, including architecture design for testability and
analysis of testability.

Finally, there were five studies where no focus on an architecture task
could be identified. These studies presented specific solution results, with no
accompanying discussion that contributed to architecture knowledge for any
of the architecture task categories.

2.3.4 Application Domain

Many of the primary studies framed their results in the context of a particular
application domain. These are summarized in Table 2.5.

There were 74 primary studies that did not frame their results in a particular
application domain. Of those that did discuss a particular application domain,
the most frequently discussed was defense and national security (58 studies).
The Global Earth Observation System of Systems was discussed by 20 of the
primary studies. The remaining 42 primary studies discussed a variety of
other application domains.

Table 2.5: Application domain

Application Domain #

No specific application domain 74
Defense and national security 58
Earth observation system 20
Space system 8
Modeling and simulation 6
Sensor network 5
Healthcare, electric power grid 4
Business information system 3
Transportation system 3
Astronomy 2
Cloud computing, crisis manage-
ment system, enterprise architec-
ture, home automation, human
tracking, SCADA, or social com-
puting

1 each

35

CHAPTER 2. SYSTEMATIC REVIEW

2.3.5 Quality Attribute Focus

Architecture allows us to reason about a system’s ability to satisfy both func-
tional and quality requirements. There were 128 primary studies that focused
on one or more quality attributes.

Quality attributes are notoriously difficult to define when only the name
is given [9], and so we did not attempt to infer an author’s meaning. We
performed an emergent categorization, extracting the specific terminology
used in each study, recognizing that there may be some overlaps in this cate-
gorization. For example, an author referring to Quality of Service (QoS), may
have intended to include availability, performance, and other qualities under
that label.. We extracted up to three quality attributes from each study (there
were nine studies that focused on more than three qualities). The results are
shown in Table 2.6.

The most frequently discussed quality attribute was interoperability (45
studies). Since a system of systems is a collection of collaborating systems, in-
teroperability is a necessary concern. Evolution was also frequently addressed
(13 studies), and since a system of systems combines existing independent sys-
tems, evolution is a natural concern. Security and safety were also frequently
discussed (14 and 8 studies, respectively), and these concerns often arise in
the defense and national security application domain, which was the most
frequently discussed application domain.

2.3.6 Technology Maturity

The result reported by each of the primary studies was classified using Red-
wine and Riddle’s technology maturation model [133]. This model traces the
evolution of software technology from initial concept definition through six
phases that culminate in popularization, as demonstrated by production qual-
ity versions of the technology and broad commercialization. The classification
results are shown in Table 2.7.

There were no basic research results, and a small number of concept de-
velopment results. These may be attributed to our decision to exclude studies
that focused only on defining and distinguishing the basic concepts related to
systems of systems.

36

2.3. RESULTS AND DISCUSSION

Table 2.6: Quality attribute focus

Quality Attribute Discussed #*

No specific quality attributes discussed 66
Interoperability 45
Security 14
Evolution 13
Performance 9
Safety 8
Testability 6
QoS, reusability, risk 5
Adaptability, complexity, correctness, coupling, flexibility, reliability 3
Availability, compliance, composability, cost, efficiency 2
Assurance, consistency, dependability, feasibility, manageability, mon-
itorability, privacy, reconfigurability, robustness, self-healing, self-
configuration, supportability, survivability

1

More than three qualities discussed 9

*Multiple classification allowed—up to three distinct quality attributes per study

A majority of the results were in the development and extension category
(124 studies), reflecting results that have not yet been applied to develop a
system. A prototypical example of a study in this category is the work of
Dimarogonas [46], which reports on a set of design tenets and rules for archi-
tecture development, with no evidence presented that the reported approach
was applied in the design of a system-of-systems architecture. Also, the frame-
work reported in this study was independently developed, not building on
any previous system-of-systems architecture research.

There was some internal development and extension (30 studies), mostly
reflecting authors’ extensions of their own previous work. Finally, 35 studies
were classified as external extension and development, explicitly applying
and extending the work of other researchers. Li and Yang’s study [106] is a
prototypical example of this category, reporting a system-of-systems archi-
tecture design process that extends system architecture, system-of-systems
architecture, and software product line research and technology.

37

CHAPTER 2. SYSTEMATIC REVIEW

Redwine and Riddle originally noted that the maturation process takes
15-20 years, based on data through the mid-1980s. Shaw performed a similar
analysis, confirming the maturation timeline using data through the 1990s
[142]. Many researchers cite Maier’s 1998 publication [110] as marking the
start of the system-of-systems technology development, which puts the field
approximately 14 years into the maturation process at the time of our sys-
tematic review. Compared to other software technologies, system-of-systems
architecture technology appears to be maturing relatively slowly.

Table 2.7: Technology maturity phase

Maturity Phase #

Basic research 0
Concept formulation 5
Development and extension 124
Internal enhancement and exploration 30
External enhancement and exploration 35
Popularization 0

2.3.7 Impacts on research and practice

This systematic review has a number of implications for research and practice.

Relationship to Adjacent and Overlapping Fields

Among the primary studies that were framed in a particular application do-
main, the most frequently discussed domains deal with systems that are
typically government-funded and government-acquired (defense and national
defense, earth observation system, space system), and we see very little ref-
erence to the term “systems of systems” in other domains. We also note that
most of the primary studies were published in venues focused on a specific
application domain, rather than in venues focused on more general software
engineering or information systems. This could imply that systems of systems
appear more frequently in certain application domains, or that the designa-
tion of a large, complex system as a “system of systems” provides a benefit
only in certain application domains, and these types of systems are simply
not distinguished in other application domains. For example, in many large

38

2.3. RESULTS AND DISCUSSION

corporations, the information technology infrastructure satisfies the definition
of system of systems (operational and managerial independence of the con-
stituent systems, which are managed and operated by different business units
and functional units), but this type of system is not typically referred to as a
“system of systems”.

Additional research is needed to determine if the information system
aspect of system-of-systems architecture constitutes a distinct field of research
and practice, or if other fields such as distributed systems, service-oriented
architecture and interoperating systems, and enterprise architecture already
cover it.

Relationship to Industry Platforms and Software Ecosystems

Maier classified systems of systems into three categories, based on the type of
managerial control [110]:

• Directed: The system of systems is centrally managed. Constituent
systems are built primarily to fulfill system of systems purposes, with
independent operation as a secondary goal (for example, stand-alone
system operation may provide degraded services during a system of
systems failure).

• Collaborative: The system of systems has central management, but
it lacks authority over the constituent systems. Constituent systems
voluntarily choose to collaborate to fulfill the system of systems purposes.
Maier gives the example of the Internet as a collaborative system of
systems, with the IETF setting standards but having no enforcement
authority. Participants choose to comply with the standards if they want
to be part of the Internet system of systems.

• Virtual: The system of systems has no central management and no
centrally agreed-upon purpose. Maier’s example here is the World Wide
Web, where there is no central governance. There are incentives for
cooperation and compliance to core standards, which emerge and evolve
based on market forces.

Collaborative and virtual systems of systems are related to industry plat-
forms and software ecosystems. An industry platform provides the core
technology that allows systems constructed by different organizations to inter-
act to produce some value [39]. In both collaborative and virtual systems of

39

CHAPTER 2. SYSTEMATIC REVIEW

systems, an industry platform can broker interactions between participating
systems and provide incentives to join the system of systems and to behave
in particular ways in the system of systems. The relationships among the
systems using an industry platform and among the organizations constructing
those systems create an ecosystem with cooperation and competition among
participants [117].

Our systematic review uncovered little research in industry platforms as
part of system-of-system architectures, or in links between systems of systems
and software ecosystems. Research in this area is needed to address how an
industry platform for a system of systems is scoped and defined, addressing
issues such as which features and variabilities might be included in a platform,
what architecture approaches (e.g., patterns, tactics, and heuristics) are useful
in this design context, and how to assess the cost and value of these design
alternatives in order to make design decisions.

Pace of Maturation

Our classification using the Redwine and Riddle model of technology matura-
tion shows that a majority of the studies fall into a middle maturity stage of
development and extension. As noted above, system-of-systems architecture
technology is maturing at a relatively slow rate, compared to other software
engineering fields. This is supported by our finding that the majority of the
studies reported results that were procedure or technique, and we see many
studies reporting results of researchers and practitioners working in apparent
isolation to create new approaches to solve system-of-systems architecture
problems, with no particular approaches gaining widespread adoption.

This leads to a set of questions that impacts both research and practice:

• What types of architecture knowledge are needed to design, analyze,
evaluate, and evolve system-of-system architectures? What design and
organizational pattern, tactics, and heuristics apply, given a particular
technical problem and technical and non-technical constraints? How
should this knowledge be organized to support the tasks and workflows
used in working on system-of-systems architectures?

• Are there general methods for designing and evolving system-of-systems
architectures, or does the scale, complexity, and non-technical constraints
of each system of systems require a unique solution approach?

40

2.3. RESULTS AND DISCUSSION

• Are there general methods for analyzing and evaluating system-of-
systems architectures? Given the scale and complexity of a system
of systems, how is the coverage or completeness of an analysis or evalu-
ation method determined?

Finally, most of the primary studies were published in conference venues,
with just 35 studies published in journals. This is consistent with our finding
of a relatively low level of technology maturity, since journal publication is
usually indicative of more mature research results. Furthermore, most of
the primary studies were published in domain-oriented venues, with no de
facto home for research in general system-of-systems architecture technology.
Notably, few of the primary studies were published in leading software engi-
neering or software architecture venues. This calls for the creation of a venue
to nurture and disseminate research about the questions identified above.

2.3.8 Study Limitations and Threats to Validity

This study is limited to reviewing studies reporting research results about
system-of-systems architecture, published in peer-reviewed venues through
12 July 2012. We did not include any gray literature (technical reports, white
papers, web blog postings, etc.).

The main threats to the validity of this research are bias in the selection of
studies to include, and bias in the data extraction.

Selection bias was controlled by developing a research protocol based on
the research questions. The research protocol included a search strategy and
inclusion/exclusion criteria. The research protocol was developed by the first
author, and reviewed by the second author to ensure correct formulation of
the research questions and whether the search strategy and the inclusion/ex-
clusion criteria followed from the research questions. The first author is an
experienced consultant in the field of systems of systems, while the second
author is an academic experienced in the conduct of systematic reviews.

As noted in Section 2.2.2 above, the semantic ambiguity in the primary
search terms “system of systems” and “architecture” produced a large number
of automated search results. The automated search results were manually
filtered using a multi-step process, as established a priori in the research
protocol. The first author performed most of the manual filtering. A “test-
retest” protocol [88] was used to check for any bias in the manual filtering—50
papers were randomly selected from the set of excluded papers and rechecked
to ensure that the inclusion/exclusion criteria were consistently applied.

41

CHAPTER 2. SYSTEMATIC REVIEW

Bias in data extraction was controlled by establishing a research protocol
based on the research questions. Both authors independently performed the
data extraction on all primary studies, using the same spreadsheet form. Cate-
gories for research result type and technology maturity phase were established
before the data collection started, and were supported by a decision tree to
guide classification decisions. Architecture task classification was initially
attempted using a fine-grained categorization, but was repeated using the
categorization discussed in Section 2.3.3 above. In all cases, where the authors’
independent data extraction results disagreed, there was an independent
reassessment by each author and a discussion of the updated result.

2.4 Conclusions

A system of systems is a design context where scale, complexity, and certain
non-technical constraints necessitate the use of architecture methods and ap-
proaches that are different from those used for system architectures. This
chapter reports the results of a systematic review of the research in the in-
formation system aspects of system-of-systems architecture. We found that
this field is maturing more slowly than other software engineering fields, and
there is a need for additional research to understand and address this slow
maturation.

We found that the primary studies were published in a large number of
diverse and mostly domain-oriented venues, and conclude that a publication
venue focused on system-of-system architecture could contribute to the forma-
tion of a research community of practice. The SHARK workshops in the field
of architecture knowledge are one such successful example.

Our systematic review found that most reported research reflects individu-
als and teams working in apparent isolation to develop techniques to solve
particular system-of-system architecture problems. Research is needed to
develop more general procedures and techniques for design, analysis, evalua-
tion, and evolution of system-of-systems architectures. The discussion above
outlines several specific research opportunities, but the creation of a cohesive
research agenda for the field is needed.

42

2.4. CONCLUSIONS

Finally, we noted above that there are domains, such as corporate infor-
mation technology infrastructures, which are creating systems-of-systems
architectures but not using the “system of systems” label or directly using
system-of-systems technology. Further research is needed to understand how
fields such as enterprise architecture relate to system-of-systems architecture.

43

3
Common Software Platforms in

System-of-Systems Architectures:
The State of the Practice

Summary

System-of-systems (SoS) architectures based on common software platforms
have been commercially successful. Common platforms are a goal of sev-
eral DoD initiatives (US Army Common Operating Environment, US Navy
Open Architecture, multi-service Future Avionics Capability Environment),
but progress on creating and adopting such platforms has been slow. We
conducted a study to understand the technical issues related to SoS common
platform development and adoption, and the non-technical constraints that
must be satisfied. We interviewed 12 experts, collecting and analyzing mostly
qualitative data. Although there were significant differences in approaches
between developers of commercial SoS platforms, military SoS platforms,
and command and control SoS, all reported that non-technical constraints
dominate intrinsic technical issues. We recommend further research to cre-
ate systematic architecture design and analysis methods for SoS, to study
agile development methods in the SoS context, and to develop approaches for
documentation of constituent systems within an SoS.

45

CHAPTER 3. SOS ARCHITECTURES: STATE OF THE PRACTICE

3.1 Introduction

3.1.1 System-of-Systems Context

A system is a collection of elements that together produce some result that
cannot be obtained by the elements operating individually [77]. The elements
of a system may themselves be large and complex, and comprised of sub-
elements. The term system of systems (SoS) designates the case where the
constituent elements of a system are collaborating systems that exhibit two
properties: (1) operational independence (each constituent system operates to
achieve a useful purpose independent of its participation in the SoS); and (2)
managerial independence (each constituent system is managed and evolved,
at least in part, to achieve its own goals rather than the SoS goals) [110]. There
is a consensus among researchers [63, 113] and practitioners [125] that these
properties necessitate developing and operating an SoS in different ways than
a large, complex (single) system.

In the SoS context, interoperability among the constituent systems is a
primary architecture concern [94]. An SoS platform that provides services and
functions to all constituent systems within an SoS is one strategy to promote
interoperability [90].

3.1.2 Platforms, Product Platforms, & System-of-Systems
Platforms

The term “platform” is used to refer to several different concepts. In the mili-
tary domain, a platform is a vehicle (ship, aircraft, tank, etc.) that transports
systems and provides physical services such as power and cooling [66]. In
other domains, “platform” is used to refer to the common elements reused
across a product line or product family. Cusumano calls this a “product plat-
form” [39], while Madni uses the term “platform-based engineering” [109]. In
both cases, the primary concern of this type of platform is reuse of hardware,
software, and related assets.

A third use of the term “platform” is what Cusumano refers to as an
“industry platform” and we call a “system-of-systems platform” [90]. This
type of platform provides services to an open set of systems that interact to
form an SoS. The services provided can be general-purpose, such as directory
and authentication services, or domain-specific, such as geospatial information

46

3.1. INTRODUCTION

processing for a command and control SoS. The primary concerns of an SoS
platform are: (1) Support interoperation among the systems using the platform;
(2) reduce the cost and time needed to develop or modify systems for use in
the SoS; and (3) enable modular substitution of constituent systems in the SoS.

These three concerns are related to each other. First, an SoS platform
supports interoperation by providing common information models (seman-
tic interoperation), and common communication mechanisms such as those
provided by frameworks and middleware (syntactic interoperation). The
platform may also prescribe patterns or sequences of interaction for certain
system-of-system functions.

Second, the SoS platform also provides implementations of services needed
by constituent systems. As services are relocated within the SoS architecture
from constituent systems into the SoS platform, system-to-system dependen-
cies are replaced by system-to-platform dependencies, which typically reduces
the time and effort required to develop, integrate, and test systems to create
the SoS. The availability of an SoS platform also reduces the barrier to entry
for an organization to create a new or replacement system, since less effort
and expertise are needed, and the risk is lower.

Finally, the ability to substitute one implementation of a system for a dif-
ferent implementation is necessary to create an ecosystem, where organizations
“have a strategy to open their technology to complementors and create eco-
nomic incentives (such as free or low licensing fees, or financial subsidies) for
other firms to join the same ’ecosystem’ and adopt the platform technology as
their own” [39]. The reduced barrier to entry described above contributes to
the incentives to join or participate in the ecosystem.

Examples of successful commercial ecosystem-enabling SoS platforms in-
clude Facebook, Apple (iOS, OS X, iCloud, App Store, etc.), and Salesforce.com.
In other domains, Future Avionics Capability Environment (FACE) and the
US Army Common Operating Environment (COE) are examples of emerging
SoS platforms, with their eventual success yet to be determined.

47

CHAPTER 3. SOS ARCHITECTURES: STATE OF THE PRACTICE

3.1.3 Goals of this Study

As noted above, there are commercially successful SoS platforms, but success
in military systems and other domains has been elusive. As part of a multi-
year research project, we are developing systematic approaches to support
SoS platform development. Our research began with this exploratory study
of the state of the practice of SoS architecture development, with a focus on
architectures that include SoS platforms. Our goals for this study included
answering the following questions:

1. What processes are used to develop SoS architectures, and how are
software elements of the architecture treated in the processes used?

2. What challenges do SoS programs face in developing architectures; per-
forming test, integration, and assurance; managing runtime configura-
tion and operation; and evolving the SoS? What approaches have been
used in successful programs to overcome these challenges?

3. What are the constraints on new approaches to developing, using, and
evolving these SoS architectures?

4. What are the important differences between practices used to create
commercial SoS architectures and military SoS architectures?

The following section presents our research approach, including our inter-
view protocol and participant demographics. We next present the results of
our interviews, followed by analysis and discussion of the results. We con-
clude by identifying additional research needed to address the issues raised in
this study.

3.2 Research Method

Our first attempt to answer the questions outlined above was to convene a
workshop, bringing invited participants together to answer these questions in
a group setting. Participants were recruited from the professional networks of
the research team members. Our inclusion criterion for participation was direct
experience as an architect or systems engineering leader on the development
of at least one SoS. Each invitee was also requested to forward the invitation
to other appropriately qualified members of his network.

48

3.3. INTERVIEW QUESTIONS

Only one invitee agreed to participate in the workshop/focus group, and
several responses implied a reluctance to share relevant experience in a group
setting. This led us to develop an interview protocol that reported responses
anonymously. The recruitment process was repeated, yielding 14 qualified
participants. Two of these participants later withdrew from the study, leaving
the 12 participant interviews that are reported here.

Study participants had between 10 and 25 years of professional experience.
Two of the participants had experience working on one SoS project, and eight
participants had experience working on four or more SoS projects. Table 3.1
describes the types of organizations represented by the participants.

Table 3.1: Organization Types Represented

Organization Type # of Participants

Commercial software development (non-
military)

4

Military system development - Industry 5
Military system development - Government 3

For each interview, one researcher acted as the lead interviewer and at least
one other researcher participated. All interviewers recorded responses that
were later combined into a single interview record. We prepared a script to
guide the lead interviewer and act as a checklist to ensure that all topics were
covered, as an interviewee’s response to one question often covered several of
our topics. Nine of the interviews were conducted with the lead interviewer
meeting the interviewee in-person and other interviewers participating in the
interview by telephone, and the other three interviews were conducted solely
by telephone. All of the researchers have experience conducting interviews as
part of exploratory research.

3.3 Interview Questions

Each interview began with the lead interviewer reading a prepared statement
that stated that all reported results would be anonymized to protect the privacy
of the interviewee and their organization, and that the interviewee should
not disclose any protected proprietary information. We then collected the

49

CHAPTER 3. SOS ARCHITECTURES: STATE OF THE PRACTICE

demographic information presented above. Interview questions were divided
into three sections, corresponding to the study goals outlined above. The
complete interview instrument is available online at http://www.andrew.
cmu.edu/user/jklein2/SoS-Study-Interview-Questions.pdf.

The first set of questions focused on the processes used to develop SoS
architectures. The questions in this set allowed us to understand how the
participant defined the term “system of systems”, and their general approach
to the architecture process. Maier identified conflict between the classical
systems engineering “is part of” decomposition hierarchy and the layered
software approach based on the “is used by” relation [111], and so we asked
questions to understand how the participant addressed this conflict. Finally,
constituent systems in an SoS are independently developed and evolved, and
so we asked questions to understand how architecture trade offs are framed
and how decisions are made, balancing the concerns of the SoS with the
concerns of each constituent system. The objective of this set of questions was
to understand the scope of activities and concerns of SoS architecture, and to
understand how software concerns interact with other SoS concerns.

The second set focused on challenges in various system lifecycle phases,
and on how successful projects addressed those challenges. We focused on
lifecycle activities that are related to architecture: development of constituent
systems for the SoS; test, integration, and assurance of the SoS; runtime con-
figuration and management of the SoS; and sustainment and evolution of the
SoS. For each of these activities, we asked participants to discuss technical and
non-technical challenges, and to provide examples of projects that successfully
addressed the challenges. The objective of this set of questions was to identify
specific gaps in current practice where new methods would have the greatest
impact, and to identify specific solutions employed by the interviewees that
would be candidates for generalization.

The final set of questions focused on the constraints that a solution (e.g.,
a new method for design or analysis) must satisfy. We focused on the same
four activity areas used in the previous question set. The objective of this set
of questions was to identify factors necessary for any new approach to be
successfully translated from research into practice.

50

http://www.andrew.cmu.edu/user/jklein2/SoS-Study-Interview-Questions.pdf
http://www.andrew.cmu.edu/user/jklein2/SoS-Study-Interview-Questions.pdf

3.4. RESULTS AND DISCUSSION

3.4 Results and Discussion

Participants’ responses broadly separated into three groups, based on the
their group context, experience, and responsibilities. These groups are (1)
commercial SoS platforms, (2) command and control SoS, and (3) military SoS
platforms. In the discussion that follows, we organize our findings using these
groups.

3.4.1 Architecture Framing and Processes

Participants framed and defined the SoS platform in markedly different ways.
Command and control SoS architects and military SoS platform architects
described the platform in terms of “what it is”. They focused on technology
characteristics, such as APIs and programming language bindings, and on
the services provided by the platform. Commercial platform developers,
on the other hand, framed the platform in terms of “what it does”. They
focused on the platform’s ability to create network effects that support an
ecosystem. Military SoS platform architects also recognized the importance of
an ecosystem to the success of the platform, but they were less focused on the
role of the platform in enabling the ecosystem.

None of the participants reported the use of particular methods or ap-
proaches for SoS architecture development or analysis or for SoS platform
definition.

Most participants identified two development scenarios: Creation of a new
SoS comprising primarily new constituent systems, and integration of existing
systems to create an SoS. The first scenario applies primarily to directed
systems of systems [110], where constituent systems goals and governance are
aligned well with those of the SoS. In this scenario, architecture design can
begin either top-down, based on requirements with a platform emerging as
the design matures, or bottom-up, creating a platform first and then defining
systems that use the platform. In the second scenario, architecture is much
more constrained, and consistency or conceptual integrity across the SoS may
not be achievable without substantial rework (and hence cost).

When making architecture decisions, no participant reported performing
economic modeling of design alternatives. For commercial platform develop-
ers, time-to-market was a primary decision driver and after a viable solution
was identified, they did little additional solution space exploration. On the
other hand, architects involved with military systems reported that extensive

51

CHAPTER 3. SOS ARCHITECTURES: STATE OF THE PRACTICE

trade studies were performed, with architecture decisions frequently driven
by development constraints. Software was not an early concern for them - it
was initially treated like any other element of the SoS architecture, but as the
architecture design matured, concerns such as maximizing software devel-
opment efficiency, minimizing development cost, and meeting development
schedules were high priorities that were balanced against overall SoS measures
of performance.

Command and control SoS architects reported that downstream lifecycle
costs and sustainment costs were less important than SoS operational perfor-
mance. In contrast, both commercial and military platform architects reported
that success depended on proper consideration of future needs. In the commer-
cial organizations, these future needs were defined through market analysis,
and in development of military platforms, future needs were informed by
science and technology investment roadmaps.

All participants noted that deep domain knowledge was necessary to
design a successful architecture. Domain knowledge enabled architects to
identify the most important tradeoffs, eliminate ineffective parts of the solution
space, and make timely decisions.

The command and control SoS architects reported that the way software
architecture concerns are framed has changed over time. Earlier projects
framed decisions only in terms of functional requirements, while more recent
projects are framing decisions in terms of both functional and quality attribute
requirements. Commercial SoS platform architects framed decisions in a
context that included both functional and quality attribute requirements, and
they did not explicitly distinguish between the two types of requirements.

3.4.2 Challenges and Patterns of Success

All participants reported that the primary challenges in developing and evolv-
ing SoS architectures are not rooted in technology, but are due to non-technical
factors. These non-technical factors include misalignment of development
organization and authority with the architecture, misalignment of system and
SoS goals, reluctance to introduce dependence on the SoS platform into the
constituent system architectures, and regulatory and policy constraints (for
systems acquired by the United States government) that diminish the potential
value of an SoS platform approach.

52

3.4. RESULTS AND DISCUSSION

Another challenge reported across all projects is a challenge in migrating
existing constituent systems in the SoS to use the platform: New platform
features frequently duplicated existing features in the constituent systems.
Modifying a constituent system to use the platform version of a feature incurs
a short-term cost, but produces long-term value from reduced integration and
sustainment costs. Commercial platforms use the value of modification as an
incentive, whereas military organizations relied on top-down mandates.

These reported challenges are similar to challenges of developing, adopt-
ing, and sustaining software product lines [123]. Experience from software
product lines and platform-based engineering provide insight into some of the
challenges of platform-based systems of systems. Practices that are successful
for single products need to change to achieve success in a product line context.
Similarly, practices focused on developing single systems must change to be
successful in the context of a platform-based SoS. Practices used for software
product lines consider the relationships among development, organizational,
and management concerns, and recognize that architecture and technology is
just one contributor to overall product line success.

Software product line and platform-based engineering practices also pro-
mote the reuse of assets other than software, such as tools, plans, templates,
test equipment, test cases, and personnel training and skills. Architects of mili-
tary SoS platforms included assets such as documentation, training materials,
and user community collaboration repositories as part of their SoS platform.

When developing or evolving systems to use the SoS platform, many partic-
ipants reported challenges related to documentation of the constituent systems
within the SoS. Although extensive architecture and design documentation
may exist for a constituent system, it is often focused on the independent
operation of the constituent system, and does not adequately address concerns
related to the constituent system’s operation in the SoS. Examples included
resource scheduling approaches and handling of interface errors or exceptions.

The large scale and complexity of the SoS architecture context created
several challenges in creating the initial instantiation of the SoS platform. Ar-
chitects of the command and control SoS used the “V-model” [54] to develop
their SoS. Significantly, the relatively long time between architecture definition
and system integration allowed some architecture errors to remain undiscov-
ered until late in the development process. On one project, they addressed this
challenge by shifting to an iterative agile approach during later phases of the
development cycle. This enabled faster feedback on the correctness of design

53

CHAPTER 3. SOS ARCHITECTURES: STATE OF THE PRACTICE

decisions, but there were unresolved questions that remained: Is it practical
to use an iterative approach from the beginning of the project, or is there an
initial base of functionality that should be in place before starting an iterative
approach? What is the best way to plan iteration contents and duration?

The commercial SoS platform architects reported several approaches to
creating and delivering the initial instantiation of the platform. From these,
we have identified two “proto patterns” [157]. The first proto pattern is a
sequence for evolving the architecture of a new platform. This begins by first
defining and implementing atomic message types and message schemas, with
no concept of workflow (i.e. sequences of messages related to a business task
or process). Initially, all workflow is organically built into the systems and
applications using the platform. Later, workflow orchestration is added to the
platform, with the platform providing versioned workflow definitions that
include endpoint roles (endpoint cardinality, supported message sets, and
other workflows that the endpoint can participate in), workflow sequence
definitions, and transaction support. This proto pattern allows an initial
version of the platform to be deployed quickly, and then allows incremental
definition of workflows based on actual platform use.

A second proto pattern is related to the evolution proto pattern described
above. Workflow execution scalability and availability is achieved by main-
taining workflow state only in the participating endpoints, not in the platform
infrastructure. This “stateless platform” approach is a refinement of stateless
services in service-oriented architectures.

Maintaining backward compatibility for systems using the SoS platform
was reported as a challenge in architecture evolution. The commercial platform
architects addressed this challenge through extensive test automation. Nearly
all testing was automated, with one organization reporting that they have
“tens of thousands” of automated tests, which allow them to maintain full
compatibility back to systems developed for the first versions of the platform
(the platform is now almost 10 years old and is updated three times per
year). Commercial SoS platform architects also reported a proto pattern for
deploying new platform features. This three-step pattern begins by piloting a
new feature with selected customers, and special IT operations processes are
used to carefully monitor usage and quality attributes such as performance.
In a second release, the feature is stabilized with those customers, and IT

54

3.4. RESULTS AND DISCUSSION

operations processes are similar to standard production processes. Finally, in a
third release, the feature is generally available to all customers in production.
(In the organization using this proto pattern, the time from pilot to general
availability of a feature was 4-8 months.)

Command and control SoS architects reported similar issues maintaining
compatibility as the architecture underwent evolution throughout the initial
SoS development iterations. They also used a test automation strategy. This
strategy used tests that covered both syntax and semantics of interfaces, and
incorporated modeling and simulation systems into the test environment to
extend test coverage beyond just platform interfaces.

3.4.3 Solution constraints

Participants identified two general constraints that must be satisfied by any
new approaches or methods to address the challenges discussed in the previ-
ous section.

The first constraint is that any new approach or method should be inte-
grated with existing tools, including tools used for architecture modeling,
analysis, and documentation, and tools used for project/program manage-
ment. The need for integration with architecture tools was expected - adoption
of new approaches and methods is facilitated if there is no need for acquiring
or learning new tools. The need for integration with project/program manage-
ment tools is indicative of the strategic importance of architecture decisions,
and the necessity of efficiently translating decisions about technical approaches
into cost, schedule, and other metrics relevant to program executives.

The second constraint was that any new approach or method must align
with assurance and certification processes. Much of the potential value of an
SoS platform is reducing the cost and time to perform assurance and certifi-
cation of the SoS, but this value can be accrued only if the features included
in the platform, the analysis of the platform architecture, and documentation
provided for the platform are aligned with the assurance and certification
requirements of the SoS.

Finally, several participants involved in military SoS discussed specific
constraints that their environment imposes on creating an ecosystem based
on an SoS platform. These participants expect that such an ecosystem could
reduce SoS acquisition costs, since the modular substitution of SoS elements
should promote competition among suppliers of the elements. The ecosystem
is also expected to increase innovation by enabling a broader community of

55

CHAPTER 3. SOS ARCHITECTURES: STATE OF THE PRACTICE

contributors to new and improved SoS capabilities. Creation of such an SoS
platform-based ecosystem in this environment is currently constrained by
United States government acquisition policies and by a limited ability to create
effective incentives for both acquirers and suppliers to join or participate in
the ecosystem.

3.5 Conclusions

This study interviewed 12 experts to characterize the state of the practice of
system-of-system architecture development, with a focus on architectures that
include SoS platforms. Our goal was to inform further research in systematic
approaches to support the development and evolution of architectures for SoS
platforms. This study identified several areas where additional research is
needed.

The first area is selection of features for an SoS platform. The study identi-
fied a number of critical stakeholder concerns, including time-to-market, ease
of adoption, support for future capabilities, and alignment with SoS assur-
ance and certification processes. Feature selection requires consideration of
both the problem space, to identify candidate platform features and assess
their value, and the solution space, to assess costs to implement and main-
tain each feature. Systematic approaches to analyze the problem space might
combine techniques such as mission thread analysis [85] with domain analysis
[123]. Solution space analysis might include economic models and models
that consider alignment of the architecture with constraints such as acquisition
strategy, organizational structures, and other socio-technical factors. These
analyses would be facilitated by catalogs of architecture knowledge, such as
pattern handbooks, to provide a repertoire of solutions that exhibit particular
functional and quality attribute properties. Finally, a systematic approach,
such as economic modeling, is needed to prioritize and select features for
inclusion in the platform from a set of candidates.

The second area for additional research is in agile development methods
for platform-based systems of systems. Approaches for architecture-led in-
cremental development have primarily focused on the software and system
level [7, 17]. Further work is needed to model the more complicated depen-
dencies in an SoS architecture, and to develop iteration planning strategies
that accommodate the managerial independence of the constituent systems.

56

3.5. CONCLUSIONS

A final area for additional research is to create approaches to characterize
and document constituent systems to support their use in systems of systems.
Systematic approaches are needed to identify the relevant concerns, and collect
and present the information to efficiently satisfy those concerns. An approach
such as the creation of an ISO 42010-style architecture description viewpoint
may be appropriate.

57

4
Design Assistant for NoSQL

Technology Selection

Summary

Designing massively scalable, highly available big data systems is an immense
challenge for software architects. Big data applications require distributed
systems design principles to create scalable solutions, and the selection and
adoption of open source and commercial technologies that can provide the
required quality attributes. In big data systems, the data management layer
presents unique engineering problems, arising from the proliferation of new
data models and distributed technologies for building scalable, available data
stores. Architects must consequently compare candidate database technol-
ogy features and select platforms that can satisfy application quality and cost
requirements. In practice, the inevitable absence of up-to-date, reliable technol-
ogy evaluation sources makes this comparison exercise a highly exploratory,
unstructured task. To address these problems, we have created a detailed fea-
ture taxonomy that enables rigorous comparison and evaluation of distributed
database platforms. The taxonomy captures the major architectural character-
istics of distributed databases, including data model and query capabilities.
In this chapter we present the major elements of the feature taxonomy, and
demonstrate its utility by populating the taxonomy for nine different database
technologies. We also describe the QUality At Scale Knowledge Base for Big
Data (QuABaseBD) knowledge base, which we have built to support the pop-

59

CHAPTER 4. DESIGN ASSISTANT

ulation and querying of database features by software architects. QuABaseBD
links the taxonomy to general quality attribute scenarios and design tactics
for big data systems. This creates a unique, dynamic knowledge resource for
architects building big data systems.

4.1 Introduction

No industry in the history of engineering exhibits the rate of change we see in
software technologies. By their very nature, complex software products can be
created and evolved much more quickly than physical products, which require
redesign, retooling, and manufacturing [104]. In contrast, the barriers to
software product evolution are no greater than incorporating new functionality
into code, testing, and releasing a new build for download on the Internet.

For software engineers building modern applications, there exists a dizzy-
ing number of potential off-the-shelf components that can be used as building
blocks for substantial parts of a solution [24]. This makes component selection,
composition, and validation a complex software engineering task that has
received considerable attention in the literature (e.g. [14, 80, 107, 163]). While
there is rarely a single ’right’ answer when selecting a complex component
for use in an application, selection of inappropriate components can be costly,
reduce downstream productivity due to extensive rework, and even lead to
project cancellation [137].

A contemporary application domain where there is particular difficulty in
component selection is that of massively scalable, big data systems [2]. The
exponential growth of data in the last decade has fueled rapid innovation in a
range of components, including distributed caches, middleware and databases.
Internet-born organizations such as Google and Amazon are at the cutting
edge of this revolution, collecting, storing, and analyzing the largest data
repositories ever constructed. Their pioneering efforts, for example [45] and
[32], along with those of numerous other big data innovators, have created
a variety of open source and commercial technologies for organizations to
exploit in constructing massively scalable, highly available data repositories.

This technological revolution has instigated a major shift in database plat-
forms for building scalable systems. No longer are relational databases the
de facto standard for building data repositories. Highly distributed, scalable
“NoSQL” databases [139] have emerged, which eschew strictly-defined nor-
malized data models, strong data consistency guarantees, and SQL queries.

60

4.1. INTRODUCTION

These features are replaced with schema-less data models, weak consistency
guarantees, and proprietary APIs that expose the underlying data manage-
ment mechanisms to the application programmer. Prominent examples of
NoSQL databases include Cassandra, Riak, neo4j and MongoDB.

NoSQL databases achieve scalability through horizontally distributing data.
In this context, distributed databases have fundamental quality constraints,
as defined by Brewer’s CAP Theorem [26]. When a network partition occurs
(“P”—arbitrary message loss between nodes in the cluster), a system must
trade consistency (“C”—all readers see the same data) against availability
(“A”—every request receives a success/failure response).

The implications of the CAP theorem are profound for architects. To
achieve high levels of scalability and availability, distribution must be intro-
duced in all system layers. Application designs must then be aware of data
replicas, handle inconsistencies from conflicting replica updates, and continue
degraded operation in spite of inevitable failures of processors, networks,
and software. This leads to new and emerging design principles, patterns
and tactics based on established distributed systems theory, which must be
adopted to successfully build scalable, big data systems [65].

This confluence of rapidly evolving technologies and (re-) emerging de-
sign principles and patterns makes designing big data systems immensely
challenging. Application architectures and design approaches must exploit
the strengths of available components and compose these into deployable,
extensible and scalable solutions.

This is especially challenging at the data storage layer. The multitude
of competing NoSQL database technologies creates a complex and rapidly
evolving design space for an architect to navigate. Architects must carefully
compare candidate database technologies and features and select platforms
that can satisfy application quality and cost requirements. In the inevitable
absence of up-to-date, unbiased technology evaluations, this comparison
exercise is in practice a highly exploratory, unstructured task that uses an
Internet search engine as the primary information gathering and assessment
tool.

In this chapter we introduce a detailed feature taxonomy that can be used
to systematically compare the capabilities of distributed database technologies.
This taxonomy was derived from our experiences in evaluating databases
for big data systems in a number of application domains (e.g., [93]). The
feature taxonomy describes both the core architectural mechanisms of dis-
tributed databases, and the major data access characteristics that pertain to

61

CHAPTER 4. DESIGN ASSISTANT

the data architecture a given database supports. We describe our experience
populating this taxonomy with the features of nine different databases to
demonstrate its efficacy. We also describe a dynamic knowledge base we have
built to semantically encode the feature taxonomy so that it can be queried
and visualized.

The major contributions of this chapter are:

• The first presentation of a detailed, software and data architecture-driven
feature taxonomy for distributed database systems.

• A demonstration of the efficacy of the taxonomy through its population
with the features from nine different database technologies.

• A description of the semantic encoding and representation of the feature
taxonomy to support efficient knowledge capture, query and visualiza-
tion.

• An implementation of the knowledge base on the Semantic MediaWiki
platform, using forms to add knowledge that conforms to the models,
query-driven templates dynamically that render content as the knowl-
edge base grows, and hyperlinked text, tables, and graphics for presen-
tation and navigation.

4.2 Related Work

Our work builds upon and extends established work in software architecture
knowledge management [4]. Early research in this area includes Kruchten
[100], which introduced an ontology describing architectural design decisions
for software systems. The ontology can be used to capture project-specific
design decisions, their attributes, and relationships to create a graph of design
decisions and their interdependencies. Our feature taxonomy also describes
a graph of related design alternatives and relationships, but the knowledge
relates to the class of distributed databases as opposed to a specific project or
system. Hence, the knowledge has applicability to the broad class of big data
software systems.

62

4.3. FEATURE TAXONOMY

Other research has focused on using knowledge models to capture project-
specific architectural decisions [3] and annotate design artifacts using ontolo-
gies [52, 72, 95]. Ontologies for describing general architecture knowledge
have also been proposed. These include defining limited vocabularies [5],
formal definitions of architecture styles [126], and supporting reuse of ar-
chitecture documentation [155]. However, the inherent complexity of these
approaches has severely limited adoption in practice.

Formal knowledge models for capturing architecture-related decisions also
exist, for example [43, 82, 99, 98, 151], and [83]. Shahin describes a conceptual
framework for these approaches that demonstrates significant overlap between
the proposed concepts [141]. Our representation of the feature taxonomy takes
a conceptually similar approach in that it semantically codifies a collection of
general capabilities of big data systems, allowing an architect to explore the
conceptual design space.

A primary use case for our knowledge base that semantically encodes the
feature taxonomy is to provide decision support for evaluating alternative
database technologies. Earlier work has demonstrated how a similar approach
based on feature categorization of technology platforms can be effective in
practice for middleware technology evaluation [107]. Our work extends this
approach by reifying technology-specific knowledge as semantic relationships
that enable querying of the knowledge to rapidly answer project-specific
evaluation questions.

Architecture design assistants, such as ArchE [6], support reasoning from
quality attributes to patterns, but do not directly support reasoning all the
way through to COTS selection. Other assistants, such as AREL, capture de-
sign rationale for reuse [148]. Both types of assistants take a broad, general
approach to architecture decisions. At the other extreme, curated COTS com-
parisons consolidate product feature lists but do not relate features to qualities
or provide insight into tradeoffs, and are not easily queried or filtered [96, 162].

4.3 Feature Taxonomy

Scalability in big data systems requires carefully harmonized data, software
and deployment architectures [65]. In the data layer, scalability requires
partitioning the data sets and their processing across multiple computing and
storage nodes. This inherently creates a distributed software architecture in the
data tier. Contemporary database technologies adopt a variety of approaches

63

CHAPTER 4. DESIGN ASSISTANT

to achieve scalability. These approaches are primarily distinguished by the
data model that a database supports and by the data distribution architecture
it implements. Therefore, the selection of a specific database technology has a
direct impact on the data and software architecture of an application.

Our feature taxonomy for distributed databases reflects these influences
directly. It represents features in three categories related directly to the data
architecture—namely Data Model, Query Languages, and Consistency—and four
categories related directly to the software architecture—namely Scalability,
Data Distribution, Data Replication, and Security. We decomposed each of these
feature categories into a collection of specific features. Each feature has a
set of allowed values representing the spectrum of design decisions that are
taken in distributed databases. Depending on the database, some features may
be assigned one or more of these values to fully characterize the database’s
capabilities.

In the following subsections we describe these feature categories and the
spectrum of design decisions that are represented in our feature taxonomy.
Space precludes a detailed description of each feature. Instead we briefly
describe the major classes of features and their implications on both the data
and software architecture.

4.3.1 Data Model

The data model supported by a distributed database dictates both how ap-
plication data can be organized, and to a large extent, how it can be queried.
Our taxonomy, shown in Table 4.1, captures these data architecture issues,
organizing features in three broad groups:

1. Data Organization: These features capture how a database platform
enables data to be modeled, whether fixed schemas are required, and
support for hierarchical data objects.

2. Keys and Indexes: Flexibility in data object key definition, including
support for secondary and composite keys, can greatly influence ap-
plication performance, scalability and modifiability. This collection of
features describes how any given database supports key definition.

3. Query Approaches: This collection of features describes the options
available for querying a database, including key-based searching, text
searching, and support for Map-Reduce based aggregation queries.

64

4.3. FEATURE TAXONOMY

Table 4.1: Data Model Features

Feature Allowed Values

Data Model
Column, Key-Value, Graph, Docu-
ment, Object, Relational

Fixed Schema Required, optional, none

Opaque Data Objects Required, not required

Hierarchical Data Ob-
jects

Supported, not supported

Automatic Primary
Key Allocation

Supported, not supported

Composite Keys Supported, not supported

Secondary Indexes Supported, not supported

Query by Key Range Supported, not supported

Query by Partial Key Supported, not supported

Query by Non-Key
Value (Scan)

Supported, not supported

Map Reduce API
Builtin, integration with external
framework, not supported

Indexed Text Search
Support in plugin (e.g., Solr), built-
in proprietary, not supported

4.3.2 Query Languages

The query language features of a database directly affect application perfor-
mance and scalability. For example, if a database does not return sorted result
sets, the application itself must retrieve data from the database and perform
the sort. For big data applications in which large results sets are common, this
places a significant performance burden on an application, and uses resources
(memory/CPU/network) that may be scarce under high loads.

65

CHAPTER 4. DESIGN ASSISTANT

Our feature taxonomy captures the broad query language characteristics,
such declarative or imperative styles and languages supported, and the major
detailed features that impart quality concerns. Table 4.2 illustrates these
features. Note that for some features, for example Languages Supported and
Triggers, multiple values may be assigned to the same feature for a database.
This is a common characteristic that is seen across all categories in feature
taxonomy.

Table 4.2: Query Language Features

Feature Allowed Values

API-Based Supported, Not Supported

Declarative Supported, Not Supported

REST/HTTP-based Supported, Not Supported

Languages supported
Java, C#, Python, C/C++, Perl,
Ruby, Scala, Erlang, Javascript

Cursor-based queries Supported, Not Supported

JOIN queries Supported, Not Supported

Complex data types
Lists, maps, sets, nested structures,
arrays, geospatial, none

Key matching options
Exact, partial match, wildcards,
regular expressions

Sorting of query results Ascending, descending, none

Triggers Pre-commit, post-commit, none

Expire data values Supported, Not Supported

4.3.3 Consistency

With the emergence of scalable database platforms, consistency has become a
prominent quality of an application’s data architecture. Transactional consis-
tency properties that are standard in relational databases are rarely supported
in NoSQL databases. Instead, a variety of approaches are supported for both
transactional and replica consistency. This inevitably places a burden on the
application to adopt designs that maintain strong data consistency or op-

66

4.3. FEATURE TAXONOMY

erate correctly with weaker consistency. A common design denormalizes
data records so that a set of dependent updates can be performed in a single
database operation. While this approach ensures consistency in the absence of
ACID transactional semantics, denormalization also leads to increased data
sizes due to duplication, and increased processing in order to keep duplicates
consistent.

The features in Table 4.3 are grouped into those that support strong consis-
tency, and those that support eventual (replica) consistency. Strong consistency
features such as ACID and distributed transactions reduce application com-
plexity at the cost of reduced scalability. Eventual consistency is a common
alternative approach in scalable databases. Eventual consistency relies on
storing replicas of every data object to distribute processing loads and provide
high availability in the face of the database node failures. The taxonomy de-
scribes a range of features that constitute eventually consistent mechanisms,
including conflict detection and resolution approaches.

4.3.4 Scalability

Evaluating qualities like performance and scalability in absolute terms requires
benchmarks and prototypes to establish empirical measures. However, the
core architectural design decisions that underpin a database implementation
greatly affect the scalability that an application can achieve. In our taxonomy,
we capture some of these core scalability features, shown in Table 4.4.

Horizontal scaling spreads a data set across multiple nodes. In some
databases, it is only possible to replicate complete copies of a database onto
multiple nodes, which restricts scalability to the capacity of a single node—this
is scaling up. Other databases support horizontal partitions, or sharding, to
scale data onto multiple nodes.

Another key determinant of scalability is the approach to distributing client
requests across database nodes. Bottlenecks in the request processing path
for reads and writes can rapidly become inhibitors of scalability in a big data
system. These bottlenecks are typically request or transaction coordinators
that cannot be distributed and replicated, or processes that store configuration
state that must be accessed frequently during request processing.

67

CHAPTER 4. DESIGN ASSISTANT

Table 4.3: Consistency Features

Feature Allowed Values

Object-level atomic up-
dates

Supported, Multi-Value Concur-
rency Control, conflicts allowed

ACID transactions in a
single database

Supported, lightweight transac-
tions (e.g., test and set), not sup-
ported

Distributed ACID
transactions

Supported, not supported

Durable writes Supported, not supported

Quorum Reads/Writes
(replica consistency)

In client API, in database configu-
ration, in the datacenter configura-
tion, not supported

Specify number of
replicas to write to

In client API, in database configu-
ration, not supported, not applica-
ble - master-slave

Behavior when speci-
fied number or replica
writes fails

Rollback at all replicas, No roll-
back, error returned, hinted hand-
offs, not supported

Writes configured to
never fail

Supported, not supported

Specify number of
replicas to read from

In client API, in database configu-
ration, not supported, not applica-
ble - master-slave

Read from master
replica only

Not supported, in the client API,
not applicable - peer-to-peer

Object level time-
stamps to detect
conflicts

Supported, not applicable (single
threaded), not applicable (master
slave), not supported

68

4.3. FEATURE TAXONOMY

Table 4.4: Scalability Features

Feature Allowed Values

Scalable distribution
architecture

Replicate entire database only; hor-
izontal data partitioning; horizon-
tal data partitioning and replica-
tion

Scaling out—adding
data storage capacity

Automatic data rebalancing; man-
ual database rebalancing; not ap-
plicable (single server only)

Request load balancing

HTTP-based load balancer re-
quired; client requests balanced
across any coordinator; fixed con-
nection to a request coordinator

Granularity of write
locks

Locks on data object only; Table
level locks; database level locks; no
locks (single threaded); no locks
(optimistic concurrency control);
no locks (conflicts allowed)

Scalable request pro-
cessing architecture

Fully distributed - any node can
act as a coordinator; centralized
coordinator but can be replicated;
centralized coordinator (no repli-
cation); requires external load bal-
ancer

4.3.5 Data Distribution

There are a number of software architecture alternatives that a database can
adopt to achieve data distribution. These alternatives can greatly affect the
quality attributes of the resulting system. To this end, the features in this
category capture how a given database coordinates access to data that is
distributed over deployment configurations ranging from single clusters to
multiple geographically distributed data centers, shown in Table 4.5. The
mechanisms used to locate data and return results to requesting clients are an
important aspect of distributed data access that affects performance, availabil-

69

CHAPTER 4. DESIGN ASSISTANT

ity and scalability. Some databases provide a central coordinator that handles
all requests and passes them on to other nodes where the data is located for
processing. A more scalable solution is provided by databases that allow any
database node to accept a request and act as the request coordinator.

Table 4.5: Data Distribution Features

Feature Allowed Values

Data distribution archi-
tecture

Single database only; master-
single slave; master-multiple
slaves; multimaster

Data distribution
method

User specified shard key; assigned
key ranges to nodes; consistent
hashing; not applicable (single
server only)

Automatic data rebal-
ancing

Failure triggered; new storage
triggered; scheduled rebalancing;
manual rebalancing; not applica-
ble (single server only)

Physical data distribu-
tion

Single cluster; rack-aware on sin-
gle cluster; multiple co-located
clusters; multiple data centers

Distributed query ar-
chitecture

Centralized process for key
lookup; distributed process
for key lookup; Direct replica
connection only

Queries using non-
shard key values

Secondary indexes; non-indexed
(scan); not supported

Merging results from
multiple shards

Random order; sorted order;
paged from server; not supported

70

4.3. FEATURE TAXONOMY

4.3.6 Data Replication

Data replication is necessary to achieve high availability in big data systems.
This feature category is shown in Table 4.6. Replication can also enhance
performance and scalability by distributing database read and write requests
across replicas, with the inevitable trade-off of maintaining replica consistency.
All databases that support replication adopt either a master-slave or peer-to-
peer (multi-master) architecture, and typically allow a configurable number of
replicas that can be geographically distributed across data centers.

Replication introduces the requirement on a database to handle replica
failures. Various mechanisms, ranging from fully automated to administrative,
are seen across databases for replica failure and recovery. Recovery is complex,
as it requires a replica to ’catch up’ from its failed state and become a true
replica of the current database state. This can be done by replaying operation
logs, or by simply copying the current state to the recovered replica.

4.3.7 Security

Security is necessary in the data tier of an application to ensure data integrity
and prevent unauthorized access. This feature category is shown in Table 4.7.
Our taxonomy captures the approaches supported by a database for authenti-
cation, which is often a key factor in determining how a data platform can be
integrated into an existing security domain. We also capture features such as
roles that greatly ease the overheads and complexity of administering database
security, and support for encryption - an important feature for applications
requiring the highest levels of data security.

71

CHAPTER 4. DESIGN ASSISTANT

Table 4.6: Data Replication Features

Feature Allowed Values

Replication Architec-
ture

Master-slave; peer-to-peer

Replication for backup Supported; not supported

Replication across data
centers

Supported by data center aware
features; Supported by standard
replication mechanisms; Enter-
prise edition only

Replica writes
To master replica only; to any
replica; to multiple replicas; to
specified replica (configurable)

Replica reads

From master replica only; from
any replica; from multiple repli-
cas; from specified replica (config-
urable)

Read repair
Per query; background; not appli-
cable

Automatic Replica Fail-
ure Detection

Supported; not supported

Automatic Failover Supported; not supported

Automatic new master
election after failure

Supported; not supported; not ap-
plicable

Replica recovery and
synchronization

Performed by administrator; sup-
ported automatically; not sup-
ported

72

4.3. FEATURE TAXONOMY

Table 4.7: Security Features

Feature Allowed Values

Client authentication
Custom user/password; X509;
LDAP; Kerberos; HTTPS

Server authentication Shared keyfile; server credentials

Credential store In database; external file

Role-based security Supported; not supported

Security role options
Multiple roles per user; role inher-
itance; default roles; custom roles;
not supported

Scope of rules
Cluster; database; collection; ob-
ject; field

Database encryption Supported; not supported

Logging
Configurable event logging; con-
figurable log flush conditions; de-
fault logging only

73

CHAPTER 4. DESIGN ASSISTANT

4.4 Knowledge Base Overview

This section describes how we instantiated and populated the feature taxon-
omy in a knowledge base that we call Quality Attributes at Scale Knowledge
Base for Big Data, or QuABaseBD (pronounced kay-base-bee-dee).

QuABaseBD is a linked collection of computer science and software engi-
neering knowledge created specifically for designing big data systems with
NoSQL databases. As depicted in Fig. 4.1, QuABaseBD is presented to a user
through a Web-based wiki interface. QuABaseBD is built upon the Semantic
MediaWiki (SMW) platform (https://semantic-mediawiki.org/), which
adds dynamic, semantic capabilities to the base MediaWiki implementation
(as used, for example, for Wikipedia).

In contrast to a typical wiki such as Wikipedia, the pages in QuABaseBD
are dynamically generated from information that users enter into a variety of
structured forms. This significantly simplifies content authoring for QuABase-
BD and ensures internal consistency, as newly-added content is automatically
included in summary pages and query results without needing to manually
add links. Form-based data entry structures knowledge capture when popu-
lating the knowledge base, which ensures that the new content adheres to the
underlying knowledge model. Hence the dynamic, structured nature of the
QuABaseBD ensures it can consistently capture and render knowledge useful
for software architects exploring the design space for big data systems.

QuABaseBD exploits these dynamic, semantic capabilities to implement a
model that represents fundamental software architecture design knowledge
for building big data systems. The initial version of QuABaseBD populates this
knowledge model specifically for designing the data layer of an application.

QuABaseBD links two distinct areas of knowledge through an underlying
semantic model. These areas are:

1. Software design principles for big data systems—Knowledge pertain-
ing to specific quality attribute scenarios and design tactics for big data
systems.

2. Database feature taxonomy—Knowledge pertaining to the specific ca-
pabilities of NoSQL and NewSQL databases to support database evalua-
tion and comparison, as described in the previous section.

74

https://semantic-mediawiki.org/

4.4. KNOWLEDGE BASE OVERVIEW

Figure 4.1: Conceptual Architecture of QuABaseBD

In the following, we describe how we link these two areas in the QuABase-
BD knowledge model, and how we use the features of the SMW platform to
populate and query the feature taxonomy.

4.4.1 Semantic Knowledge Model

The SMW platform supports semantic annotation of information as Categories
and Properties. These annotations can be applied in an ad hoc manner as
markup in the wikitext allowing the semantic structure to emerge from the
contributed content. In contrast, QuABaseBD takes a structured approach to
knowledge representation, as discussed above. All content is created using
a form and rendered using a template, and the set of forms and templates
embodies the structure of the semantic knowledge model. The knowledge
model is split into two main sections. One section represents software ar-
chitecture concepts related to quality attributes, quality attribute scenarios,

75

CHAPTER 4. DESIGN ASSISTANT

and architecture tactics. This section of the knowledge model is not intended
to be a complete representation of general software design knowledge, but
instead, it represents a growing collection of concepts and properties needed
to reason about big data systems design and database technology selection.
The purposes of this section of the model are to support the definition of archi-
tecturally significant requirements, to identify the quality attribute tradeoffs
that are inherent in distributed data-intensive systems, and to describe design
tactics to achieve particular architecture requirements. The second section of
the knowledge model represents the feature taxonomy described above. The
novelty of the QuABaseBD knowledge model is the linkage between the two
sections through the relationship of an instance of a tactic to the instances of
the features of a particular database that implement that tactic. This is shown
in the extract of the knowledge model shown in Fig. 4.2.

Here we see that a Quality Attribute is represented using a General Scenario.
The general scenario includes only those stimuli, responses, and response
measures that are relevant in big data systems, in contrast to the abstract
general scenarios presented by Bass and colleagues [10]. An example of the
QuABaseBD General Scenario for Scalability is shown in Table 4.8.

Table 4.8: QuABaseBD General Scenario for Scalability

Stimulus:

Increase in load (demand) on a system resource such as
processing (OR)
I/O (OR)
storage.

Environment:
Increase in load is transient (OR)
Increase in load is permanent

Response: System provides new resources to satisfy the load

Response Measure:
Ratio of increase in cost to provide new resources to value
of increased load
Time to provide additional resources when load increases

76

4.4. KNOWLEDGE BASE OVERVIEW

Key

Quality Attribute

General
Scenario

Quality Attribute
Scenario

Tactic

Database

Feature
Category

Feature

Attributes

Concept

1 - N Relationship

Promotes Inhibits

Is
Supported

By

Supports

Figure 4.2: Extract from QuABaseBD Knowledge Model

A general scenario is a prototype that generates many Quality Attribute
Scenarios, each of which combines a stimulus and response in the context of
a big data system. A Quality Attribute Scenario covers a specific situation,
and so we can identify the Tactics that can be employed to achieve the desired
scenario response. Table 4.9 shows a quality attribute scenario derived from the
Scalability General Scenario. Note that the stimulus, response, and response
measure specialize the general scenario shown above.

Tactics represent tradeoffs—each tactic promotes at least one quality at-
tribute, and may inhibit other quality attributes. Although not represented
in Fig. 4.2, the knowledge model also includes “anti-tactics”, representing
design approaches that prevent the desired response from being achieved. In
Fig. 4.3, we show a screenshot from QuABaseBD for the Consistent Hashing
tactic, referenced in the Scalability Scenario. The tactic definition includes a
description that outlines the approach, followed by a table that summarizes
the tradeoffs inherent in applying the tactic along with references to related
tactics.

77

CHAPTER 4. DESIGN ASSISTANT

Table 4.9: Scalability Scenario

Scale to handle increased read or write request load

Quality Attribute: Scalability

Stimulus:
An increase in read requests is experienced by the system
for a finite period of time (typically minutes to days)

Environment: The system has been operating in production.

Response:
Additional nodes can be added to the cluster and the data
set can be repartitioned to use the new resources.

Response Measure:
Downtime during repartitioning, Amount of manual in-
tervention needed.

Tactics:

Automatically maintain cluster membership list (gossip),
Shard data set across multiple servers (Consistent Hash-
ing), Shard data set across multiple servers (Range-based),
Load balance across replicas (one data center), Load bal-
ance across replicas (multiple data centers)

AntiTactics: None

Tactics also represent specific design decisions that can be realized by a
Database implementation, so we can say that a database supports a collection of
tactics. This support is provided by one or more Features, which are grouped
into Feature Categories. Finally, a feature has one or more Attributes, which
represent the allowable values for the feature. At the bottom of the screenshot
in Fig. 4.3, we see links to the specific NoSQL products that support the
Consistent Hashing tactic.

This relationship between features and tactics allows an architect to reason
about architecture qualities. For example, an architect may reason about the
need for certain database features in order to achieve a particular system
quality, or how different implementations of a feature in different databases
will affect system qualities.

78

4.4. KNOWLEDGE BASE OVERVIEW

Figure 4.3: Screenshot of a Tactic Page in QuABaseBD

An example of how QuABaseBD uses a template to link tactics to database
implementations is shown in Fig. 4.4. This illustrates the feature page for
the Read Repair feature, which is in the feature category Replication Features.
The related tactics that are supported by this feature are selected during the
content creation process, and the table showing which databases implement
the feature is generated dynamically by querying the knowledge base content.

4.4.2 QuABaseBD Implementation of Feature Taxonomy

From the main QuABaseBD page, users can choose to explore the knowledge
base content for specific database technologies. Fig. 4.5 shows an extract from
the main database page. This table is a dynamically generated list (the result
of the SMW query shown in Fig. 4.6) of the databases for which QuABaseBD
currently provides information.

79

CHAPTER 4. DESIGN ASSISTANT

Figure 4.4: Linking from Tactics to Implementations and Features

When a user navigates to the content for a specific database, for example
Riak, they see a page that gives a brief overview of the database and a table
listing the feature categories from the feature taxonomy, as shown in Fig. 4.7.

Knowledge creators can edit the values for the feature taxonomy for each
database. As discussed above, all content creation is done using SMW forms.
Clicking on an Edit link displays a form for the associated feature category,
as shown in Fig. 4.8 for the Data Replication category. The forms render the

80

4.4. KNOWLEDGE BASE OVERVIEW

Figure 4.5: QuABaseBD Database Knowledge

{{#ask: [[Category:Database]]

|intro=Select any of the database below to \

get information on their features and \

the tactics they support

| mainlabel=Database

| ?Has DB Model=Data Model

| sort=Has DB Model

| order=asc

}}

Figure 4.6: Query to List Databases and Data Model Types

elements of the feature taxonomy as fields organized in tabs, along with a valid
set of values that a knowledge creator can select from for each feature. Using
forms in this manner, the QuABaseBD implementation ensures a consistent set
of values for each feature, thus greatly facilitating ease of comparison across
databases.

When a form is saved by a knowledge creator, an associated SMW template
performs two actions:

1. It associates the selected feature values with a semantic property for
each feature, creating a collection of RDF triples with the general form
Feature, Has Value, Value to populate the semantic feature taxonomy.

81

CHAPTER 4. DESIGN ASSISTANT

Figure 4.7: QuABaseBD Knowledge for Riak

2. It generates a wiki page for knowledge consumers by substituting the
selected feature values into a text template that describes each feature
and the associated value for each database.

An example of the resulting generated wiki page is shown in Fig. 4.9. To a
knowledge consumer, the mechanics of selecting alternate feature values is
completely hidden. They simply see a description of each feature and how it
is realized in the associated database.

A major advantage of associating each feature with a semantic property
is that it facilitates fine grain searching across the different features for each
database. Fig. 4.10 illustrates the search facilities available to users for each
feature category. By default, if no specific feature values are selected in the
query form (top left), then all the databases in the QuABaseBD that have a

82

4.5. QUABASEBD USE CASES

Figure 4.8: Populating the QuABaseBD Feature Taxonomy for Riak Replication

completed feature page for that category are displayed (bottom right). The
generated table facilitates a direct comparison of the databases in the QuA-
BaseBD . The user can then choose specific values in the query form for the
various features they are interested in and generate customized result sets to
answer their specific questions.

4.5 QuABaseBD Use Cases

Design and implementation decisions for QuABaseBD were driven by two
primary use cases:

• Architecture Design: The target user is an architect who has little expe-
rience with big data systems and NoSQL technology. He or she uses
the General Scenarios and Quality Attribute Scenarios in QuABaseBD to
support definition of architecturally significant requirements. The Qual-
ity Attribute Scenarios are used to select appropriate Tactics, and finally,
one or more candidate NoSQL products are selected that implement the
tactics.

83

CHAPTER 4. DESIGN ASSISTANT

Figure 4.9: Template-generated Wiki Page for Riak Replication

• Identification of Alternatives: The target user is an architect who has
some experience with big data systems and NoSQL technology. The
architect knows some or all of the product features needed for his or her
system, and uses the QuABaseBD feature queries to identify one or more
suitable candidate NoSQL products.

Both of these cases might be followed by a use case in which the architect
“works backwards” from a candidate NoSQL product. Large COTS products,
like these NoSQL databases, implement many tactics, with each tactic em-
bodying a set of quality attribute tradeoffs. An architect uses QuABaseBD
to identify a product because it supports tactics he or she desires, but then
the architect must ensure that other tactics supported by the product do not
embody tradeoffs that would be detrimental to system qualities. QuABaseBD

84

4.6. DEMONSTRATING FEATURE TAXONOMY EFFICACY

Figure 4.10: Querying the Database Features

supports tracing from the Tactics that are implemented by a candidate product,
identifying the quality attribute tradeoffs that those tactics embody, and using
Quality Attribute Scenarios to provide concrete examples of the implications
of each tradeoff.

4.6 Demonstrating Feature Taxonomy Efficacy

The feature taxonomy and the initial implementation of QuABaseBD were co-
developed during an evaluation of four NoSQL databases, namely MongoDB,
Cassandra, Neo4j and Riak [93]. During this project, QuABaseBD was popu-
lated with information about those databases by the authors of this paper. The
feature taxonomy and the allowed values were based on the capabilities of the

85

CHAPTER 4. DESIGN ASSISTANT

four databases. As each of these databases represented a different NoSQL data
model, we expected that the feature taxonomy we developed would be suffi-
ciently general to facilitate differentiation amongst a much larger collection of
technologies.

To assess the efficacy of the feature taxonomy, we further populated QuA-
BaseBD with information about five other databases: Accumulo, Hbase,
CouchDB, FoundationDB, and VoltDB. Graduate students helped perform
this content curation1. Each contributor located and reviewed the product
documentation for the database published on the Internet by the vendor or
open source developer, and used the QuABaseBD SMW forms to enter the
relevant information to populate the feature taxonomy.

Throughout this curation process, we observed no additional features
were needed to describe the functionality delivered by any of these databases,
and curators were able to map all product features to one or more of the
taxonomy features. For several features, we incorporated new allowed values
to more precisely capture a particular database’s capabilities. For example,
CouchDB eschews object locking on updates in favor of Multi-Version Con-
currency Control (MVCC). This approach was not supported in our initial
set of databases, and hence we added MVCC as an allowed value for the
Object Level Atomic Updates feature. Additional allowed values for a number
of features were also necessary to describe the capabilities of two so-called
NewSQL databases that were incorporated into QuABaseBD , namely VoltDB
and FoundationDB. These databases are distributed, scalable implementations
of relational databases, supporting large subsets of the standard SQL query
language. Encouragingly, the feature taxonomy was sufficiently rich to enable
us to capture the capabilities of these NewSQL databases in QuABaseBD .

Fig. 4.11 is a simple visualization of the populated feature taxonomy that
we can generate by querying QuABaseBD . It shows how each of the nine
databases in the knowledge base relate to a value for the Load Balancing feature
in the Scalability category. This visualization clearly shows how the databases
cluster around the different feature values. Being able to convey such infor-
mation visually is important as it makes it straightforward for architects to
focus on features of interest and see how databases compare. As the number
of databases in QuABaseBD grows, we will develop further visualizations to
help convey the information in a concise and informative manner.

1http://en.wikipedia.org/wiki/Content_curation

86

http://en.wikipedia.org/wiki/Content_curation

4.7. USER TRIALS

Figure 4.11: Clustering of Implementations for the Load Balancing Feature

4.7 User Trials

In order to prepare for public deployment of the QuABaseBD , we have
performed usability and utility testing of the resulting Web site. We publi-
cized QuABaseBD through the authors’ professional networks, and opened
QuABaseBD to volunteers to perform testing. Volunteers were requested
to purposefully explore the knowledge base: when access credentials were
issued, they were encouraged to use the knowledge base to solve a particular
design problem that we provided, rather than simply browsing the QuABase-
BD content. These open access sessions were limited to one hour in duration.
Users were given a worksheet to record their impressions from the testing.
There was no additional training, guidance, or instruction provided.

87

CHAPTER 4. DESIGN ASSISTANT

All of the 20 users who provided feedback on their experience were soft-
ware architects with between 5 and 23 years of experience. All but two users
characterized their expertise in big data systems as “somewhat knowledge-
able”, but they did not have any specific experience in any of the database
technologies currently represented in QuABaseBD .

The “main page”, where users enter the knowledge base after authen-
ticating, offers three options: Explore Software Design Principles, Explore
Database Technologies and Features, and Explore Architecture Tactics for Big
Data Systems. The workflow that testers employed was split nearly evenly
between those that started with architecture tactics, and those that started
with database features. No testers started with design principles, although
some testers eventually explored this section of the knowledge base. These
workflows matched our pre-test expectations: The software design principles
path is intended to help define architecturally significant requirements. If
these are already established (as they were in the test problems), then we
expect users to start with tactics (top-down reasoning), or database features
(bottom-up reasoning). This gives us confidence that the QuABaseBD design
is structured to support this use case.

Testers starting with database features made extensive use of the faceted
search capability and the tabular results visualizations (for example, the pages
shown in Fig. 4.10). The information in these tables was sufficient to answer the
testers’ questions. Few of these testers relied on the detailed feature description
pages. In contrast, testers who started with tactics relied on following links
within QuABaseBD , which led them to the detailed feature description pages.
Interestingly, no testers employed the full-text search capability of the SMW
platform.

All but one tester said that they were able to answer all of their questions
using the content of QuABaseBD . In providing feedback on the utility of the
knowledge base, testers were asked to rate their confidence that their answers
were complete and correct. The large majority rated their confidence as 3 or 4
on a scale of 1 (no confidence) to 5 (absolutely sure).

Only one tester followed any of the hyperlinks to external resources that
are provided in the detailed product feature descriptions. We hypothesize that
this may be due to the limited time we allowed for testing, but again this gives
us confidence that the current QuABaseBD content is sufficiently extensive
to meet many of the anticipated needs of the big data software engineering
community.

88

4.8. FURTHER WORK AND CONCLUSIONS

4.8 Further Work and Conclusions

We are currently working towards finalizing QuABaseBD for public release.
To this end we are testing the knowledge base functionality, and validating
with experts on each database that our curated values for the database features
are valid. We believe that as a curated scientific knowledge base, there are
high expectations that the content in QuABaseBD is trustworthy at all times.
To this end, we are working to design a systematic curation process where
a small cohort of experts will be responsible for changes to the content. We
anticipate that visitors to the knowledge base will be able to suggest changes
through associated comments pages, and these proposals will be assessed for
inclusion by the curators.

The SMW platform has provided a usable interface for these architects
to derive answers to questions in a short amount of time. The platform’s
semantic metamodel, combined with the forms for content entry and templates
for content rendering, allowed us to represent a novel domain knowledge
model for big data architecture and technology in a form (a wiki) that users
are familiar with.

After deployment, we will continue to expand the QuABaseBD content,
and have identified several areas for future work. Manual creation and main-
tenance of content is inefficient, as the scope of the content is expanded to
cover more of the database product landscape. Automation of these tasks is
therefore needed, using technology such as machine learning to extract content
from product documentation.

The terminology used in the database feature taxonomy needs further
study. We chose terms that are abstract and general, rather than adopting
implementation-specific terms. In some cases, adding alternative terminology
for feature values may increase usability. We also anticipate expanding and
restructuring the taxonomy as we receive feedback from the community.

We hope that QuABaseBD can become an enduring resource to support
the design of big data systems. We also hope it will demonstrate the potential
of curated, dynamic knowledge bases as sources of highly reliable scientific
knowledge, as well as the basis for a next generation of software engineering
decision support tools.

89

5
Application-Specific Evaluation of

NoSQL Databases

Summary

The selection of a particular NoSQL database for use in a big data system
imposes a specific distributed software architecture and data model, making
the technology selection difficult to defer and expensive to change. This
chapter reports on the selection of a NoSQL database for use in an Electronic
Healthcare Record system being developed by a large healthcare provider.
We performed application-specific prototyping and measurement to identify
NoSQL products that fit data model and query use cases, and met performance
requirements. We found that database throughput varied by a factor of 10,
read operation latency varied by a factor of 5, and write latency by a factor
of 4 (with the highest throughput product delivering the highest latency).
We also found that the throughput for workloads using strong consistency
was 10-25% lower than workloads using eventual consistency. We conclude
by reflecting on some of the fundamental difficulties of performing detailed
technical evaluations of NoSQL databases specifically, and big data systems in
general, that have become apparent during our study.

91

CHAPTER 5. NOSQL DATABASE EVALUATION

5.1 Introduction

At the heart of many big data systems are NoSQL database management
systems that are simpler than traditional relational databases and provide
higher scalability and availability [139]. These databases are typically designed
to scale horizontally across clusters of low cost, moderate performance servers.
They achieve high performance, elastic storage capacity, and availability by
replicating and partitioning data sets across a cluster of servers. Each of these
products implements a different data model and query language, as well as
specific mechanisms to achieve distributed data consistency and availability.

When a big data system uses a particular database, the data, consistency
and distribution models imposed by the database have a pervasive impact
on the design of the associated applications [65]. Hence, the selection of a
particular NoSQL database must be made early in the design process and is dif-
ficult and expensive to change downstream. In other words, NoSQL database
selection becomes a critical architectural decision for big data systems.

Commercial off-the-shelf (COTS) software selection has been extensively
studied in software engineering [14, 36, 163]. In complex technology land-
scapes with multiple competing products, developers must balance the cost
and speed of the selection process against the fidelity of the analysis [108].
While there is rarely a single right answer in selecting a complex component
for an application, selection of inappropriate components can be costly, reduce
downstream productivity due to rework, and even lead to project cancellation.
This is especially true for large scale, big data systems, due to their complexity
and the magnitude of the investment.

There are several unique challenges that make selection of NoSQL data-
bases for use in big data applications a particularly hard problem:

• This is an early architecture decision that must be made with inevitably
incomplete requirements.

• Capabilities and features vary widely across NoSQL databases and per-
formance is very sensitive to how a product’s data model and query
features match application needs, making generalized comparisons diffi-
cult.

• Production-scale prototypes, with hundreds of servers, multi-terabyte
data sets, and thousands or millions of clients, are usually impractical.

92

5.2. ELECTRONIC HEALTH RECORD CASE STUDY

• The solution space is changing rapidly, with new products emerging and
existing products releasing several versions per year with ever evolving
feature sets.

We faced these challenges during a recent project for a healthcare provider
considering the use of NoSQL databases for an Electronic Health Record (EHR)
system. The next section provides details of the project context and technology
evaluation approach. This is followed in §5.3 by a discussion of the prototype
design and configuration. §5.4 presents the performance test results. We
conclude with a reflection on lessons learned during this project.

5.2 Electronic Health Record Case Study

5.2.1 Project Context

Our customer was a large healthcare provider developing a new Electronic
Health Record (EHR) system. This system supports healthcare delivery for
over 9,000,000 patients at more than 100 facilities across the globe. The data
growth rate is more than one terabyte per month, and all data must be retained
for 99 years.

NoSQL technologies were considered attractive candidates for two specific
uses, namely:

• the primary data store for the EHR system

• a local cache at each site to improve request latency and availability

This will replace an existing system that uses thick client applications
running at sites around the world, all connected to a centralized relational
database, so the customer wanted to characterize performance with hundreds
of concurrent database sessions.

The customer was familiar with RDMS technology for these use cases, but
had no experience using NoSQL, so we were directed to focus our evaluation
only on NoSQL technology.

5.2.2 Evaluation Approach

The approach builds on previous work on middleware evaluation [108, 107]
and was customized to address the characteristics of big data systems. The
basic main steps are depicted in Fig. 5.1 and outlined below.

93

CHAPTER 5. NOSQL DATABASE EVALUATION

Specify
Requirements

Select
Candidate

NoSQL Databases

Report
Results

Design Use Case-
Specific Data

Model

Execute
Performance and
Scalability Tests

For each candidate

Figure 5.1: Lightweight Evaluation and Architecture Prototyping for Big Data
(LEAP4BD)

1. Specify Requirements

We used a stakeholder workshop to elicit key functional and quality
attribute requirements to frame the evaluation. These key requirements
were:

Performance/Scalability: The main quantitative requirements were to
replicate data across geographically distributed data centers, and to
achieve high availability and low latencies under load in distributed
database deployments. Hence understanding the inherent performance
and scalability that is achievable with each candidate NoSQL database
was an essential part of the evaluation.

Data Model Mapping Complexity: Healthcare systems have common
logical data models and query patterns that need to be supported by a
NoSQL database. This required us to evaluate the specific data modeling
and query features for each product, including capabilities to maintain
replica consistency in a distributed deployment.

94

5.2. ELECTRONIC HEALTH RECORD CASE STUDY

We next helped the customer define two primary use cases for the EHR
system. These drove the evaluation that we performed in subsequent
steps in the project. The first use case was to read recent medical test
results for a single patient, which is a core function used to populate the
user interface whenever a clinician selects a new patient. The second
use case was achieving strong replica consistency when a new medical
test result is written for a patient, so that all clinicians using the EHR to
make patient care decisions will see the same information, whether they
are at the same site as the patient, or providing telemedicine support
from another location.

2. Select Candidate NoSQL Databases

Our customer was specifically interested in evaluating how different No-
SQL data models (key-value, column, document, graph) would support
their application domain, and so we selected one NoSQL database from
each category to investigate in detail. We subsequently ruled out graph
databases, as none provided the horizontal partitioning required for
this customer’s application. We chose Riak, Cassandra and MongoDB
as the three candidates, based on product maturity and availability of
enterprise support.

3. Design and Execute Performance Tests

In order to make an apples to apples comparison of the databases that
were evaluated, we defined and performed a systematic test procedure.
Based on the use cases defined during the requirements step, we:

• Defined and implemented a consistent test environment, which in-
cluded server platform, test client platform, and network topology.

• Mapped the logical model for a patient’s medical test history onto
each database’s data model and loaded the resulting database with
a large collection of synthetic test data.

• Created a load test client that implements the database read and
write operations defined for each use case. This client is capable of
issuing many simultaneous requests so that we can analyze how
each product responds as the request load increases.

• Defined and executed test scripts that exerted a specified load on
the database using the test client.

95

CHAPTER 5. NOSQL DATABASE EVALUATION

We executed each test case on several distributed configurations to mea-
sure performance and scalability. These test scenarios ranged from
baseline testing on a single server to nine server instances that sharded
and replicated data.

This enabled us to produce a consistent set of test results that assessed
the likely performance and scalability of each database for this cus-
tomer’s EHR system. The details of the environment and test design are
presented in the next section.

5.3 Prototype and Evaluation Setup

5.3.1 Test Environment

The three databases we tested were:

1. MongoDB version 2.2, a document store1;

2. Cassandra version 2.0, a column store2;

3. Riak version 1.4, a key-value store3.

In §5.4, we report performance results for two database server configu-
rations: Single node server, and a nine-node configuration that was repre-
sentative of a production deployment. Executing on a single node allowed
us to validate our test environment for each database. The nine-node clus-
ter was configured to represent a geographically distributed deployment
across three data centers. The data set was sharded across three nodes, and
then replicated to two additional groups of three nodes each (we refer to
this configuration as “3x3”). This was achieved using MongoDB’s prima-
ry/secondary feature, and Cassandra’s data center aware distribution fea-
ture. Riak did not directly support this 3x3 data distribution, so we used
a configuration where the data was sharded across all nine nodes, with
three replicas of each shard stored across the nine nodes. Testing was per-
formed using the Amazon EC2 infrastructure-as-a-service cloud environment.
(http://aws.amazon.com/ec2/). Database servers executed on m1.large

1http://docs.mongodb.org/v2.2/
2http://www.datastax.com/documentation/cassandra/2.0
3http://docs.basho.com/riak/1.4.10/

96

http://aws.amazon.com/ec2/
http://docs.mongodb.org/v2.2/
http://www.datastax.com/documentation/cassandra/2.0
http://docs.basho.com/riak/1.4.10/

5.3. PROTOTYPE AND EVALUATION SETUP

instances. Database data and log files were stored on separate EBS vol-
umes attached to each server instance. The EBS volumes were not provi-
sioned with the IOPS feature, to minimize the tuning parameters used in
each test configuration. The test client was also executed on an m1.large in-
stance. The servers and the test client both used the CentOS operating system
(http://www.centos.org). All instances were in the same EC2 availability
zone (i.e. the same Amazon cloud data center).

5.3.2 Mapping the data model

Most of the prototyping effort was spent mapping the application-specific log-
ical data model onto the particular data model, indexing, and query language
capabilities of each database to be tested.

We used the HL7 Fast Healthcare Interoperability Resources (FHIR) (http:
//www.hl7.org/implement/standards/fhir/) as the logical data model
for our analysis and prototyping. The set of all test results for a patient were
modeled using the FHIR Patient Resources (e.g., demographic information such
as names, addresses, and telephone numbers) along with FHIR Observation
Resources (e.g., test type, result quantity, and result units). There was a one-
to-many relation from each patient to the associated test results. Although
this was a relatively simple model, the internal complexity of the FHIR Patient
Resource, with multiple addresses and phone numbers, along with the one-
to-many relation from patient to observations, required a number of data
modeling design decisions and tradeoffs in the data mapping.

The most significant data modeling challenge was the representation of
the one-to-many relation from patient to lab results, coupled with the need to
efficiently access the most-recently written lab results for a particular patient.
Zola has analyzed the various approaches and tradeoffs of representing the
one-to-many relation in MongoDB [165]. We used a composite index of [Pa-
tient ID, Observation ID] for lab result records, and also indexed by the lab
result date-time stamp. This allowed efficient retrieval of the most recent lab
result records for a particular patient.

A similar approach was used for Cassandra. Here we used a composite
index of [PatientID, lab result, date-time stamp]. This caused the result set
returned by the query to be sorted by the server, making it efficient to retrieve
the most recent lab records for a particular patient.

97

http://www.centos.org
http://www.hl7.org/implement/standards/fhir/
http://www.hl7.org/implement/standards/fhir/

CHAPTER 5. NOSQL DATABASE EVALUATION

In Riak, representing the one-to-many relation was more complicated.
Riak’s key-value data model provides the capability to retrieval a value, given
a unique key. Riak also provides a secondary index capability to avoid a full
scan when the key is not known. However, each node in the cluster stores
only the secondary indices for those shards stored by the node. A query to
match a secondary index value causes the request coordinator to perform
a scatter-gather, asking each node for records with the requested secondary
index value, waiting for all nodes to respond, and then sending the list of keys
for the matching records back to the requester. The requester must then make
a second request with the list of keys, to retrieve the record values.

The latency of the scatter-gather to locate records and the need for two
round trips to retrieve the records had a negative impact on Riak’s performance
for our data model. Since there is no mechanism in Riak for the server to filter
and return only the most recent observations for a patient, all matching records
must be returned and then sorted and filtered by the client.

MongoDB and Cassandra both provided a relatively straightforward data
model mapping and both provided the strong replica consistency needed
for this application. The data model mapping for MongoDB seemed more
transparent than the use of the Cassandra Query Language (CQL), and the
indexing capabilities of MongoDB were a better fit for this application.

5.3.3 Generate and Load Data

A synthetic data set was used for testing. This data set contained one million
patient records, and 10 million lab result records. The number of lab results
for a patient ranged from 0 to 20, with an average of 7.

5.3.4 Create Load Test Client

We used the YCSB framework [38] as the foundation for the test client, to
manage test execution and test measurement. For test execution, we replaced
YCSB’s very simple default data models, data sets, and queries with imple-
mentations specific to our use case data and requests.

98

5.3. PROTOTYPE AND EVALUATION SETUP

YCSB’s built-in capabilities allow specification of the total number of oper-
ations and the mix of read and write operations in a workload. Our customer
specified that the typical workload for the EHR system was 80% read and 20%
write operations. For this operation mix, we implemented a read operation
to retrieve the five most recent observations for a single patient, and a write
operation to insert a single new observation record for a single existing patient.

In order to investigate using the NoSQL technology as a local cache (de-
scribed in §5.2.2, above), we implemented a write-only workload that repre-
sented a daily operation to load a local cache from a centralized primary data
store with records for patients with scheduled appointments for that day. We
also implemented a read-only workload that represented flushing the cache
back to the centralized primary data store.

The YCSB measurement framework measures operation latency as the time
from when the request is sent to the database until the response is received
from the database. The YCSB reporting framework aggregates latency mea-
surements separately for read and write operations. Latency distribution is
a key scalability metric for big data systems [45, 44], so we recorded both
average and 95th percentile values.

We extended YCSB to report overall throughput, in operations per second.
This was the total number of operations performed (reads plus writes) divided
by the workload execution time (from the start of the first operation to the
completion of the last operation in the workload execution, and not including
initial setup and final cleanup times).

5.3.5 Define and Execute Test Scripts

For each database and configuration, every workload was run three times,
to minimize the impact of transient events in the cloud infrastructure. The
standard deviation of the throughput for any three-run set never exceeded 2%
of the average.

YCSB can use multiple execution threads to create concurrent client ses-
sions, so for each of the three test runs, the workload execution was repeated
for a defined range of test client threads (1, 2, 5, 10, 25, 50, 100, 200, 500, and
1000), which created a corresponding number of concurrent database connec-
tions. Post-processing of test results averaged measurements across the three
runs for each thread count.

99

CHAPTER 5. NOSQL DATABASE EVALUATION

NoSQL databases are not typically designed to operate with a large number
of concurrent database client sessions. Usually, clients connect to a web server
tier and/or an application server tier, which aggregates the client operations on
the database using a pool of roughly 16-64 concurrent sessions. However, since
this customer was modernizing a system that used thick clients with direct
database connections, they wanted to understand the feasibility of retaining
the thick client architecture.

Since there were multiple concurrent connections to the database, we had
to define how these were distributed across the server nodes. MongoDB uses
a centralized router node, so all clients connected to that single router node.
Cassandra’s data center aware distribution feature created three sub-clusters
of three nodes each, and client connections were spread uniformly across the
three nodes in one sub-clusters. In the case of Riak, the product architecture
only allowed client connections to be spread uniformly across the full set of
nine nodes.

5.4 Performance and Scalability Test Results

We report here on results for the nine-node configuration that reflected a
typical production system (described in §5.3.1, above). Other tested configu-
rations included running on a single server. The single-node configuration’s
availability and scalability limitations make it unfeasible for production use,
and so we do not present performance comparisons across databases for this
configuration. However, in the following discussion, we compare the single
node configuration for a particular database to its distributed configuration,
to provide insights into the efficiency of distributed coordination mechanisms
and guide tradeoffs to scale up by adding more nodes versus using faster
nodes with more storage.

This EHR application required strong replica consistency. These results
are reported first, below. This is followed by a comparison of strong replica
consistency to eventual consistency.

100

5.4. PERFORMANCE AND SCALABILITY TEST RESULTS

5.4.1 Performance Evaluation—Strong Consistency

The database configuration options to achieve strong replica consistency are
summarized in Table 5.1. For MongoDB, these settings cause all writes to be
committed on the primary server, and all reads are from the primary server.
For Cassandra, the effect is that all writes are committed on a quorum formed
on each of the three sub-clusters, while a read required a quorum only on
the local sub-cluster. For Riak, the effect is to require a quorum on the entire
nine-node cluster for both write operations and read operations.

Table 5.1: Settings for representative production configuration

Database Write Options Read Options

MongoDB Primary Acknowledged Primary Preferred

Cassandra EACH_QUORUM LOCAL_QUORUM

Riak quorum quorum

The throughput performance for the representative production configura-
tion for each of the workloads is shown in Fig. 5.2, Fig. 5.3, and Fig. 5.4.

In every case, Cassandra provided the best overall performance (peak-
ing at approximately 3500 operations per second), with read-only workload
performance approximately 10% better than the single node configuration,
and write-only and read/write workload performance approximately 25%
higher than the single node configuration. In moving from single node to a
distributed configuration, we gain performance from decreased contention for
storage I/O and other per-node resource. We also lose performance, due to
the additional work of coordinating write and read quorums across replicas
and data centers. For Cassandra, the gains exceeded the losses, resulting in
net higher performance in the distributed configuration.

Furthermore, Cassandra’s data center aware features provide some separa-
tion of replication configuration from sharding configuration. In these tests,
compared to Riak, this allowed a larger portion of the read operations to be
completed without requiring request coordination (i.e. peer-to-peer proxying
of the client request).

101

CHAPTER 5. NOSQL DATABASE EVALUATION

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

1 2 4 8 16 32 64 125 250 500 1000

op
s/
se
co
nd

Number	of	client	threads

Throughput	- Read-Only	Workload
Replicated	Data,	Quorum	Consistency

MongoDB

Cassandra

Riak

Figure 5.2: Throughput, Representative Production Configuration, Read-Only
Workload (higher is better)

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

1 2 4 8 16 32 64 125 250 500 1000

op
s/
se
co
nd

Number	of	client	threads

Throughput	- Write-Only	Workload
Replicated	Data,	Quorum	Consistency

MongoDB

Cassandra

Riak

Figure 5.3: Throughput, Representative Production Configuration, Write-Only
Workload

102

5.4. PERFORMANCE AND SCALABILITY TEST RESULTS

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

1 2 4 8 16 32 64 125 250 500 1000

op
s/
se
co
nd

Number	of	client	threads

Throughput	- Read/Write	Workload
Replicated	Data,	Quorum	Consistency

MongoDB

Cassandra

Riak

Figure 5.4: Throughput, Representative Production Configuration, Read-
/Write Workload

Riak performance in this distributed configuration is approximately 2.5x
better than the single node configuration. In test runs using the write-only
workload and the read/write workload, our Riak client had insufficient socket
resources to execute the workload for 500 and 1000 concurrent sessions. These
data points are hence reported as zero values in Fig. 5.3 and Fig. 5.4. We later
determined that this resource exhaustion was due to ambiguous documenta-
tion of Riak’s internal thread pool configuration parameter, which creates a
pool for each client session and not a pool shared by all client sessions. After
determining that this did not impact the results for one through 250 concurrent
sessions, and given that Riak had qualitative capability gaps with respect to
our strong consistency requirements (discussed below), we decided not to
re-execute the tests for those data points.

MongoDB’s single node configuration performance was nearly 8x better
than the distributed configuration. We attribute this to two factors: First,
the distributed configuration is sharded, which introduces the router and
configuration nodes into the MongoDB deployment architecture. The router
proxies each request to the appropriate shard, using the key mapping stored
in the configuration node. In our tests, the router node became a performance

103

CHAPTER 5. NOSQL DATABASE EVALUATION

bottleneck. Fig. 5.5 and Fig. 5.6 show read and write operation latency for the
read/write workload, with nearly constant average latency for MongoDB as
the number of concurrent sessions is increased, which we attribute to rapid
saturation of the single router node.

The second factor affecting MongoDB performance is the interaction be-
tween the sharding scheme used by MongoDB and the write-only and read-
/write workloads that we used. Both Cassandra and Riak use a hash-based
sharding scheme, which provides a uniformly distributed mapping from the
range of keys onto the physical nodes. In contrast, MongoDB used a range-
based sharding scheme with rebalancing (see http://docs.mongodb.org/
v2.2/core/sharded-clusters/ for a discussion of MongoDB’s sharding
and rebalancing features).

Our workloads generated a monotonically-increasing key for new records
to be written, which caused all write operations to be directed to the same
shard, since all of the write keys mapped into the range stored in that shard.
This is a typical key generation approach (e.g., the SQL autoincrement key
types), but in this case, it focuses the write load for all new records onto a
single node and thus negatively impacts performance. A different indexing
scheme was not available to us, as it would impact other systems that our
customer operates. (We note that MongoDB introduced hash-based sharding
in v2.4, after our testing had concluded.)

Our tests also measured latency of read and write operations. While
Cassandra achieved the highest overall throughput (approximately 3500 oper-
ations per second), it also delivered the highest average latencies (indicative
of high internal concurrency in request processing). For example, at 32 client
connections, Riak’s read operation latency was 20% of Cassandra (5x faster),
and MongoDB’s write operation latency was 25% of Cassandra’s (4x faster).
Fig. 5.5 and Fig. 5.6 show average and 95th percentile latencies for each test
configuration.

5.4.2 Performance Evaluation—Eventual Consistency

We also performed tests to quantify the performance cost of strong replica
consistency, compared to eventual consistency. These tests were limited to the
Cassandra and Riak databases—the performance of MongoDB in the represen-
tative production configuration was such that no additional characterization
of that database was warranted for our application. The selected write and
read options to achieve eventual consistency are summarized in Table 5.2.

104

http://docs.mongodb.org/v2.2/core/sharded-clusters/
http://docs.mongodb.org/v2.2/core/sharded-clusters/

5.4. PERFORMANCE AND SCALABILITY TEST RESULTS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 4 8 16 32 64 125 250 500 1000

m
icr
os
ec
on

ds

Number	of	client	 threads

Read	Latency

Avg	(MongoDB)

95%ile	(MongoDB)

Avg	(Cassandra)

95%ile	(Cassandra)

Avg	(Riak)

95%ile	(Riak)

Figure 5.5: Read Latency, Representative Production Configuration, Read-
/Write Workload

0

100000

200000

300000

400000

500000

600000

700000

800000

1 2 4 8 16 32 64 125 250 500 1000

m
icr
os
ec
on

ds

Number	of	client	threads

Write	Latency

Avg	(MongoDB)

95%ile	(MongoDB)

Avg	(Cassandra)

95%ile	(Cassandra)

Avg	(Riak)

95%ile	(Riak)

Figure 5.6: Write Latency, Representative Production Configuration, Read-
/Write Workload

105

CHAPTER 5. NOSQL DATABASE EVALUATION

The effect of these settings for both Cassandra and Riak was that writes were
committed on one node (with replication occurring after the operation was
acknowledged to the client), and read operations were executed on one replica,
which may or may not return the latest value written.

Table 5.2: Settings for eventual consistency configuration

Database Write Options Read Options

Cassandra ONE ONE

Riak noquorum noquorum

For Cassandra, at 32 client sessions, there is a 25% reduction in throughput
going from eventual consistency to strong consistency. Fig. 5.7 shows through-
put performance for the read/write workload on the Cassandra database,
comparing the representative production configuration with the eventual
consistency configuration.

The same comparison is shown for Riak in Fig. 5.8. Here, at 32 client
sessions, there is only a 10% reduction in throughput. (As discussed above,
test client configuration issues resulted in no data recorded for 500 and 1000
concurrent sessions.)

In summary, the Cassandra database provided the best throughput per-
formance, but with the highest latency, for the specific workloads and con-
figurations tested here. We attribute this to several factors. First, hash-based
sharding spread the request and storage load better than MongoDB. Second,
Cassandra’s indexing features allowed efficient retrieval of the most recently
written records, particularly compared to Riak. Finally, Cassandra’s peer-to-
peer architecture and data center aware features provide efficient coordination
of both read and write operations across replicas and data centers.

5.5 Lessons Learned

Product evaluation of NoSQL databases presents a number of challenges that
we had to address in the course of this project. Our lessons learned fall in
two broad categories: The first category includes issues related the essential
complexity of evaluating NoSQL products, and the second category includes
issues that arose from the accidental complexity of the available tools and
technologies.

106

5.5. LESSONS LEARNED

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

1 2 4 8 16 32 64 125 250 500 1000

op
s/
se
co
nd

Number	of	client	threads

Overall	Throughput	- Cassandra
Comparison	of	Consistency

Eventual

Strong

Figure 5.7: Cassandra—Comparison of strong and eventual consistency

0.0

500.0

1000.0

1500.0

2000.0

2500.0

1 2 4 8 16 32 64 125 250 500 1000

op
s/
se
co
nd

Number	of	client	 threads

Overall	Throughput	- Riak
Comparison	of	Consistency

Eventual

Strong

Figure 5.8: Riak—Comparison of strong and eventual consistency

107

CHAPTER 5. NOSQL DATABASE EVALUATION

5.5.1 Essential Issues

Defining selection criteria

This technology selection decision must be made early in the design cycle, and
may be difficult and expensive to change [65]. The selection must be made in
a context where the problem definition may not be complete, and the solution
space is large and rapidly changing as the open source landscape continues to
evolve.

We found that principal decision drivers were the size and growth rate
of the data (number of records and record size), the complexity of the data
model including the relations and navigations to support the use cases, the
operational environment including system management practices and tools,
and user access patterns including operation mix, queries, and number of
concurrent users. We used quality attribute scenarios [9] to elicit these re-
quirements, followed by clustering and prioritization. There were diverse
stakeholder concerns, and identifying “go/no-go” decision criteria helped to
focus the evaluation.

Configuration tuning

There are many configuration tuning parameters available, at the database,
operating system, and EC2 level. We minimized changes to default config-
urations for two reasons. First, tuning can be a lengthy process, balancing
interactions between settings within a layer and across layers. Second, our
workload and data set were representative of, but not identical to, our produc-
tion system and so optimization for our test workload would not necessarily
apply to the production system. We found significant performance differences
between products that would not be eliminated by tuning, and these were
sufficient to make a selection.

Quantitative selection criteria

Quantitative selection criteria with hard thresholds were problematic to val-
idate through prototyping. There are many parameters that can be tuned
to affect performance, in the infrastructure, operating system, and database
product itself. While the final target system architecture must include that
tuning, the testing space can quickly explode during selection. We found it
useful to frame the performance criteria in terms of the shape of the perfor-

108

5.5. LESSONS LEARNED

mance curve. For example, is there a linear increase in throughput as the load
increases? If not, are there discontinuities or inflection points within the input
range of interest? Understanding the sensitivities and trade offs in a product’s
capabilities can be sufficient to make a selection, and also provides valuable
information to make downstream architecture design decisions regarding the
selected product.

Screening candidate products to prototype

We used architecturally significant requirements to perform a manual survey
of product documentation to identify viable candidates for prototyping. The
manual survey process was slow and inefficient; as noted earlier, the solution
space is large and rapidly changing. We began to collect and aggregate product
feature and capability information into a queryable, reusable knowledge base,
which included general quality attribute scenarios as templates for concrete
scenarios, and linked the quality attribute scenarios to particular product
features. This knowledge base was reused successfully for later projects, and
is an area for further research.

Tradeoff between evaluation cost and fidelity

Any COTS selection process must balance cost (in time and resources) against
fidelity (along dimensions such as data set size, cluster size, and exact configu-
ration tuning), and the rapid changes in NoSQL technology exacerbate these
issues. During the course of our evaluation, each of the candidate products
released at least one new version that included changes to relevant features, so
a lengthy evaluation process is likely to produce results that are not relevant
or valid. Furthermore, if a public cloud infrastructure is used to support the
prototyping and measurement, then changes to that environment can impact
results. For example, during our testing process, Amazon changed standard
instance types offered in EC2. Our recommendation is to limit prototyping
and measurement to just two or three products, in order to finish quickly and
produce results that are both valid and relevant in this evolving context.

109

CHAPTER 5. NOSQL DATABASE EVALUATION

5.5.2 Accidental Issues

Choosing between manual and automated testing

The prototyping and measurement reported here used the Amazon cloud,
which enabled efficient management and execution of the tests. Our peak
utilization was more than 50 concurrently executing server nodes (supporting
several product configurations), which is more than can be efficiently managed
in physical hardware environments.

We had constant tension between using manual processes for server de-
ployment and management, and automating some or all of these processes.
While repeating manual tasks goes against software engineering best practices
such as “don’t repeat yourself”4, in retrospect we think that the decision to
make slow, but constant, forward progress, rather than stopping to introduce
automation, was appropriate. Organizations that have an automation capabil-
ity and expertise in place may reach a different conclusion. We did automate
test execution and data collection, processing, and visualization. These tasks
were performed frequently, had many steps, and had to be repeatable.

Initial database loading

Evaluation of a big data system requires that the database under test con-
tains a large data set. Our read-intensive use cases required populating the
database prior to test execution. We found that bulk or batch loading of NoSQL
databases requires special attention; each database product had specific recom-
mendations and special APIs for this function. For example, recommendations
like pre-splitting the data set significantly improved bulk load performance
(e.g., for MongoDB). In other cases, we found that following the recommenda-
tions was absolutely necessary to avoid failures due to resource exhaustion in
the database server during the load processing. We recommend that if bulk
load is not one of your selection criteria, consider taking a brute force approach
to load the data once, and then use database backups, or virtual machine or
storage volume snapshots to return to the initial state as needed.

4http://c2.com/cgi/wiki?DontRepeatYourself

110

http://c2.com/cgi/wiki?DontRepeatYourself

5.6. FURTHER WORK AND CONCLUSIONS

Deleting records at completion of a test

All of our tests that performed write operations ended the test by restoring
the database to its initial state. We found that deleting records in most NoSQL
databases is a very slow operation, taking as much as 10 times longer than a
read or write operation. In retrospect, we would consider using snapshots to
restore state, rather than cleaning up using delete operations.

Measurement framework

It is necessary to understand the measurement framework used in the test
client. Although YCSB is the de facto standard for NoSQL database characteri-
zation, the 95th and 99th percentile measurements that it reports are incorrect
under certain latency distribution conditions. The YCSB implementation could
be modified to extend the validity of those measurements to a broader range
of latencies, or alternative metrics could be used for selection criteria.

5.6 Further Work and Conclusions

Ultimately, technical capabilities and performance are just one input to a
software technology selection decision. Non-technical factors such as develop-
ment and operational cost, schedule, risk, and alignment with organizational
standards are also considered, and may have more influence on the final de-
cision. However, a rigorous technical evaluation, based on prototyping and
measurement, provides important information to assess both technical and
non-technical considerations.

We have described a systematic method to perform this technology evalu-
ation for NoSQL database technology, in a context where the solution space
is broad and changing fast, and the system requirements may not be fully
defined. Our approach was to evaluate the products in the specific context
of use, starting with elicitation of key requirements to capture architecture
drivers and selection criteria. Next, product documentation is surveyed to
identify viable candidate technologies, and finally, rigorous prototyping and
measurement is performed on a small number of candidates to collect data to
make the final selection.

111

CHAPTER 5. NOSQL DATABASE EVALUATION

We described the execution of this method to evaluate NoSQL technologies
for an electronic healthcare system, and present the results of our measure-
ments of performance, along with a discussion of alignment of the NoSQL
data model with system-specific requirements. We presented lessons learned
from our experience on this project.

Our experience identified the benefits of having a trusted knowledge base
that can be queried to discover the features and capabilities of particular
NoSQL products, and accelerate the initial screening to identify viable candi-
date products for a particular set of quality attribute scenario requirements.
This is an area for further research.

112

6
System-of-Systems Viewpoint for

System Architecture Documentation

Summary

A system of systems (SoS) is formed by integrating existing systems, each
independently operated and managed. Frequently, the architecture documen-
tation of these existing systems addresses concerns only from a stand-alone
system perspective, and must be augmented to address concerns that arise in
the SoS. We evaluated the ability of an architecture documentation viewpoint
to address the concerns of a SoS architect about a constituent system within
the SoS, in order to support SoS design and analysis involving that constituent
system. An expert panel reviewed documentation produced by applying the
viewpoint to a system, using the active review method. The expert panel was
able to use the documentation to answer questions related to all SoS architect
concerns, except for questions related to concerns about the interaction of
the constituent system with the platform and network infrastructure. The
expert panel was unable to answer certain questions using the supplied ar-
tifacts because the baseline version of the viewpoint had a gap in concern
coverage related to relationship of software units of execution (e.g., processes
or services) to computers and networks. The viewpoint was revised to add a
Deployment Model to address these concerns, and that revised viewpoint is
included here in an appendix.

113

CHAPTER 6. DOCUMENTATION VIEWPOINT

6.1 Introduction

A system of systems (SoS) is created by composing constituent systems. Each
constituent system retains operational independence (it operates to achieve
a useful purpose independent of its participation in the SoS) and managerial
independence (it is managed and evolved, at least in part, to achieve its
own goals rather than the SoS goals) [110]. In order to assess suitability
of the system for use in the SoS and to reason about SoS functionality and
quality attributes, the architect of a SoS relies on documentation about the
constituent system. In an ideal world, constituent system documentation
would be available and address all SoS concerns. Our previous research
(discussed in Related Work below) reports that this is not usually the case
[91]. The challenge of documenting architectures whose parts are designed by
separate organizations is a fundamental challenge of SoS and ultra-large scale
systems [122].

Pragmatically, the SoS architect seeking information about a constituent
system has limited options. If there is documentation and/or source code
available, the SoS architect can attempt to learn enough about the constituent
system design to address concerns about how that system will operate in the
SoS. However, constituent systems are developed independently, and often
there is little or no documentation or code available. In that case, the architect
of the SoS would seek to collaborate with the architect of each constituent
system to augment the constituent system architecture documentation with
the information needed to address the SoS concerns. However, the managerial
independence of the development and evolution of constituent systems within
a SoS [110] often creates barriers to collaboration. Consider three examples of
these barriers:

1. Each constituent system owner retains independent management of
funding and objectives, and the constituent system architect’s responsi-
bilities for delivering system-oriented capabilities may not provide slack
time to allow collaboration with the SoS architect.

2. There is no ongoing development on a particular constituent system,
and so there is no architect assigned who could collaborate with the SoS
architect.

114

6.1. INTRODUCTION

3. Firms are integrating IT systems after a merger or acquisition, and the
architects of particular acquired systems may be reassigned or dismissed,
and so are not available to collaborate.

In each of these scenarios, collaboration between the SoS architect and
the architects of each constituent system may become a tightly planned and
managed high ceremony event. The SoS architect must articulate a precise
request for information, for which the constituent system architect estimates
the cost to respond. The SoS owner and the constituent system owner negotiate
to fund the constituent system architect’s work to respond, and eventually the
constituent system architect is directed to supply the requested information
to the SoS architect. There is often little or no ability to iterate the requests or
seek elaboration of the responses, and given these high stakes, the architect of
the SoS needs a pedigreed basis for a request for information.

The contribution of this chapter is an architecture documentation view-
point to assist SoS architects in collecting or creating sufficient documentation
about constituent systems in a SoS. The viewpoint addresses stakeholder
concerns about SoS design and analysis. This reusable “library viewpoint”
conforms to the ISO/IEC 42010 standard for architecture description [79], and
provides guidance for SoS architects to request sufficient information about
constituent system architectures to satisfy SoS-level concerns about each con-
stituent system operating in the SoS context. The viewpoint was evaluated by
an expert panel in a single case mechanism experiment using the active design
review method [128]. We found that the baseline version of the viewpoint
covered most SoS stakeholder concerns; however, the experiment uncovered a
gap in the area of deployment of software units to computers and networks.
We describe how the viewpoint was reworked by adding a new model kind to
address this gap.

This chapter is organized as follows: §6.2 discusses related work in the
areas of SoS and architecture documentation. §6.3 describes our approach to
developing and evaluating the viewpoint, which was based on Wieringa’s
design cycle [156]. §6.4 presents the results of our evaluation experiment,
and our analysis and interpretation, including how the baseline version of
the viewpoint was reworked based on the results of the experiment. §6.5
summarizes our conclusions, and the reworked viewpoint is included as an
appendix.

115

CHAPTER 6. DOCUMENTATION VIEWPOINT

6.2 Related Work

Generally, concern-driven architecture documentation approaches organize
architecture documentation into views to address stakeholder concerns [79,
34, 137]. These approaches are widely used for software system architecture
documentation, for example in the Rational Unified Process (RUP) 4+1 Views
[101].

At the SoS level, view-based frameworks such as DoDAF [48] and MODAF
[118] have emerged to document SoS architecture. The EU COMPASS Project
[37], which ended in 2014, addressed SoS modeling, and SoS architecture
documentation continues to be an area of active research [69], producing new
documentation approaches such as S3 [27] and SySML-based approaches from
the EU AMADEOS project [119].

The architect of a SoS must depend on the documentation of constituent
systems. Our earlier research reported that one challenge to designing a SoS
architecture is gaps in the architecture documentation of the constituent sys-
tems [91]. The architecture documentation of each constituent system usually
focuses on the stand-alone operation of that system, and on the stand-alone
development and evolution of that system. The architecture documentation
for constituent systems is created during engineering development of the con-
stituent system, for different purposes than SoS, notably constituent system
bounds, constituent system goals, different modeling goals, and different char-
acteristics of interest [75]. While functional interaction with external systems
in support of the system’s standalone operation may be addressed by the
architecture documentation, the quality attribute aspects of those interactions
are typically not well covered.

Participation of a constituent system in a SoS introduces new concerns
about that system; however, a survey by Bianchi and colleagues found that
there are no applicable quality attribute frameworks for these concerns [20].
Our earlier research found interoperability to be a primary concern of SoS de-
signers [94], and more recent work by Batista [12] and by Guessi and colleagues
[69] confirmed that interoperability is a primary focus of SoS architecture doc-
umentation. The system mission characterization of Silva and colleagues
provides insight into functional interoperation concerns [145]. Architecture
documentation for constituent systems that addresses standalone operation
may not address SoS interoperability concerns, which go beyond interface
syntax. As the context for interface semantics is expanded to the SoS, behavior

116

6.3. APPROACH

that might have been considered private to the system becomes externally
visible. For example, design decisions such as whether to retry a failed request
to an external system may not be architectural in the context of standalone
operation, but become externally visible and architectural in the context of SoS
operation.

The viewpoint that we developed could be considered an extension of the
System Context Viewpoint defined by Woods and Rozanski [159], or of the
system context diagram in the Beyond Views section of a Views and Beyond
architecture document [34]. However, each of these focuses on how external
interfaces and interactions support the independent operation of the system,
and not on how the system interoperates with other systems to achieve an SoS
capability.

6.3 Approach

Our objective is to design an artifact that contributes to the achievement of
some goal. Here, the artifact is an architecture viewpoint, and the goal is
to allow SoS architects to reason about a constituent system to design a SoS.
Wieringa labels this a design problem and we used the Design Cycle approach
[156] as follows:

1. Problem Investigation—We built on the related work discussed above
to identify stakeholders in the SoS design process and their concerns
related to constituent systems operating in the SoS context.

2. Treatment Design—We defined an architecture viewpoint to address
those stakeholder concerns.

3. Treatment Evaluation—We evaluated the treatment by a single case
mechanism experiment [156], using an expert panel to conduct an active
design review [128].

6.3.1 Problem Investigation—Identify
Stakeholders and Concerns

There are many stakeholders in a SoS and in its architecture [19]. Our focus is
on the architecture design and analysis task, and specifically, reasoning about
a constituent system in the context of the SoS, which narrowed the scope to
the stakeholder roles listed in Table 6.1.

117

CHAPTER 6. DOCUMENTATION VIEWPOINT

Table 6.1: Selected SoS Architecture Stakeholders

Stakeholder Name Stakeholder Role

SoS Architect Creates architecture designs to allow con-
stituent systems to interoperate to achieve
SoS goals. Proposes or defines necessary or
desirable changes to constituent systems.

SoS Program Manager Has ultimate responsibility for achieving
SoS goals. Negotiates with program man-
agers of constituent systems to make nec-
essary or desirable changes to constituent
systems.

Developer Makes necessary or desirable changes to the
software of the constituent systems.

SoS Testers and Integrators Installs, configures, and tests the constituent
systems interoperating as a SoS.

These stakeholders were selected because they are directly involved in
understanding the constituent system architectures, proposing or defining
changes to those architectures for use in the SoS, and then constructing, testing,
and integrating the constituent systems in the SoS.

While our earlier systematic review found that SoS research has heavily
focused on interoperability concerns [94], our state of the practice survey
indicated that practitioners designing and analyzing SoS architectures have
broader technical and non-technical concerns [91]. Since our treatment will
be employed by practitioners, we decided to augment the researcher-oriented
findings with a survey of practitioner-focused literature to identify additional
concerns about constituent systems when designing and analyzing SoS archi-
tectures.

This survey focused on an annual practitioner conference organized by the
Systems Engineering Division of the National Defense Industry Association
(NDIA)1. We reviewed all papers in the SoS Track and Architecture Track
for the conferences from 2009 through 2016, and identified 14 papers that
discussed SoS architecture concerns. We also reviewed the United States De-
partment of Defense Systems Engineering Handbook for Systems of Systems

1See http://www.ndia.org/divisions/systems-engineering

118

http://www.ndia.org/divisions/systems-engineering

6.3. APPROACH

[125], which provides guidance to a broad community of practice. From these
sources, we identified a set of concerns that are shown in Table 6.2. As de-
scribed below, these concerns were used to define the architecture viewpoint
artifact.

6.3.2 Treatment Design—Define the Architecture Viewpoint

Wieringa defines a treatment as “the interaction between the artifact and the
problem context” [156, §3.1.1]. We will define an artifact—an architecture
viewpoint—that will be applied by an SoS architect to create an architecture
view of a constituent system that provides the information needed to reason
about that constituent system when it is operating in the context of the SoS.
In this section we focus on the design of the architecture viewpoint, however,
our evaluation will consider the entire treatment.

The viewpoint definition conforms to the ISO/IEC/IEEE 42010 standard
[79], using Annex B of that standard as the template. This approach was
selected because of its status as a global standard and because it is compatible
with producing documentation using other approaches such as Views and
Beyond (see, for example, Appendix E in [34]).

The subset of the ISO 42010 conceptual model related to viewpoint defini-
tion is shown in Fig. 6.1.

As shown in Fig. 6.1, the viewpoint definition begins by identifying stake-
holders and concerns. The concerns identified in Table 6.2 are somewhat
general. In order to define an architecture viewpoint to address the concerns,
we refined these by mapping them to the set of quality attributes that Bass
and colleagues [10] defined and found to be relevant to all software systems,
namely performance, availability, security, testability, modifiability, and us-
ability. In Table 6.3, we consider each of these quality attributes (along with
a category for context concerns that cut across stakeholders) as concerns at
the SoS level, and then trace down to information needed at the constituent
system level in order to address the SoS concern. This tracing was performed
by considering the tactics [10] that might be applied to achieved the qual-
ity. Tactics that could be applied in the SoS context became concerns about
constituent systems in Table 6.3. Bass and colleagues also discuss which stake-
holders are typically concerned with each quality attribute, and we include
this information in Table 6.3. Note that the SoS architect is concerned with all
qualities.

119

CHAPTER 6. DOCUMENTATION VIEWPOINT

Table 6.2: SoS Stakeholder Concerns from Practitioner-oriented Literature

Publication Concerns about constituent systems in an SoS

Benipayo 2016 [18] Dependencies on other constituent systems

Sitterle 2016 [146] Interface adaptability (Interoperability), Recovery

Gump 2014 [70] Interoperability, Dependencies on other constituent sys-
tems

Manas 2014 [115] Dependencies on other constituent systems, Shared Re-
sources

Carson 2014 [30] Dependencies on other constituent systems

Guertin 2014 [68] Portability, Scalability, Dependencies on other constituent
systems, Security

Baldwin 2014 [8] Stakeholders, Dependencies on other constituent systems

Gagliardi 2013 [56] Shared resources

Pritchett 2013 [132] Dependencies on other constituent systems

Dahmann 2012 [41] Interoperability
Perceived needs of constituent systems
Processes, cultures, working practices between different
participating organizations
Dependencies at development time and run time

Dahmann 2012 [42] Dependencies on other constituent systems

Smith 2011 [147] Interoperability context: assumptions, constraints, drivers

Lane 2010 [102] Monitoring and measurement

DoD 2008 [125] Technical and organizational dependencies
Interoperability
Synchronization of delivery of features across constituent
systems (dependencies)
Constituent system stakeholders
Constituent system needs and constraints
Constituent system evolution strategy and built-in vari-
abilities

Fig. 6.1 shows that the viewpoint comprises one or more model kinds. The
model kinds were developed iteratively, using the following approach:

120

6.3. APPROACH

architecture
viewpoint

stakeholderconcern

view

model

has 1..*

frames 1..*

model
kind

1..*

1..*

governs 11

governs 11

1..*
1..*

Key: UML 2.0

Figure 6.1: Extract from ISO 42010 Conceptual Model (Adapted from [79]

1. Identify the type of elements and relations needed to address each con-
cern.

2. Group concerns that had the same types of elements and relations.

3. Define a model kind for each group of concerns.

Following this approach, we developed five model kinds, each addressing
particular concerns from Table 6.3, and collectively addressing all concerns.
The model kinds are listed below. Each model kind includes a brief discussion
of the model elements and relationships, and the complete definition of the
model kinds is provided in the appendix:

• Constituent System Stakeholders/Concerns–provides architecture con-
text for the SoS architect and Program Manager by providing insight into
the perceived need of the constituent system, and identifies stakehold-
ers who may be impacted by the constituent system’s operation within
the SoS. The model elements are constituent system stakeholders and
stakeholder concerns, with the relation stakeholder has a concern.

121

CHAPTER 6. DOCUMENTATION VIEWPOINT

Table 6.3: Tracing SoS Concerns into Constituent Systems

SoS
Concern

Constituent System Concern Stakeholder

Performance Shared resources: what is shared, how is use shared,
behavior when insufficient resource is available (run
time dependencies, monitoring and measurement,
interoperability context)

SoS Architect
Program Manager

Security Authentication: identity validation repository (inter-
operability)
Authorization: remote access to system and resources
(interoperability)
Encryption: algorithms and key management (inter-
operability)

SoS Architect
Tester/Integrator
Program Manager

Testability Execution time dependencies: startup sequencing
(run time dependencies)
Fault detection and logging: internal (monitoring and
measurement)

SoS Architect
Tester/Integrator

Modifiability Build time dependencies: COTS, FOSS, development
environment, process/culture/working practices
Run time dependencies on other constituent systems
Variabilities: Affecting interfaces, decision model (de-
pendencies) (evolution and built-in variabilities)

SoS Architect
Developer

Availability Fault detection and logging: interfaces (monitoring
and measurement)
Fault recovery (interoperability context)

SoS Architect
Tester/Integrator
Program Manager

Usability (for
SoS operators)

Configuration dependencies among constituent sys-
tems (development time and run time dependencies)

SoS Architect

Context Perceived needs and constraints of constituent sys-
tems
Processes, cultures, working practices between differ-
ent participating organizations
Constituent system stakeholders

All

• Constituent System Execution Time Context—addresses concerns re-
lated to dependencies at execution time, shared resources, and to a lesser
extent, provides overall context. The model elements are the constituent
system and external software that the system interacts with during exe-
cution. The relations are execution time interactions, e.g., sends/receives
message, call/return, read/write data, etc.

122

6.3. APPROACH

• Constituent System Code Context—addresses concerns related to im-
plementation dependencies. The model elements are the constituent
system software, and external modules (e.g., libraries, development
tools, packages, etc.). The relation is uses.

• Constituent System Interface Information Model—addresses concerns
related to semantic interoperation of data elements. The elements are
information elements of interest to the SoS (e.g., a SoS that deals with
geo-location might use concepts like position, elevation, and direction),
and information elements in the constituent system software. Relations
are logical associations (1-to-1, 1-to-N, N-to-M), specialization/generalization,
and aggregation.

• Shared Resource Model—addresses concerns about runtime resource
sharing. Elements are components in the SoS representing resources
used by the constituent system and by other systems, including pro-
cessor compute cycles, memory, disk space, network bandwidth, files,
databases, virtual infrastructure, or physical resources such as a display,
antenna, or radio frequency. Relations are acquires/releases and consumes.

Table 6.4 shows the mapping from the concerns listed in Table 6.3 to the
model kinds listed above.

The 42010 standard permits three approaches to accommodate multiple
model kinds:

• Define multiple independent viewpoints, with each viewpoint compris-
ing a single model kind. We rejected this approach because the models
are not independent: In our case, omitting one model kind leaves a set
of concerns uncovered.

• Define a framework that comprises multiple viewpoints, with each view-
point comprising a single model kind. The standard characterizes a
framework as “establishing a common practice. . . within a particular
domain of application or stakeholder community” [79, §4.5]. We rejected
this approach for two reasons: The resulting artifact was applicable be-
yond a single application domain, and a framework does not inherently
imply that all viewpoints are used together, and so we have the model
omission issue described above.

123

CHAPTER 6. DOCUMENTATION VIEWPOINT

Table 6.4: Mapping Concerns to Model Kinds

Concern (from Table 6.3)
Model kind(s) that ad-
dress the concern

Shared resources—what is shared, how is use shared Shared Resource
Execution Time Context
Deployment

Behavior when insufficient resource is available (run time depen-
dencies, monitoring and measurement, interoperability context)

Shared Resource
Interface Information
Execution Time Context

Authentication—identity validation repository (interoperability) Interface Information
Shared Resource
Execution Time Context

Authorization—remote access to system and resources (interoper-
ability)

Interface Information
Shared Resource
Execution Time Context

Encryption—algorithms and key management (interoperability) Interface Information
Shared Resource
Execution Time Context

Execution time dependencies—startup sequencing (run time de-
pendencies)

Execution Time Context
Deployment

Fault detection and logging—internal (monitoring and measure-
ment)

Interface Information
Execution Time Context

Fault recovery (interoperability context) Execution Time Context
Deployment

Build time dependencies—COTS, FOSS assumptions Code Context

Development environment dependencies (development time de-
pendencies, process/culture/working practices)

Code Context
Deployment
Stakeholder/Concerns

Variabilities affecting interfaces Interface Information

Decision model (dependencies, evolution and built-in variabili-
ties)

Code Context
Interface Information

Configuration dependencies among constituent systems (devel-
opment time and run time dependencies)

Code Context
Execution Time Context
Interface Information

Perceived needs and constraints of constituent systems Stakeholder/Concerns

Processes, cultures, working practices between different partici-
pating organizations

Stakeholder Concerns

Constituent system stakeholders Stakeholder/Concerns

124

6.3. APPROACH

• Define a single viewpoint that comprises multiple model kinds. We
selected this approach because it treated the set of model kinds as an
atomic unit.

The single viewpoint was titled “SoS Constituent System Viewpoint”. The
complete viewpoint definition that conforms to the ISO 42010 standard is
presented in the appendix to this chapter (§6.6 below).

6.3.3 Treatment Evaluation—Active Design Review by
Expert Panel

Treatment evaluation is “the investigation of a treatment as applied by stake-
holders in the field. . . to investigate how implemented artifacts interact with
their real-world context” [156, §3.1.5]. Our evaluation criteria were that the
viewpoint provides sufficient coverage of concerns, and that a view created
using the viewpoint provides sufficient detail to allow an SoS architect to
reason about the constituent system operating in the context of the SoS.

The Introduction, above, described the high stakes involved in acquiring
documentation about constituent systems, arising from the managerial inde-
pendence of the systems. Therefore, an initial evaluation of this treatment
through an observational case study [156, §17] or through technical action re-
search [156, §19] would not be a responsible approach. We chose to perform a
single case mechanism experiment [156, §18] using an expert panel. According
to Hakim [71], small samples are effective to test explanations, particularly in
the early stages of work. Expert panel assessment has been used by a num-
ber of researchers (e.g., Dyba [49], van den Bosch and colleagues [150], and
Beecham and colleagues [16]), and so we saw this approach as both prudent
and appropriate. Expert panel recruitment is discussed below in §6.3.3, and
panel demographics are shown below in §6.4.1.

Our treatment artifact is architecture documentation. Nord and colleagues
provide a six-step structured approach to reviewing architecture documenta-
tion [120], which we followed for our evaluation. Steps 1-5 are discussed in
subsequent subsections, and the results of the review (Step 6) are discussed
below in §6.4. This six-step process is comparable to the eight-step process
used by Beecham and colleagues [16], collapsing multiple process steps in
several places.

125

CHAPTER 6. DOCUMENTATION VIEWPOINT

Step 1: Establish the Purpose of the Review

We aim to produce an artifact to guide an SoS architect to request the architec-
ture information about a constituent system that is sufficient for the architect
and other stakeholders to reason about that system in the context of a SoS.

As discussed above, our criteria for the treatment evaluation were that the
viewpoint provides sufficient coverage of concerns, and that a view created
using the viewpoint provides sufficient detail to allow an SoS architect to
reason about the constituent system operating in the context of the SoS.

Step 2: Establish the Subject of the Review

We are evaluating the treatment: the artifact applied in context, specifically
the viewpoint applied to a system to produce an architecture view. For this,
we applied the viewpoint to the Adventure Builder system, which was chosen
because it has an openly available architecture description that we used as the
basis for constructing the view documentation.

The Adventure Builder is a fictitious company that sells adventure travel
packages that bundle airline transportation, hotel accommodations, and guid-
ed activities. The system has a customer-facing website that allows customers
to shop and purchase adventure packages, and a service-oriented architecture
back-end that integrates with external payment processing and travel provider
services.

The view documentation that was produced is available as part of the
review instrument, at https://goo.gl/V4cril.

Step 3: Build or Adapt Appropriate Question Sets

Nord and colleagues identified several review styles:

• Questionnaire—reviewers assess the artifact using a list of questions
provided by the review organizer.

• Checklist—reviewers rate the artifact using a list of yes/no questions (a
special case of the questionnaire style).

• Subjective review—stakeholders also play the role of reviewer and pose
questions to themselves.

• Active review—architects ask questions that require reviewers to use the
subject artifact in order to answer the questions.

126

https://goo.gl/V4cril

6.3. APPROACH

We chose to use an active review style, as this approach ensures that the
reviewers skim the entire artifact and read some parts of the artifact in detail.
It also evaluates the treatment (artifact in use), and not just the contents of the
artifact.

However, we also wanted to understand how our experts would use their
knowledge and experience to approach a SoS design problem, and so we
incorporated a subjective review, where each expert formulated questions
about a SoS design problem, and then later in the review, answered these as
active review questions.

The instrument we created for the review had multiple parts (the entire
instrument is available at https://goo.gl/V4cril):

1. Demographic information about the reviewer.

2. A narrative vignette that created a usage scenario for the architecture
view. It asked each reviewer to play the role of a SoS architect tasked
to integrate the Adventure Builder system into an SoS, and specified a
design problem with three new SoS capabilities.

3. Subjective review questions—we asked each reviewer to record three
questions that they had about the architecture of the Adventure Builder
system, related to the design problem.

4. We next provided the architecture view artifact.

5. For each of the three new capabilities, we created several questions about
the new SoS design, and the reviewer had to use the architecture view to
answer the questions.

Our questions were refined from the “Key Design Decisions” question
list from Nord and colleagues [120, §4.5]. Two examples of the questions
are shown here; the entire instrument is available at https://goo.gl/
V4cril.

• Does the Adventure Builder system have existing request-response
interfaces with external systems? If so, what protocols/technologies
are used for these interfaces?

• The inputs to the new payment processing interface are: Card Type,
Card Number, Card Expiration, and Card Security Code/CCV. Can
the current Adventure Builder system provide all of these elements?

127

https://goo.gl/V4cril
https://goo.gl/V4cril
https://goo.gl/V4cril

CHAPTER 6. DOCUMENTATION VIEWPOINT

Reviewers also answered the three subjective review questions that
they created earlier in the review. We asked reviewers to annotate their
responses indicating the document sections that they consulted to answer
each question. We wanted to limit the duration of the review exercise
to one hour, and so we presented eight active review questions, which
along with the three subjective review questions, required each reviewer
to answer a total of 11 questions.

6. The instrument concluded by recording the amount of time that the
reviewer spent, and with open-ended questions about the realism of the
scenario, the contents of the architecture view, and any comments about
the review exercise.

Step 4: Plan the details of the review

Nord and colleagues define three major activities in this step: Constructing the
review instrument in light of constraints and intentions for reporting results;
identifying actual reviewers; and planning review logistics.

Our entire review instrument is outlined above in §6.3.3. It includes the
question set, reflects how we addressed review time constraints, and collects
demographic and other information to support our reporting of research
results. We decided to present all reviewers with the same set of eight active
review questions (i.e. all participants were assigned the same treatment).

Experts were recruited from a population of experienced practitioners in
the areas of SoS and enterprise system integration, who have worked in the
field for several years and have been responsible for designing the architecture
for several SoS. Experts were targeted to represent different backgrounds
and system domains, as recommended by Kitchenham and colleagues [89].
Additionally, we sought geographic diversity and organizational diversity. We
recruited eight experts from eight different organizations to participate in the
review exercise, and seven accepted.

Finally, our review logistics were simple: We emailed the instrument to
each reviewer, who worked independently to complete the review and return
the completed instrument to us by email.

128

6.4. ANALYSIS AND RESULTS

Step 5: Perform the Review

As noted above, we performed the review by sending an identical survey
instrument by email to each reviewer, and receiving a completed instrument
sent back to us by email.

6.4 Analysis and Results

6.4.1 Expert Panel Demographics

The expert panel demographics are presented in Table 6.5. These data were
self-reported by each expert. These data were collected to verify that the
invitee met the inclusion standards in §6.3.3, and to assess the diversity of
experience of the panel.

6.4.2 Active Review Question Responses

Here we discuss responses to the eight active review questions that we created
and which were assigned to all reviewers.

All of the participants answered the eight active review questions correctly,
with some minor variations in responses due to differing interpretations of
the question wording and the context. In particular, the use of the unqualified
term “interface” in several questions proved confusing: This was interpreted
to mean programmatic interface or user interface, or both.

Six of the seven reviewers indicated which model(s) they used to answer
each question (Some reviewers used more than one model to answer a ques-
tion.). These responses showed that every model was used by at least one
reviewer to answer at least one question, indicating that the questions covered
the breadth of the artifact.

Based on the small sample size (N=7), we hesitate to perform statistical
analysis on the relationship between questions and models; however, we show
the frequency of each model’s use in Table 6.6.

129

CHAPTER 6. DOCUMENTATION VIEWPOINT

Table 6.5: Expert Panel Demographic Information (N=7)

Variable Reported Value(s)

Current position title Software Architect (3)
Chief Enterprise Architect (1)
Chief Technical Officer (1)
Solution Architect (1)
Information Architect (1)

Current industry Consulting services—multiple industry do-
mains (4)
Government (2)
Financial services (1)

Prior industry experience
(multiple responses allowed)

Software product development (4)
Financial services (2)
Academia (2)
Consulting services—multiple industry do-
mains (1)
Government (1)
Utility (1)
Telecommunications (1)
Transportation (1)
Defense (1)

Nationality USA (3)
Netherlands (2)
Brazil (1)
UK (1)

Number of years of profes-
sional experience developing
or integrating systems

18-40 years (Average = 30, Median = 30)

Approximate number of
system integration projects
worked on

Responses ranged from 8 to “more than 100”.

130

6.4. ANALYSIS AND RESULTS

Table 6.6: Active Review Coverage of Models

Model Name
Number of times used to answer

active review question

Stakeholder/Concerns 13

Execution-time Context Model 12

Code Context Model 8

Interface Information Model 22

Shared Resource Model 3

6.4.3 Subjective Questions

As discussed above in §6.3.3, in addition to the eight active review questions
that we developed, we asked each reviewer to specify three questions that
they thought were important for this design problem. In addition to helping
triangulate to improve the quality of evaluation (discussed in the next section),
it provided direct insight into an SoS architect’s concerns when presented with
a design problem.

Our seven reviewers posed three questions each. There was significant
overlap among these 21 questions, and we clustered the questions into six
categories, shown in Table 6.7.

The questions in the Platform category could not be readily answered by
the reviewers using the architecture documentation provided. The viewpoint
included a Code Context model kind, which could represent the dependencies
on platform code modules, including application containers, operating sys-
tems and database libraries, and virtual machines. However, the viewpoint
does not include a deployment model that would directly address this cate-
gory of concerns by showing the relationship between the execution elements
of the constituent system—processes, services, applications, etc.—to computer
nodes and networks (e.g., [34, §5.2]).

The questions in the Implementation Quality/Risk category address is-
sues that are important to understand when designing a SoS; however, this
information is not part of the architecture (i.e. structures comprising elements,
relationships, and properties) of the constituent system, and these concerns
can be addressed by reviewing or inspecting non-architectural artifacts such
as an issue tracking system or source code repository.

131

CHAPTER 6. DOCUMENTATION VIEWPOINT

Table 6.7: Subjective Question Categorization

Category Example Questions
Frequency

(N=21)

Platform
What is the platform/technology
stack/runtime environment used by the
constituent system?

7

Data Model

What is the logical data model used in the
constituent system? How is
customer-identifying or user-identifying
data handled?

6

Implementation
Quality/Risk

What are the known problems in the
constituent system? What is the
development history (internal, acquired,
outsourced, etc.)?

3

User Interface
What is the user interface exposed by the
constituent system?

2

Functional
Structure

What is the functional structure of the
constituent system?

2

Architecturally-
Significant
Requirements

What are the quality attribute
requirements for the constituent system?

1

The questions in the User Interface category could not be readily answered
by the reviewers using the architecture documentation provided. Further
research is needed into the underlying concern—a possible explanation is that
the enterprise business system context for the vignette that we used for the
exercise triggered this concern based on the expert’s experiences, even though
none of the desired new capabilities involved the user interface.

The question about Architecturally-Significant Requirements was not read-
ily answered by that reviewer using the architecture documentation provided.
A complete ISO/IEC/IEEE 42010-compliant architecture description would
contain rationale that includes architecturally significant requirements [79,
§5.8]. Our review instrument included only a subset of a complete architecture
description containing the view that was the subject of the evaluation, and the
view contained models with no rationale.

132

6.4. ANALYSIS AND RESULTS

Questions in the Data Model and Functional Structure categories were
readily answered by the reviewers using the architecture documentation pro-
vided.

6.4.4 Interpretation and Viewpoint Rework

Based on the experiment results discussed above, we found that the baseline
version of the architecture viewpoint adequately covered the SoS stakeholder
concerns that we had identified in our Problem Investigation. However, our
expert review panel’s subjective review questions uncovered three categories
of concerns that we had not identified in our Problem Investigation, and were
not addressed by the baseline version of architecture viewpoint.

Below, we discuss each of these categories of concerns, and how the base-
line version of viewpoint definition was reworked to produce the viewpoint
definition presented in the Appendix (§6.6).

Runtime Deployment Environment Concerns

The first category of concerns that was not addressed by the baseline version
of the architecture viewpoint involved the runtime deployment environment
of the constituent system. The subjective review questions that raised this
concern covered two areas: the software platform (operating system, applica-
tion server, database manager, service bus, etc.), and the physical deployment
(mapping of software to compute nodes and networks).

In developing the viewpoint definition, we expected that the software
platform concerns would be addressed by the Execution Time Context Model
and/or the Code Context Model; however, those models in the Adventure
Builder System artifact provided to the reviewers did not contain sufficient
detail to address the concern. We have reworked the viewpoint definition by
extending the “Elements” section of these two models to add the software
platform elements to the model, and by extending the “What’s it for” section
to add that the model is used to answer questions such as those posed by the
expert panel.

The physical deployment concerns arise from the distributed nature of a
SoS. This physical distribution affects performance, availability, and possibly
security and other qualities. It is necessary for the SoS architect to understand
the physical deployment of the constituent system (how software is mapped

133

CHAPTER 6. DOCUMENTATION VIEWPOINT

to compute and network resources) because, when the system becomes part
of an SoS, those compute and network resources may be shared with other
constituent systems, or may be configured differently from the constituent
system’s stand-alone architecture.

The Shared Resource Model definition identifies network bandwidth and
compute resources as elements that may be shared, in order to address con-
cerns about performance. In the Adventure Builder System artifact provided
to the reviewers, that model was represented as a table, with deployment
information provided as part of the description of each element. This presen-
tation style did not provide sufficient detail to address the reviewer’s concern.
Many architecture documentation approaches define a Deployment Model, for
example the Deployment Style defined by Clements and colleagues [34] or the
Physical View defined by Kruchten [101]. In this model, elements are units of
software execution (e.g., processes, services, etc.), and physical infrastructure
(e.g., computer nodes and networks), and the relation of “executes on” maps
software to physical infrastructure. This model is used to address concerns
about performance, availability, and possibly security and other qualities. We
have reworked the viewpoint definition to add a Deployment Model.

Implementation Quality and Risk Concerns

The second category of concerns that was not addressed by the baseline version
of the architecture viewpoint involved the quality of the implementation of
the constituent system, and assessing risk in integrating it into the SoS.

These concerns might be seen to intersect with several of the concerns
drawn from the practitioner-oriented literature shown in Table 6.2, namely
“Processes, cultures, working practices” and “Constituent System Evolution
Strategy”, but on the whole, they were not considered in developing the
baseline version of the viewpoint.

As discussed above, it is important to understand these issues when de-
signing a SoS. The expert panel’s questions reflect common architecture ap-
proaches, such as the Risk and Cost Driven Architecture approach [130]. How-
ever, we think that this is not part of the architecture (i.e. structures comprising
elements, relationships, and properties) of the constituent system, and that
these concerns can be addressed by reviewing artifacts such as an issue track-
ing system or source code repository. We did not rework the baseline version
of the viewpoint in response to this gap.

134

6.4. ANALYSIS AND RESULTS

User Interface Concerns

The third category of concerns that was not addressed by the baseline version
of the architecture viewpoint involved the user interface of the constituent
system. As noted above, the constituent systems in a SoS are characterized
by operational independence, which would imply one of two user interface
integration patterns:

• Mashup, where the SoS user interface is developed using APIs of the
constituent systems. In this case, the constituent system’s user interface
is not presented directly.

• Portal, where the user interface of a constituent system is presented in
a sub-window (e.g., frame or pane) of the SoS user interface. In this
case, the constituent system’s user interface is presented in its entirety,
without modification.

Therefore, concerns about the user interface, per se, do not appear to
be generalizable SoS concerns, but there may be system-specific concerns.
For example, a mashup approach would introduce concerns that would be
addressed by the Execution Time Context Model and the Interface Information
Model. A portal could introduce concerns about the user interface display as
a shared resource, to be addressed by the Shared Resource Model.

We did not rework the baseline version of the viewpoint in response to this
gap; however, this may be an area for further research.

6.4.5 Threats to Validity

Construct validity is the degree to which the case is relevant with respect to
the evaluation objectives [138]. Here, our objective was to evaluate the ability
of an architecture documentation viewpoint to address the concerns of a SoS
architect about a constituent system within the SoS, in order to support SoS
design and analysis involving that constituent system. The selection of the
active review evaluation method ensured that the reviewers at least skimmed
the entire document, and our recording of the sections of the document used
to answer each question ensured that certain sections were read in detail. Also,
the reviewer’s positive comments about the realism of the review vignette

135

CHAPTER 6. DOCUMENTATION VIEWPOINT

support the construct validity of the experiment. Our objective was not to
compare this treatment (use of the viewpoint to reason about the constituent
system) to other treatments (e.g., using documentation and code from the
constituent system to reason about the system).

Internal validity concerns hidden factors, which is a concern when examin-
ing causal relations [138]. Our use of the active review method introduced the
potential threat to internal validity that the questions created for the review
may have been unconsciously influenced by our knowledge of the Adventure
Builder system architecture and its documentation. We mitigated this risk
by also incorporating subjective review questions: prior to reading the archi-
tecture documentation, each reviewer created three questions, and then later
used the documentation to answer those questions. This use of triangulation
increases the reliability of our results [138].

External validity is related to the generalizability of the results in the con-
text of a specific population. As discussed above in §6.3.3, we chose to use
an expert panel with a small sample size. According to Hakim [71], small
samples are effective to test explanations, particularly in the early stages of
work. By definition, our single case mechanism experiment does not support
statistical generalization, and so suffers the same external validity challenges
of all case study research [161]. Our total response rate (recruitment to com-
pletion) was 87.5%, from an expert panel with a diversity of experience and
system domain coverage, so we believe that our findings are valid at least
for SoS and constituent systems that are similar in size and scope to the SoS
described in the vignette that formed the basis of our review.

6.5 Conclusions and Future Work

In this chapter, we have introduced an architecture viewpoint to address the
concerns of a SoS stakeholders about a constituent system within the SoS, in
order to support SoS design and analysis involving that constituent system.
We evaluated this viewpoint using a single case mechanism experiment: An
expert panel performed an active design review using a question set that we
provided. The expert panel also created subjective questions, which provided
additional insight into the concerns of a SoS architect when solving a design
problem and improved the quality of our data by mitigating internal validity
concerns inherent in the active review process.

136

6.6. APPENDIX: VIEWPOINT DEFINITION

The evaluation results were generally positive, with the viewpoint showing
promise in providing guidance for SoS architects seeking architecture knowl-
edge about a constituent system. However, the evaluation identified a gap in
the baseline version of the viewpoint definition: It was missing a deployment
model for the constituent system that shows the relationship of the software
to computer nodes and networks. The viewpoint definition presented in the
appendix has been reworked to reflect this change.

The viewpoint conforms to the ISO/IEC/IEEE 42010:2011 (E) standard
for architecture description, and the revised viewpoint comprises five model
kinds: Constituent System Stakeholders/Concerns, Constituent System Exe-
cution Time Context, Constituent System Code Context, Constituent System
Interface Information Model, Shared Resource Model, and Deployment Model.

The managerial independence of constituent systems poses challenges
for SoS architecture designers, and frequently the architecture knowledge
acquisition process involves high stakes activities that risk damage to the
architect’s reputation and other consequences. Further empirical research in
this area must be designed within the constraints of this context. Our results
provide the confidence to evaluate this viewpoint using methods such as case
study or technical action research.

6.6 Appendix: Viewpoint Definition

The viewpoint defined here is a revised version of the baseline viewpoint that
was used to create the artifact that was the subject of the experiment discussed
in the body of this chapter. The following revisions were made to the baseline
version of the viewpoint, as described in §6.4.4:

• The “Elements” sections of the Execution Time Context Metamodel
(Table 6.10) and the Code Context Metamodel (Table 6.11) were revised
to specify that platform elements such as operating system, application
server, and database manager should be included.

• A new metamodel was added. The Deployment Metamodel (Table 6.14)
relates software units of execution (e.g., processes or services) to the
execution environment of computers and networks. Table 6.15 and
Table 6.16 were revised to add a reference to the new Deployment Meta-
model.

137

CHAPTER 6. DOCUMENTATION VIEWPOINT

This viewpoint definition follows the template in Annex B of ISO 42010
[79].

6.6.1 Viewpoint Name

This defines the “SoS Constituent System Viewpoint”, for use in documenting
the relevant parts of the architecture of one constituent system in a SoS.

6.6.2 Viewpoint Overview

The need for this viewpoint is discussed in §6.1 of this chapter.

6.6.3 Concerns Addressed by this Viewpoint

Table 6.2 and Table 6.3 in the body of this chapter show the concerns addressed
by this viewpoint, and map the concerns to the stakeholder roles identified in
the next section, below. §6.3.3 also discusses the method used to identify the
concerns.

6.6.4 Typical Stakeholders

The stakeholder roles addressed by this viewpoint are shown in Table 6.1 in
the body of this chapter.

These stakeholders were selected because they are directly involved in
understanding the constituent system architectures, proposing or defining
changes to those architectures for use in the SoS, and then constructing, testing,
and integrating the changed constituent systems in the SoS.

6.6.5 Model Kinds/Metamodels

This viewpoint specifies of a number of model kinds2.
We apply the principle of separation of concerns, and so each model kind

is defined using a single architecture style [34]: module styles address devel-
opment time concerns, component and connector styles address execution
time concerns, and allocation styles map between software elements and their
environment.

2In the terminology of ISO 42010, a viewpoint applied to a system yields a view. Analogously,
the standard defines a model kind, which, when applied to a system, yields a model.

138

6.6. APPENDIX: VIEWPOINT DEFINITION

Each model kind is specified as a metamodel. The metamodel template
is shown in Table 6.8, and is based on the Style Guide Template defined by
Clements and colleagues [34].

Table 6.8: Template used to specify metamodels for model kinds in this view-
point

Name: Name of the model kind

Type: Module, component and connector, or allocation, as defined by
Clements and colleagues [34].

Elements: The types of elements allowed in this model kind, and the proper-
ties that should be attached to each element instance.

Relations: The types of relations among elements allowed in this model
kind, and the properties that should be attached to each relation
instance.

Constraints: Any model construction constraints, such as cardinality of element
or relation types or topology constraints.

What’s it for: Brief description of how the model kind is used to support SoS ar-
chitecture tasks such as design, analysis, evolution, or evaluation.

Notations: Recommended notations for documenting the model kind, such
as table, diagram, or list.

The first model kind is defined in Table 6.9, and represents the stakeholders
and their concerns for the constituent system. This provides architecture
context for the SoS architect and Program Manager by providing insight into
the perceived need of the constituent system, and identifies stakeholders who
may be impacted by the constituent system’s operation within the SoS.

The second metamodel in this viewpoint, shown in Table 6.10, addresses
concerns related to dependencies at execution time, shared resources, and to a
lesser extent, overall context.

Concerns related to development time are addressed in the metamodel
defined in Table 6.11.

The metamodel defined in Table 6.12 addresses general information inter-
operation concerns.

Concerns about resource sharing are addressed in the metamodel defined
in Table 6.13.

139

CHAPTER 6. DOCUMENTATION VIEWPOINT

Table 6.9: Constituent System Stakeholders/Concerns Metamodel

Name: Constituent System Stakeholders/Concerns

Type: Allocation

Elements: Constituent system stakeholders
Stakeholder concerns about system architecture

Relations: A stakeholder has a concern

Constraints: Stakeholders can have multiple concerns.
Multiple stakeholders can have the same concern.

What’s it for: Aids in understanding the scope of the constituent system, and
who will be impacted by changes made to the constituent system
to allow it to join the SoS.

Adding
Assumptions:

List any stakeholders that were considered but intentionally ex-
cluded.
Note concerns that were identified but not addressed by the archi-
tecture.

Notations: List—one item per stakeholder, with list of concerns.
Matrix—one row per stakeholder, one column per unique concern,
“x” at row-column intersection means that the stakeholder in that
row has the concern in that column

140

6.6. APPENDIX: VIEWPOINT DEFINITION

Table 6.10: Constituent System Execution Time Context Metamodel

Name: Constituent System Execution Time Context

Type: Component and Connector

Elements: Running system
External software that the system interacts with

Relations: Any interaction at execution time (e.g., sends/receives message,
call/return, reads/writes data, interrupts, synchronizes with)
Property: Interfaces used for the interaction on self and external
software
Property: Direction of interaction (initiated by constituent system
or external system)

Constraints: An interface on the constituent system may be used to interact
with multiple external systems
Multiple external systems may interact with the constituent sys-
tem through the same interface on the constituent system

What’s it for: Aids in understanding the scope of the constituent system to
analyze the impacts of necessary or desired changes
Identifying viable SoS subsets and activity sequencing during SoS
integration

Adding
Assumptions:

Startup behavior should be documented, using a notation such as
a message sequence diagram
Monitoring and performance measurement behavior should be
documented, using notations such as message sequence diagrams
and state transition diagrams.

Notations: Diagram—e.g., Context Diagram from Clements [34]
List—one item per constituent system interface, with list of exter-
nal systems and interfaces that it interacts with
Matrix—rows are interfaces on the constituent system, columns
are interfaces on external systems, “S” at a row-column intersec-
tion means that the constituent system interface sends an interac-
tion to the external system, “R” means that the constituent system
interface receives an interaction from the external system

141

CHAPTER 6. DOCUMENTATION VIEWPOINT

Table 6.11: Constituent System Code Context Metamodel

Name: Constituent System Code Context

Type: Module

Elements: Constituent system software
External modules (libraries, packages, development tools, etc.)
that the constituent software depends on

Relations: Uses
Properties: type of dependency (e.g., code generation, build, unit
test, integration test), version identification or key features used
for external modules, source of external modules (e.g., FOSS,
COTS, GOTS)

Constraints: Many-to-many

What’s it for: Aids in understanding the scope of the constituent system to
analyze the impacts of necessary or desired changes.
Identifying mismatches among external dependencies that will
constrain deployment decisions or interactions among constituent
systems in the SoS.

Adding
Assumptions:

What evolution is assumed for the external modules? Are there
new features or capabilities that are expected to be available that
the constituent system will use?

Notations: Diagram—e.g., Uses Context Diagram from Clements [34]
List
Matrix—This structure may be documented in a Dependency
Structure Matrix generated for static analysis of the constituent
system code.

142

6.6. APPENDIX: VIEWPOINT DEFINITION

Table 6.12: Constituent System Interface Information Metamodel

Name: Constituent System Interface Information Model

Type: Module

Elements: Information elements of interest to the SoS (e.g., a SoS that deals
with geo-location might have concepts like position, elevation,
and direction)
Information elements in the constituent system software architec-
ture
Properties: Should include units, timeliness, precision, security
level, etc., as applicable

Relations: Between SoS and constituent system information elements, and
from constituent system elements to sub-elements (to refine de-
tails).
Logical associations (1-1, 1-n, n-m)
Specialization/generalization (is-a)
Aggregation

Constraints: None

What’s it for: Understanding how common concepts in the SoS are represented
in a constituent system, and identifying mismatch between repre-
sentations among constituent systems in the SoS

Adding
Assumptions:

Explicitly identify SoS information elements that have no relation-
ship to the constituent system

Notations: Logical data modeling notations (ERD, UML)

143

CHAPTER 6. DOCUMENTATION VIEWPOINT

Table 6.13: Shared Resource Metamodel

Name: Shared Resource

Type: Component and Connector

Elements: Component(s) representing a resource that is used by the con-
stituent system and by other external systems. These include
processor computing cycles, memory, disk space, network inter-
faces, network bandwidth, files, databases or repository, virtual
infrastructure, and system physical resources such as a display,
radio frequency, or antenna.
Component(s) in the constituent system that use the shared re-
source

Relations: Any interaction during execution that acquires, consumes, or
releases the shared resource.

Constraints: None

What’s it for: Analyzing capacity and performance/availability of the SoS. Iden-
tifying cases of undesirable SoS behavior due to mismatch be-
tween resource sharing approaches of constituent systems.

Adding
Assumptions:

Is the resource explicitly or implicitly acquired and released?
What is the behavior if insufficient (or no) resources are available?

Notations: Static diagrams—e.g., from Views and Beyond component and
connector style guide [34]
Behavior diagrams—message sequence charts, state transition
diagrams, etc.

144

6.6. APPENDIX: VIEWPOINT DEFINITION

Concerns about deployment of software onto computers and networks are
addressed in the metamodel defined in Table 6.14.

6.6.6 Correspondence rules

There are no specific correspondence rules for the models constructed using
this viewpoint.

6.6.7 Operations on views

Creating a view of a constituent system using this viewpoint

In some cases, the information needed to create a view using this viewpoint
already exists in the architecture documentation for the constituent system.
Table 6.15 and Table 6.16 map the information required for this viewpoint
to sources in two commonly used documentation frameworks: Views and
Beyond [34], and DoDAF [48].

Interpretive, Analysis, and Design Methods

These operations on a view created from this viewpoint are discussed in the
“What’s it for” section of the metamodels specified above.

6.6.8 Examples and Notes

The evaluation instrument available at https://goo.gl/V4cril provides
an example of applying this viewpoint to create a view on a constituent system.

145

https://goo.gl/V4cril

CHAPTER 6. DOCUMENTATION VIEWPOINT

Table 6.14: Deployment Metamodel

Name: Deployment

Type: Allocation

Elements: Software units of execution, with properties that specify the exe-
cution needs and constraints
Computers and networks that execute software, with properties
that specify the execution resources (e.g., compute cycles, memory,
storage, and bandwidth) provided

Relations: Software units execute on computers and networks.

Constraints: None

What’s it for: Analyzing performance and availability, and possibly security and
other qualities. Assessing operating cost (e.g., required hardware
and software, operations staff skills).

Adding
Assumptions:

Can any part of the execution environment be virtualized?
What are the assumptions about the network’s ability to reach the
internet or particular resources on a private network?

Notations: Table—Rows are instances or types of software elements, columns
are instances or types of computers and networks
Diagram—e.g., Deployment Diagram from Clements [34])

146

6.6. APPENDIX: VIEWPOINT DEFINITION

Table 6.15: Mapping from SoS Viewpoint Metamodels to Views and Beyond
Approach

Viewpoint Meta-
model Name

Source of information in a Views and Beyond architec-
ture document

Constituent System
Stakeholders/Con-
cerns

Information Beyond Views—Documentation Roadmap.
Stakeholder/View Matrix (typically generated by the ar-
chitect but not explicitly included in the architecture docu-
mentation).

Constituent System
Execution Time
Context

Context diagram from one of the component and connector
views, e.g., client-server, SOA, pipe and filter, or publish-
subscribe.

Constituent System
Code Context

Context diagram from a module uses view.

Constituent System
Interface Information
Model

Interface documentation for externally-visible interfaces
(from component and connector views), or a data model
view packet focused on externally-visible information ele-
ments.

Shared Resource Component and connector view.

Deployment Deployment view primary presentation or context dia-
gram.

147

CHAPTER 6. DOCUMENTATION VIEWPOINT

Table 6.16: Mapping from SoS Viewpoint Metamodels to DoDAF

Viewpoint Model
Name

Source of information
in a DoDAF
architecture document

Comments

Constituent System
Stakeholders/Con-
cerns

AV-1 Overview and
Summary Information
PV-1 Project Portfolio
Relationships

DoDAF does not generally treat
stakeholders as a first-order concern.
These DoDAF views provide insight
into the operational, maintenance, and
development stakeholders.

Constituent System
Execution Time
Context

SvcV-1 Services Context
Description
SvcV-3b
Services-Services Matrix

Constituent System
Code Context

SvcV-1: Services
Context Description

If the information is included, it is
most likely to appear in the SvcV-1.

Constituent System
Interface Information
Model

SvcV-2: Services
Resource Flow
Description
SvcV-6: Services
Resource Flow Matrix
StdV-1 Standards Profile

DoDAF use the concept of “resource
flows” to identify interfaces and
protocols.

Shared Resource SvcV-3b
Services-Services Matrix
SvcV-10c Services
Event-Trace Description

Shared resources may not be explicitly
identified, but can be discovered using
the SvcV views.

Deployment SvcV-1 Services Context
Description
SvcV-3a
Systems-Services Matrix

DoDAF “services” usually include
both software and hardware elements,
without explicit refinement. The
DoDAF views noted here may provide
insight, but are unlikely to provide all
the information needed to create this
model.

148

7
Runtime Performance Challenges in

Big Data Systems

Summary

Big data systems are becoming pervasive. They are distributed systems that in-
clude redundant processing nodes, replicated storage, and frequently execute
on a shared “cloud” infrastructure. For these systems, design-time predictions
are insufficient to assure runtime performance in production. This is due to
the scale of the deployed system, the continually evolving workloads, and the
unpredictable quality of service of the shared infrastructure. Consequently, a
solution for addressing performance requirements needs sophisticated run-
time observability and measurement. Observability gives real-time insights
into a system’s health and status, both at the system and application level, and
provides historical data repositories for forensic analysis, capacity planning,
and predictive analytics. Due to the scale and heterogeneity of big data sys-
tems, significant challenges exist in the design, customization and operations
of observability capabilities. These challenges include economical creation
and insertion of monitors into hundreds or thousands of computation and
data nodes; efficient, low overhead collection and storage of measurements
(which is itself a big data problem); and application-aware aggregation and
visualization. In this paper we propose a reference architecture to address
these challenges, which uses a model-driven engineering toolkit to generate
architecture-aware monitors and application-specific visualizations.

149

CHAPTER 7. RUNTIME PERFORMANCE CHALLENGES

7.1 Introduction

The exponential growth of data in the last decade has fueled rapid evolution
in the scale of software systems. Internet-born organizations such as Google
and Facebook are at the cutting edge of this scale-driven revolution, collecting,
managing, storing, and analyzing several petabytes of new data every day,
and operating some of the largest data repositories ever constructed [154].

Beyond the Internet companies, data-intensive systems and big data appli-
cations are becoming pervasive across a wide range of business and scientific
domains. For example,

• Modern commercial airliners produce approximately 0.5TB of opera-
tional data per flight [53]. This data can be used to diagnose faults,
optimize fuel consumption, and predict maintenance. Airlines must
build scalable systems to capture, manage, and analyze this data to
improve reliability and reduce costs.

• Big data analytics for healthcare could save an estimated $450 billion
in the USA [67]. Analysis of petabytes of data across patient popula-
tions, taken from diverse sources such as insurance payers, public health,
and clinical studies, can extract new insights for disease treatment and
prevention, and reduce costs by improving patient outcomes and opera-
tional efficiencies.

• In operation, the Square Kilometre Array telescope will generate 1TB/sec
of pre-processed data, which results in one exabyte of data every 13 days.
Even with significant aggregation, this system will need a sophisticated
data archive and distribution system to delivery exabytes of observation
data to astronomers1.

• By one estimate, there are 14,000 million “things” with sensors, gener-
ating data that is communicated over the Internet. By the year 2020,
this Internet of Things (IoT) will generate 4 zettabytes of data per year
supporting automation monitoring, and optimization of processes and
services around the world [149].

1See https://www.skatelescope.org/software-and-computing

150

https://www.skatelescope.org/software-and-computing

7.2. CHARACTERISTICS OF BIG DATA SYSTEMS

With systems at these immense scales, meaningful design time performance
prediction becomes essentially infeasible, both theoretically and pragmati-
cally. Building models to represent complex static and dynamic component
compositions in both the system and the underlying infrastructure, exploit-
ing multiple architecture styles, and accurately representing combinations
of heterogeneous and uncertain workloads challenges the state of the art in
performance modeling. Pragmatically, even if it were possible to build such
models, post-deployment data growth, shared cloud-based infrastructures,
and rapid application evolution would render model results invalid more or
less immediately.

For these reasons, assuring runtime performance at scale must be based on
observing and analyzing actual application behavior. Observability provides
real-time insights into system health and status, both at the infrastructure and
application level, and provides historical data repositories for forensic analysis,
capacity planning, and potentially for predictive analytics based on statistical
techniques.

This paper discusses the challenges of building massively scalable, easily
configurable and lightweight observability solutions that can form the ba-
sis of performance monitoring and analysis solutions. In response to these
challenges, we propose and outline an approach for observability based on a
model-driven toolkit that is the focus of our current research.

7.2 Characteristics of Big Data Systems

The major runtime elements of a typical big data system are shown in Fig. 7.1.
Inputs from sensors, devices, humans, and other systems are delivered to
the system, where they are ingested through a pipeline that translates and
transforms the data and writes it to a persistent store. The persistent store
is frequently polyglot, employing a heterogeneous mix of SQL, NoSQL, and
NewSQL technologies [139]. Users query stored data through many types
of devices and applications. Some applications are within the system (i.e.
under the same design and operational authority as the system), while other
applications may be independent of the system and integrated through various
endpoint mechanisms. The system executes in a cloud infrastructure, shared
with other systems.

151

CHAPTER 7. RUNTIME PERFORMANCE CHALLENGES

Figure 7.1: Typical Data-Intensive System

Big data systems are typically horizontally scaled distributed systems,
operating over clusters of hundreds or thousands of compute and storage
nodes [152]. Requests to read and write data fan out to many nodes, executing
pipeline and/or parallel topologies, resulting in highly variable response
latency [44].

In this context, servers are treated as “cattle, not pets” [21], meaning that
nodes are expected to fail, and to be casually replaced with new instances.
Redundant processing and replicated storage capabilities shift the primary
concern to the herd (cluster), not to any individual (single server). This strategy
requires applications to operate with partial failure as a normal condition [152].

152

7.3. THE NEED FOR OBSERVABILITY

7.3 The Need for Observability

In the environment presented in Fig. 7.1, design time predictions of system
performance, produced through modeling or prototyping, can help to develop
and evaluate the system’s architecture and components. However, design
time prediction is insufficient to assure the runtime performance of these
large-scale systems in production for two reasons. First, at such scale, high
fidelity prototyping and model validation is not practical. The time and cost
to generate petascale data sets, and the cost and complexity of thousand-node
server clusters with millions of clients requires simplification and approximate
characterization of the actual architecture styles and technologies to be used.

Furthermore, after the system is deployed and in production, there is
typically no control over the number of input sources and associated data
rates (unless the system simply discards input data). This means the size of
data being managed and analyzed quickly grows beyond predicted volumes,
rendering predictions unreliable. There is also no control over the number of
users and external applications, and the queries they make (unless the system
rejects requests). Finally, a shared cloud infrastructure may not provide the
expected continuous quality of service due to contention for resources at all
levels (storage, network, and processor) and due to infrastructure failures
[13, 158].

These challenges of managing and evolving system performance must
therefore be addressed by instrumenting the system to observe runtime behav-
ior, and by aggregating the collected performance measurements to identify
trends and issues. In production, there is a close relationship between perfor-
mance and system health. For example, in a distributed system with asyn-
chronous communication, high response latency is generally indistinguishable
from node failure or network partition. In addition, due to the fan out inherent
in processing individual requests, many nodes will contribute to the latency
of any particular response. In systems with redundant processing capacity
and replicated storage, a sequence of identical requests may be executed by
different sets of nodes, with each set inevitably having different composite
performance/health characteristics. This leads to a complex relationship be-
tween the performance/health of an individual node and end-to-end system
performance [44].

153

CHAPTER 7. RUNTIME PERFORMANCE CHALLENGES

Redundancy also makes it possible for a system to meet its service level
requirements even when experiencing partial system failures. Seemingly catas-
trophic numbers of node failures may not impact system performance if the
failures occur when the system contains spare capacity [158]. In scalable sys-
tems, components are often designed to fail fast and employ stateless designs
where possible to facilitate rapid recovery [124].

The performance data collected from the running system serves multi-
ple purposes. These include operational monitoring, ongoing tuning, and
preventative actions, such as adding capacity to handle load surges. These
measurements also support system and architecture evolution, serving as
design time prototypes for the next generation of the system. Finally, they may
be used as part of an emerging autonomic capability [86].

In any runtime monitoring function, there are many common concerns.
These include the intrusiveness of the monitoring on the host performance
(measured in additional processor and memory utilization), measurement
storage footprint (including retention and archiving), and user interface us-
ability. However, in large-scale big data systems, these concerns become
challenges that have not been solved in practice, except for point solutions that
are highly customized for a specific business need [153] and have required
massive investments in time and effort.

Hence, in the dynamic, uncertain runtime environments in which big data
systems exist, some specific challenges of observability include:

• Monitoring a heterogeneous deployment at scale (1000s of nodes), with
an ever-changing dynamic component configuration and load. While
each component may have its own dedicated monitoring interface, noth-
ing exists that can seamlessly integrate metrics from each component
into the same monitoring framework. This forces every organization
to develop and maintain a custom observability solution to handle the
specific components they have composed into their systems.

• Collection, storage, and compression of millions of time series metrics—a
big data problem in itself—with acceptable overhead and footprint

• Aggregating individual metrics into meaningful application perform-
ance indicators (e.g., total request load on all database nodes per sec-
ond in a heterogeneous database environment with 1000s of individual
nodes)

154

7.4. RELATED WORK

• Analytical environments supporting user-driven data exploration and
analysis, as well as statistical techniques that can find patterns and trends
in low level performance metrics.

Collectively, these challenges represent a major area of research for the software
performance community. Currently, no open source or commercial technology
exists that organizations can acquire, easily customize, and deploy to observe
their big data systems [153]. This is a major problem given that the inherent
complexity of building a low overhead and robust observability solution is
a cost that most organizations are not prepared for as they scale up their
systems. Creating a solution requires scalable and flexible mechanisms for
observability, as well as new performance analysis techniques, packaged into a
framework that organizations can rapidly customize to monitor their systems’
performance.

7.4 Related Work

Relevant prior work spans several areas. These include measurement collec-
tion, visualization, architecture-aware modeling, and model-based monitoring
automation.

There has been significant prior work on collecting general measure-
ments of resource utilization at process and node level. This has produced
open source packages such as Collectd (http://www.collectd.org), Ganglia
[116], and Nagios [76]. Ganglia and Splunk (http://www.splunk.com) sup-
port collection of host-level measurements across clusters, and provide ba-
sic monitoring and visualization dashboards. Commercial products from
HP (https://goo.gl/t3BK3y), IBM (http://www.ibm.com/software/tivoli), and
others also provide similar collection and visualization capabilities. Tools
such as Chukwa (http://wiki.apache.org/hadoop/Chukwa) and Sawzall (http:
//research.google.com/archive/sawzall.html) focus on general analytics on col-
lected log data, including semantics for time series data sets. However, these
tools are not designed to enable capture and analysis of detailed application-
level performance metrics. They also have limited coverage for the heteroge-
neous components that commonly comprise big data systems [97], and hence
have limited utility for a scalable and comprehensive observability frame-
work. Experimental tools such as Otus [134], have demonstrated how to build
on these basic collection capabilities to perform architecture-aware measure-
ment and analysis. Otus is, however, limited to support only the Hadoop

155

http://www.collectd.org
http://www.splunk.com
https://goo.gl/t3BK3y
http://wiki.apache.org/hadoop/Chukwa
http://research.google.com/archive/sawzall.html
http://research.google.com/archive/sawzall.html

CHAPTER 7. RUNTIME PERFORMANCE CHALLENGES

MapReduce technology. In the visualization of large-scale system health and
performance, work by Yin and colleagues take a novel approach inspired by
video games to enable navigation through a complex data landscape [160].
Their focus is on infrastructure-level measurement data; however, the ap-
proach may be extensible for other types of measurements. The Theia system
[58] provides architecture-specific visualization for Hadoop-based systems.

Architecture-aware modeling based on architecture styles traces back to
some of the earliest work in software architecture [144]. More recent work
such as Rainbow [60] uses architectural styles to model and generate a runtime
framework focused on dynamic adaptation. The Rainbow framework uses
measurement probes, which may include monitoring performance. However,
the probes must be built into the components of the system, and the generation
focuses on style-based reaction strategies when a probe’s measurement crosses
a threshold.

Finally, there has been very little work on using model-driven approaches
to generate monitors. He and colleagues present an approach that takes steps
in this direction [22]. They present a model-driven approach to composing
monitors, synthesizing a compatible metamodel and then transforming het-
erogeneous monitors into that common metamodel. The approach does not
leverage knowledge of architectural styles in the transformation, and gener-
ates only monitors, without aggregations, a measurement persistence schema,
or visualizations.

7.5 Our Approach

We are creating a solution that uses generation and automation to address the
runtime performance monitoring challenges of big data systems. A model
of the big data system is created and model-driven approaches are used to
generate monitors and visualizations. These plug into a runtime framework
that automates their deployment and the collection, aggregation, storage, and
display of the performance data.

This solution comprises three elements to address the challenges of scale
in big data systems. These are:

1. A model-driven design time toolkit for formally specifying the observ-
ability requirements for a system, based on an architecture-aware meta-
model.

156

7.5. OUR APPROACH

2. An extensible, customizable measurement framework that forms the core
of the observability runtime architecture. This includes the distributed
metric collection and aggregation framework, adaptors to monitor off-
the-shelf components, and a data model for storing time series-based
metrics.

3. A visualization toolkit that uses novel metaphors to visualize massive
amounts of measured data from executing systems.

Fig. 7.2 shows how these solution elements are used together. Our current
focus is on elements (1) and (2), which we expand upon below. Element (3) is
discussed briefly in Section 7.6, as future work.

7.5.1 Model-Driven Design Time Toolkit

Our model-driven toolkit is based on a metamodel for big data systems that
links the runtime functional structure of the system with the observability and
analysis framework discussed in the next section. The metamodel precisely
represents, in terms of components, properties, relationships and constraints,
the syntax and semantics of an observability framework for scalable, big data
architectures.

Fig. 7.3 shows some of the key concepts in the metamodel. The elements
represent the common, reusable components that form an observability frame-
work. The Observability element is the root of the metamodel, and has a
collection of properties that must be specified in a system model to config-
ure the basic observability framework behavior. These properties include,
for example, the data model for measurements capture, default behavior for
handling failures, and storage location for the collected measurements.

The metamodel also contains elements that can be used to specify the
architecture styles that a system utilizes. An architectural style (also referred
to as an architectural pattern) defines a family of related systems, typically
by providing a domain-specific design vocabulary together with constraints
on relationships among the design elements. System-specific components,
such as those that execute business logic, data transformations, and analytics,
typically are based on architecture styles, and in a large-scale system, mul-
tiple architecture styles will be instantiated. A style’s metamodel elements

157

CHAPTER 7. RUNTIME PERFORMANCE CHALLENGES

Visualizations

ADL

Style Definition
- Component Types
- Connector Types
- Configuration Constraints
- PropertiesExperts &

Researchers

Creates

Uses

Big Data
System Architect

System Architecture

Metamodel

MDE
Design
Time

Toolkit

Uses Edits

Monitors

Generates
Uses

Runtime
Framework

Deploys &
Executes

Uses

Visualization
ToolkitDeploys & Executes

Uses

Figure 7.2: Toolset Workflow

have associated properties that a system model must specify. For example, a
MapReduce Style element has properties that specify the framework type (e.g.,
Hadoop), job names to monitor, location of the cluster, and end-to-end metrics
to capture.

Assets represent the components that comprise a big data system. The
selection of an architecture style constrains the types of assets that can be
instantiated in a model, and also constrains the topology of connections among
the assets. For example, in the MapReduce style, allowable assets include
Source Data Store, Mappers, Reducers, and an optional Destination Data Store
(used only if the result will be persisted).

Asset definitions for a number of off-the-shelf packages will be included in
the initial solution, and extensibility to represent custom-developed packages
will be provided. A general asset element has properties that include the
set of metrics that can be captured from a given asset. Metric properties
are expressed in categories that we have defined to mask the differences in
terminologies used across different asset types. For example, with data base

158

7.5. OUR APPROACH

Figure 7.3: Metamodel Key Concepts

assets, properties are described in terms of categories representing database
characteristics (e.g., size, number of replicas, data collections), database access
(e.g., read and write performance), and host characteristics (e.g., memory
usage, CPU load).

Exploiting architectures styles in the metamodel makes our modeling
toolkit “architecture aware”, as knowledge of the architectural style is used to
identify the role of runtime component in the system [87]. We are utilizing
the Acme architecture description language (ADL) [61] to create a formal
description of the semantics of components and connectors within a particular
architectural style, and the composition constraints for creating configurations
(systems) that conform to the style. However, the solution does not depend

159

CHAPTER 7. RUNTIME PERFORMANCE CHALLENGES

on specific features of Acme, and other ADLs that allow representation of
runtime components and connectors (e.g., AADL) could be used. The formal
description also specifies the properties that should be exposed as performance
metrics by elements of the metamodel that conform to the style. As shown
in Fig. 7.2, experts or researchers use an ADL to create the formal definition
of an architectural style. This formal definition then becomes part of the
metamodel for the model-driven toolkit. This approach has the strength of
being extensible, enabling new architecture styles to be formally defined and
incorporated into the metamodel.

As shown in Fig. 7.2, based on this metamodel, a system architect uses
our model-driven toolkit to select and customize elements to create a system-
specific model. We are utilizing an Eclipse Modeling Framework (EMF) tool
chain (http://www.eclipse.org/emf) to specify the metamodel, build the
model editor, and generate custom observability framework code. The EMF
provides an extensible platform for both the architecture-aware design time
editor and the monitor and visualization generators. The architectural style
defined using the ADL is transformed into a representation in the EMF Ecore
metamodel, which can then be used by the EMF.Edit and EMF.Codegen frame-
works. EMF.Edit supports construction of a graphical editor for use by big
data system architects to describe an architecture that is an instantiation of a
particular architecture style. After the architecture is described using EMF.Edit,
EMF.Codegen will generate monitors compatible with the runtime framework,
and visualizations compatible with the visualization toolkit’s dashboard.

7.5.2 Monitoring and Analysis Runtime Framework

The generated monitors plug into the MDE toolkit’s runtime framework.
The main elements of the runtime framework are shown in Fig. 7.4. The
runtime framework supports deployment of monitors to thousands of nodes,
and provides services for measurement collection from monitors, sampling
and compression (as needed), measurement storage and archiving, and the
visualization dashboard.

Monitors collect node-level performance metrics. The metamodel identifies
the node-level metrics to be collected for a particular architecture style and
asset type. Based on the property values specified in the specific system
model, appropriate monitors are generated by the MDE Design Time Toolkit.

160

http://www.eclipse.org/emf

7.5. OUR APPROACH

Figure 7.4: Runtime Framework

We use the Ganglia framework [116] for node-level monitor insertion and
management, and for measurement collection. The generated monitor code
extends the Gmond (Ganglia Monitoring Daemon), which is deployed to every
node in the big data system.

The architectural style defined in the metamodel identifies architecture-spe-
cific performance metrics, and how these top-level metrics relate to node-level
metrics. This knowledge is used by the generator in the MDE Design Time
Toolkit to identify opportunities for node-level aggregation of metrics, prior to
collection, and to generate extensions for the Ganglia Gmetad daemon, which
aggregates data from multiple Gmond instances. These extensions perform
architecture-aware measurement aggregation data at the cluster level, with
the cluster definition being derived from the architectural styles being used.
The number and placement of the generated Gmetad instances is determined
by the architectural style and system model properties.

The runtime framework also includes storage for the collected measure-
ments. This storage must scale to support writing millions of records per
sampling interval while executing ongoing queries from the visualization
dashboard. Here we diverge from the Ganglia framework. While Gan-

161

CHAPTER 7. RUNTIME PERFORMANCE CHALLENGES

glia uses RRDtool (Round-Robin Database) for measurement storage, our
initial solution is based on the Cassandra wide column NoSQL database
(http://cassandra.apache.org), which balances high write performance
with query flexibility. Although this NoSQL database does not impose a
schema on the data, writers and readers must share a common data model.
This data model is architecture-aware, generated from knowledge of the archi-
tectural style in the metamodel and from specific property values specified in
the system model.

7.6 Future Work

Creation of this model-driven observability solution poses significant research
challenges. The first is the identification and characterization of big data
architecture styles. A style definition includes the structure of the style (ele-
ment types and composition rules), and the allowable property values for the
elements. Both must be sufficiently general to be reusable for performance
monitoring, but sufficiently specific and constrained to enable generation of
monitors and visualizations.

Next, the measures collected by the generated monitors will likely require
sampling and compression. Resource utilization (CPU and network) for the
monitors on each node must be minimized (typically less than 1%), and so
time-series compression or other approaches will be needed. For some types of
metrics, an approach may include local storage of fine-grained measurements
at each node or cluster, along with distributed filtering so that only exceptions
or deviations are intelligently reported up to the runtime framework. An es-
sential challenge is that we would like precise and fine-grained measurements
when the system is at peak load and resources are already stretched thin.
Tradeoffs between push and pull of measurement data, variable sampling
frequencies, and aggregation/compression approaches will be explored.

Development of the proposed solution also presents a number of signif-
icant engineering challenges. The collection and storage components of the
solution are themselves a big data system, which must ingest and store data at
terabyte- to petabyte-scale. To address the scale of the data to be monitored,
the visualizations will have to use advanced visual metaphors such as cluster-

162

http://cassandra.apache.org

7.7. CONCLUSION

ing, trending, hotspots, and correlations, performed in real time and at scale.
The architectural style definitions must also model the relationships between
node-level resource measurements and end-to-end system-level measures, and
the visualizations must allow navigation up and down these relationships.

This runtime performance monitoring solution can also be used as the
foundation for automation of design time benchmarking and performance
characterization tasks. The architecture for the prototype is described using
the Design Time Editor, and monitors and visualizations are generated. For
benchmarking, an additional component, a test client, is added to the solution,
and architecture-aware workloads can be generated for execution by the test
client. The test client is based on the Yahoo! Cloud Serving Benchmark (YCSB)
framework [38], or the YCSB++ extension [129] that supports coordination of
multiple client instances for higher performance.

7.7 Conclusion

At the scale and dynamic runtime environment of big data systems, design
time performance predictions must be followed by runtime performance
monitoring. We described the architecture of a proposed toolset for runtime
performance monitoring. The toolset uses architectural styles to enable gener-
ation of architecture-aware monitors and visualizations that execute within
a runtime framework for measurement collection, storage, and visualization.
Realizing this toolkit presents significant engineering and research challenges,
which are the focus of our research.

163

8
Model-Driven Observability for Big

Data Storage

Summary

The scale, heterogeneity, and pace of evolution of the storage components in
big data systems makes it impractical to manually insert monitoring code for
observability metric collection and aggregation. In this paper we present an
architecture that automates these metric collection processes, using a model-
driven approach to configure a distributed runtime observability framework.
We describe and evaluate an implementation of the architecture that collects
and aggregates metrics for a big data system using heterogeneous NoSQL data
stores. Our scalability tests demonstrate that the implementation can monitor
20 different metrics from 10,000 database nodes with a sampling interval of
20 seconds. Below this interval, we lose metrics due to the sustained write
load required in the metrics database. This indicates that observability at scale
must be able to support very high write loads in a metrics collection database.

8.1 Introduction

In the last decade, the world has seen an exponential growth of digital data,
Organizations such as Google and Facebook were born on the internet, and are
leading this scale-driven revolution [154]. Beyond the Internet companies, big
data applications are becoming pervasive across diverse business and scientific

165

CHAPTER 8. MODEL-DRIVEN OBSERVABILITY

domains. For example, modern commercial airplanes produce approximately
0.5TB of operational data per flight [53], and by 2020, the Internet of Things
(IoT) will generate 4 zettabytes of data per year, supporting monitoring and
optimization of processes and services globally [149].

At the scale of these systems, meaningful analysis and prediction of end-to-
end performance is usually not feasible at design time. Performance models
must capture the complex static and dynamic component compositions in both
the system and the underlying execution infrastructures. In addition, accu-
rately representing heterogeneous and highly variable workloads challenges
the state of the art in performance modeling. Pragmatically, even if it were
possible to build such models, rapid post-deployment data growth, shared
cloud-based infrastructures, and rapid application evolution would quickly
invalidate model results. Assuring runtime performance at big data scale
must be based on observing and analyzing in vivo application behavior. This
enables observability into system health and status, both at the infrastructure
and application level.

This paper builds on our earlier work [92], that presents the challenges
of building massively scalable, easily configurable, lightweight observability
solutions. In response to these challenges, we describe a model-driven frame-
work for observability that is the focus of our current research. Model-driven
approaches facilitate rapid customization of a framework and eliminate cus-
tom code for each deployment, hence reducing costs and effort. In our initial
experiments, this framework has been able to efficiently collect and aggregate
runtime performance metrics in a big data system with 1000s of storage nodes.

The contributions of our research in this area are:

1. A model-driven architecture, toolset, and runtime framework that allows
a designer to describe a heterogeneous big data storage system as a
model, and deploy the model automatically to configure an observability
framework.

2. A reference implementation of the architecture, using the open source
Eclipse package to implement the MDE design client, the open source
collectd package to implement the metric collection component, and the
open source Grafana package to implement the metrics aggregation and
visualization component.

3. Performance and availability results from initial experiments, using the
reference implementation.

166

8.2. ARCHITECTURE AND IMPLEMENTATION

The initial metamodel and implementation focuses on the pervasive big
data pattern known as polyglot persistence [139], which uses multiple hetero-
geneous data stores (often NoSQL/NewSQL) within a single big data system.
We note that a model-driven approach would not be strictly necessary (e.g.,
a discovery-based approach might be a better solution) if the observability
scope was limited to just NoSQL/NewSQL technology. However, we intend
this architecture to extend to cover complete big data applications, including
processing pipelines and analytics. In this broader case, a model-driven ap-
proach provides advantages in automating and creating application-aware
metric aggregation and visualization.

8.2 Architecture and Implementation

We have developed an architecture and a reference implementation1 suitable
for further research that addresses the challenges of observability in big data
systems. The architecture uses model-driven engineering [25] to automate
metric collection, aggregation, and visualization.

8.2.1 Overview of the Observability Architecture

The architecture context is shown in Fig. 8.1, depicting three user roles. The
first is modeling, representing a DevOps engineer who uses a design time
client to create a model of the system’s data storage topology and specify
the configuration for each heterogeneous database. The model identifies the
metrics to capture and their collection frequency. At the completion of the
modeling phase, the design time client generates the monitoring configuration
for a set of metric collection and visualization elements.

The second role is observing, representing a system operator who uses a
metric visualization client to monitor system performance. The visualization
client is configured using the output of the design-time client to reflect the
model of system to be observed. It supports real time monitoring of system
operations and allows operators to specify and customize views based on their
requirements for situational awareness.

1Available at https://github.com/johnrklein/obs-prototype

167

https://github.com/johnrklein/obs-prototype

CHAPTER 8. MODEL-DRIVEN OBSERVABILITY

Figure 8.1: Observability Architecture Context Diagram

The third role is programmers, who create probes that plug into the architec-
ture to collect metrics. These probes are database-specific adapters that allow
any database technology to be incorporated into the architecture. Extensibility
is a major feature of our approach, as any solution must be able to efficiently
support both existing and future database platforms.

The main run time elements of the observability system architecture are
shown in the top-level component and connector diagram in Fig. 8.2. There
are two clients, one for each of the main user roles, modeling and observing,
discussed above. The Server Tier includes the Metric Engine, which implements
dynamic metric aggregation and handles concerns related to dependability
of connections to Collection Daemons. The Server Tier also includes the Grafana
Server, which handles metric visualization. The Model Handler in the Server
Tier propagates changes to the design-time model, and the Notification Server
augments the interactive metric visualization with automated notification of
user-defined exception conditions.

168

8.2. ARCHITECTURE AND IMPLEMENTATION

Figure 8.2: Observability System Architecture (Component and Connector
View)

The Storage Tier provides persistent storage of metric streams and notifi-
cations. All metrics for each database are stored as a time series to facilitate
visualization and analysis. Metrics are stored with metadata to enable dy-
namic discovery of the metrics. This is necessary to accommodate changes
in monitoring configurations after an existing model has been upgraded and
deployed as a new version.

The Metric Monitoring Tier uses Observability Daemons on each database
node to collect metrics from the local database instance and operating sys-
tem. The daemons exploit database-specific and operating system APIs to
periodically sample metrics and forward these to the Metric Engine.

169

CHAPTER 8. MODEL-DRIVEN OBSERVABILITY

8.2.2 Metamodel

Our observability architecture exploits a model-driven engineering approach
to address the scale challenge of big data systems. Hence, a model of the
system to be observed is created by the modeling role. This model is built
from elements defined in the metamodel (Fig. 8.3). It specifies and customizes
the components in our observability framework. The system model also
specifies the metrics to be collected and how the metrics will be aggregated.
The metamodel represents the topology as one or more database clusters
(DatabaseCluster element in the metamodel), with each cluster using a par-
ticular technology (DbType). A cluster is comprised of a number of nodes
(NodeMachine).

Metrics (Metric) are defined as key-value pairs (KeyValue) collected from
a database cluster. They may be simple values collected directly from a
database’s monitoring API (BaseMetric), or calculated at run time from one or
more simple metrics (AggregatedMetric). Each particular database technology
(DbType) defines a set of metrics that are supported by that technology and
are available programmatically. This approach makes it possible to collect
both common metrics that are available from all databases (e.g., disk utiliza-
tion, query processing time) and technology-specific metrics (e.g., automatic
rebalancing in MongoDB2). These metrics are available for selection when
the modeler creates a system model and specifies the databases that will be
deployed.

The metamodel also defines the structure of event notifications (Notifica-
tion). These are triggered when simple or aggregated metrics exceed a specified
threshold value set by the modeler.

8.2.3 Model Editor Client

In Fig. 8.2, the Model Editor Client instantiates the metamodel in a graphical
editor, using the Eclipse Modeling Framework (EMF3). The graphical model
specifying the topology of the observed system and the metrics to be collected
and aggregated is transformed using Acceleo4 into a text representation. This

2https://docs.mongodb.org/manual/core/sharding-balancing/
3https://eclipse.org/modeling/emf/
4http://www.eclipse.org/acceleo/

170

https://docs.mongodb.org/manual/core/sharding-balancing/
https://eclipse.org/modeling/emf/

8.2. ARCHITECTURE AND IMPLEMENTATION

Figure 8.3: Metamodel for Observability of the polyglot persistence pattern

171

CHAPTER 8. MODEL-DRIVEN OBSERVABILITY

is uploaded to the Model Handler server, which propagates model changes to
the Observability Daemons and Metrics Engine. Models are versioned to improve
dependability, ensuring all parts of the system are consistent. This also enables
rollback to a previous version.

8.2.4 Runtime Metric Collection

An Observability Daemon executes on each node in the observed system to
collect metrics and forward them to the Metrics Engine. Each Observability
Daemon is configured by the Model Handler based on the system model, so that
model changes (e.g., in topology or metrics collected) immediately change
the Observability Daemon behavior. The Observability Daemon is based on the
collectd5 open source package. Our architecture adds a Daemon Manager
component on top of collectd, so that collectd can be remotely and dynamically
configured by the Model Handler.

Our architecture uses collectd plug-ins to adapt to each supported database
technology, encapsulating the precise mechanism used to obtain database
metrics within a database-specific plug-in. The plug-ins exploit the monitoring
API provided by the specific database technology (e.g., Cassandra’s JMX API6),
to acquire the metric data from databases. We have developed and tested
reference plug-ins for Cassandra, MongoDB, and Riak.

Each Observability Daemon sends the collected metrics to the Metric Engine
server using the collectd notification protocol. Separately, a heartbeat notifi-
cation is sent by the Daemon Manager to the Missing Daemon component in
the Metrics Engine. The Missing Daemon component uses the system model to
determine which Observability Daemons should be executing, compares that
to the received heartbeats, and raises an alarm when an Observability Daemon
appears to have failed. The heartbeat notification was included to improve
dependability. Simply monitoring a metric stream to assess the state of an
Observability Daemon is problematic as individual messages may be delayed
due to transient network partitions, or daemon or node failure. Transient
partitions can be handled by this protocol, as daemons buffer collected met-
rics for a configurable time period (e.g., 5 minutes) and can resend missed

5https://collectd.org
6http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/

opsMonitoring.html

172

https://collectd.org
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsMonitoring.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsMonitoring.html

8.3. PERFORMANCE RESULTS

values. Node and daemon failures currently require operator intervention.
Automated recovery from such failures simply requires us to incorporate ad-
ditional monitoring capabilities into our framework, an objective for further
work.

8.2.5 Metric Aggregation and Visualization

In our implementation, several metric visualizations are created using the
Grafana7 open source package, which supports time series graphs such as
those shown in Fig. 8.4. Grafana comprises a server and a web-based client,
as shown in Fig. 8.2. Metrics are stored using self-describing data structures
embedded in the metric stream. We utilize key-value pairs, where the metric
name comprises the key and the value is the metric reading at a given time.

8.3 Performance Results

To assess the performance and scalability of our observability architecture, we
performed a series of tests using Amazon’s AWS cloud platform. We created
a test daemon that was able to simulate metrics generation from multiple
database nodes. We then configured a pool of test daemons to simulate metrics
collection from 100 to 10,000 database nodes. We initially set the metrics
collection interval to 30 seconds, and configured the daemons to simulate
the generation of 20 distinct metrics per node. We also specified the model
to aggregate CPU metrics from all nodes to calculate overall system CPU
utilization. We deployed the observability architecture on an AWS m3.2xlarge
instance type. This comprised an Intel Xeon E5-2670 v2 (Ivy Bridge) server
with 8 cores, 8MB RAM, 30GB disk and 160GB SSD. The test daemons were
configured to initially simulate metrics generation from 100 database nodes.
After 5 minutes, the number of simulated nodes increased to 1000, and then
1000 simulated nodes were added every 5 minutes until the test simulates
10,000 database nodes. We monitored the resource usage on the observability
server, and the results are in Fig. 8.5.

Graph 1 shows that the metric transfer time stays constant as the number
of metrics per interval increases (the peaks in this graph), and that the metric
transfer takes about one-half of the collection interval, leaving margin for
growth (the troughs in this graph). The system was able to handle 10,000

7http://grafana.org

173

http://grafana.org

CHAPTER 8. MODEL-DRIVEN OBSERVABILITY

Figure 8.4: Metric visualization user interface

nodes generating 20 metrics during each 30 second interval. The system scaled
well to handle network traffic and saved the metrics to disk to be shown at
dashboard. The aggregation plugin was able to aggregate metrics from 10,000
nodes successfully.

To summarize the test results:

• With linearly increasing metric collection load, the disk space used also
increased linearly. For 10,000 nodes with 20 metrics per node and a 30
second collection interval, disk space required is approximately 50 GB
for 7 days monitoring data.

• Server free memory reduced from 25 GB initially to 22 GB with 10000
nodes being monitored. Hence we conclude our solution is not limited
in scalability by memory utilization.

174

8.3. PERFORMANCE RESULTS

33

1

2

3

4

 Not Memory Intensive

 CPU Efficient

 Linear Increase

No. of metrics received

Server RAM usage

Server CPU usage

Server disk usage

Figure 8.5: Performance and scalability test results

• CPU utilization is low, only showing minor increases in activity as the
number of nodes grows.

• With 10000 simulated nodes, the server was processing 293 Kbits/s of
network traffic at peak.

To stress test the observability framework, we deployed the test system with
10,000 simulated nodes. The collection interval started at 30 seconds, and
every 5 minutes was reduced by 5 seconds. The system operated normally
until the sample frequency reached 15 seconds. At this point, some metrics
were not written to disk. This situation continued to deteriorate as we reduced
the sampling interval to 5 seconds. No components failed, but there was a
significant loss of metric data in the database.

175

CHAPTER 8. MODEL-DRIVEN OBSERVABILITY

Examining execution traces from these failing tests, we saw the CPU,
memory, and network utilization levels remained low. Disk writes, however,
grew to a peak of 32.7 MB/s. This leads us to believe that the Whisper8

database in the Grafana server was unable to sustain this relatively heavy write
load. This is likely a limitation of this component in our architecture. Replacing
this database with a distributed database technology such as Cassandra would
consequently make it possible to monitor a significantly larger collection of
nodes.

8.4 Prior Work

There has been significant prior work on collecting general measurements of
resource utilization at process and node level. This includes Ganglia9, and Na-
gios [76]. Ganglia and Splunk10 support collection of host-level measurements
across clusters, and provide basic monitoring and visualization dashboards.
Commercial products from HP11, IBM12, and others also provide similar col-
lection and visualization capabilities, but incur significant license costs. Tools
such as Chukwa13 and Sawzall14 focus on general analytics on collected log
data, and provide semantics for time series data sets.

In visualizing large-scale system health and performance, Yin and col-
leagues take an approach inspired by video games to enable navigation
through a complex data landscape [160]. In this case, the focus was on
infrastructure-level measurement data, however the approach may be extensi-
ble for other types of measurements. The Theia system provides architecture-
specific visualization for Hadoop-based systems [58].

Architecture-aware modeling based on architecture styles traces back to
very early work in software architecture [144]. More recently, Palladio [15]
uses architectural styles to generate performance models, and Rainbow [60]
uses architectural styles to model and generate a runtime framework focused

8http://graphite.wikidot.com/whisper
9http://ganglia.sourceforge.net

10http://www.splunk.com
11https://goo.gl/t3BK3y
12http://www.ibm.com/software/tivoli
13http://wiki.apache.org/hadoop/Chukwa
14http://research.google.com/archive/sawzall.html

176

http://graphite.wikidot.com/whisper
http://ganglia.sourceforge.net
http://www.splunk.com
https://goo.gl/t3BK3y
http://www.ibm.com/software/tivoli
http://wiki.apache.org/hadoop/Chukwa
http://research.google.com/archive/sawzall.html

8.5. CONCLUSIONS AND FUTURE WORK

on dynamic adaptation. The Rainbow framework uses measurement probes,
which may include monitoring performance. However, the probes must be
built into the components of the system, and the generation focuses on style-
based reaction strategies when a probe’s measurement crosses a threshold.

Finally, there has been little work on using model-driven approaches to
generate monitors. He and colleagues present a model-driven approach to
composing monitors, synthesizing a compatible metamodel and then trans-
forming heterogeneous monitors into that common metamodel. The approach
generates only monitors, without aggregations, a measurement persistence
schema, or visualizations [73].

8.5 Conclusions and Future Work

In this paper we described the design and prototype implementation of an
observability framework for big data systems. We have exploited model-
driven techniques to make the core architecture customizable to different
system’s observability requirements without the need for custom code for
each deployment. We have also built the solution by reusing various off-the-
shelf components to streamline our development effort and provide advanced
capabilities “out of the box”. The reference implementation has been publicly
released as a research platform. The reference implementation has availability
limitations that will be addressed, using standard architecture mechanisms, as
we evolve the platform.

Our current implementation only provides observability at the database
layer. Extending these model-driven capabilities to other layers in a big
data system (e.g., application server and Web servers) and improving the
scalability of our framework forms the core of our future work. We also wish
to investigate the potential of automated resource discovery approaches to
compose an observability system dynamically. Automated approaches have
immense potential for dealing with scale and rapid evolution, but face many
daunting challenges, for example navigating security perimeters, distributed
data centers and logical application partitions.

177

9
Conclusions

The architecture of a system of systems (SoS) is created by composing sys-
tems, with each constituent system retaining independent authority over its
operation and evolution. These SoS are increasingly prevalent in practice, for
example, as we integrate devices in the Internet of Things (IoT) and as we
build data-intensive systems to harness the information produced by disparate
sources. In this SoS context, the forces produced by the independent systems
cause long-held architecture practices to be ineffective, and different prac-
tices are needed. Architecture design practices must enable early technology
selection decisions that will shape architecture designs. Architecture documen-
tation practices must work without ready access to stakeholders. Architecture
evaluation practices must extend beyond design time to monitor at runtime,
at large scale. In this chapter, I revisit the research questions introduced in
Chapter 1, summarize the contributions made in answering the questions, and
identify further research needed in this area.

9.1 Answer to the Research Questions

In this section, I revisit the research questions, and provide answers. Recall that
we identified four main architecture practice areas. I found that the Identify
Architecture Drivers practice area was relatively mature, overlapping with the
well-established requirements engineering practices from systems engineering.
However, I found that the forces in the SoS context in the other three practice

179

CHAPTER 9. CONCLUSIONS

areas—Architecture Design, Architecture Documentation, and Architecture Evalua-
tion—caused traditional architecture practices to fail, and new practices were
needed. The research questions correspond to each of these three practice
areas.

9.1.1 Practice Area—Architecture Design

What decision support is needed to improve the efficiency and quality of
technology selection designs of scalable data-intensive systems? (RQ-1)

In a composed architecture such as an SoS, removing abstractions such as
the Structured Query Language (SQL) from constituent systems produces a
convergence of concerns, discussed in our earlier work [65] and summarized
above in §1.1.3.

While technology products are described in terms of features, architects
reason about concerns in term of quality attributes, patterns, and tactics. Chap-
ter 4 presents a knowledge model that bridges these framings. The knowledge
model provides a feature taxonomy for products in a particular technology
domain (NoSQL data storage systems). It also identifies the quality attributes
that are relevant to an application domain (large-scale data-intensive systems),
specifies each quality attribute using a general scenario, and identifies the ar-
chitecture tactics that promote or inhibit each quality. The bridge from abstract
architecture concepts to concrete technology implementations is achieved by
relating features in the technology feature taxonomy to specific architecture
tactics.

In a technology domain such as NoSQL data storage systems, an architect
must choose from among hundreds of alternative products1. At such a volume
of information, an architect would be helped by a tool that allows storing the
knowledge model, and querying and visualization to support architecture
reasoning. Chapter 4 also presents a prototype design decision support tool,
implemented on the Semantic MediaWiki platform. The tool, called QuA-
BaseBD (QUality At Scale Knowledge Base for Big Data)2, provides a trusted
source of curated architecture knowledge.

1See, for example, https://blogs.the451group.com/information_management/2016/
01/26/updated-data-platforms-map-january-2016/, which lists more than 200 products.

2Available at http://quabase.sei.cmu.edu

180

https://blogs.the451group.com/information_management/2016/01/26/updated-data-platforms-map-january-2016/
https://blogs.the451group.com/information_management/2016/01/26/updated-data-platforms-map-january-2016/
http://quabase.sei.cmu.edu

9.1. ANSWER TO THE RESEARCH QUESTIONS

A tool such as QuABaseBD is useful for narrowing the candidate tech-
nologies down from hundreds to a handful. Building on earlier research in
off-the-shelf technology selection (e.g., [107]), we augmented the QuABaseBD
decision support tool with a method, Lightweight Evaluation and Architecture
Prototyping for Big Data (LEAP4BD) , presented in Chapter 5. The LEAP4BD
method helps architects to efficiently make technology selection decisions in a
context where the solution space is evolving rapidly, and so long evaluation
cycles will result in choosing technology that is already out-of-date. Chapter 5
also reports on the results and lessons learned from applying the LEAP4BD
method in technical action research on a consulting project to select a data
store for an electronic health record system.

In summary, architects designing scalable data-intensive systems need
decision support to relate product features to architecture concepts such as
quality attributes. The scale of the solution space necessitates automated
querying and visualization. A trusted knowledge base can help the architect
limit the technologies to a few viable candidates, and then a method is needed
to make a final decision, using focused prototyping to rapidly collect evidence.

9.1.2 Practice Area—Architecture Documentation

When an existing system will be introduced into an SoS, what additional
architecture documentation is needed? (RQ-2)

Architecture documentation is created to address stakeholder concerns. The
systematic review of academic peer-reviewed research, presented in Chapter 2,
finds that interoperability was a primary concern. However, the state of
the practice survey reported in Chapter 3 indicates that practitioners have
broader technical and non-technical concerns, which are refined by a survey of
practitioner-focused publications, reported in Chapter 6. This survey identifies
seven new concerns when a constituent system will be introduced into an
SoS. Chapter 6 also presents a documentation viewpoint that specifies and
organizes the information needed to address those concerns.

The viewpoint was evaluated in a single case mechanism experiment by a
panel of experts, which found a gap in the initial viewpoint specification. The
gap was addressed, and the final viewpoint definition comprises six model
kinds: Constituent System Stakeholders/Concerns, Constituent System Exe-
cution Time Context, Constituent System Code Context, Constituent System
Interface Information Model, Shared Resource Model, and Deployment Model.

181

CHAPTER 9. CONCLUSIONS

We found that much of the information needed to assemble this viewpoint
would be available in constituent system documentation that uses the View
and Beyond documentation approach or the Department of Defense Architec-
ture Framework (DoDAF) documentation approach, and Chapter 6 provides a
mapping from these approaches to the new viewpoint.

As discussed in §1.1.3, an SoS architect’s request for information about a
constituent system can be subject to intense scrutiny, so the viewpoint con-
forms to the ISO/IEC/IEEE 42010:2011 (E) standard for architecture descrip-
tion to avoid concerns about pedigree.

9.1.3 Practice Area—Architecture Evaluation

What approaches can be used to improve the runtime observability of a
large-scale data-intensive system? (RQ-3)

Large-scale data-intensive systems are composed of 100s or 1000s of processes,
executing in containers, virtual machines, or (rarely) directly on physical
servers. Chapter 7 identifies the key challenges: Economical creation and inser-
tion of monitors into hundreds or thousands of computation and data nodes;
efficient, low overhead collection and storage of measurements (which is itself
a big data problem); and application-aware aggregation and visualization of
the observed data streams.

These challenges are interrelated: Data are observed, transported, stored,
and analyzed. While monitor creation and insertion could be addressed simply
by a library in each process or local service on each node, application-aware
aggregation and visualization requires a more sophisticated approach. Chap-
ter 7 presents a reference architecture that addresses all of these challenges.
The architecture style of the system to be observed is used to create monitors
for style-specific metrics, and then used to store and analyze the observed
streams to assess the system’s health based on style-specific qualities. The
reference architecture combines model-driven engineering with architecture
style modeling. Model-driven engineering provides the automation needed
for systems of this scale, and architecture styles provide reuse of architecture
knowledge about metrics and qualities.

182

9.2. ANSWERING THE MAIN RESEARCH QUESTION

Chapter 8 presents the results of a single case mechanism experiment in
which the reference architecture defined in Chapter 7 was instantiated for the
polyglot persistence architecture style. The implementation3 uses an Eclipse-
based custom editor to model the target system using the polyglot persistence
style. The model is then used to create technology-specific monitors, a schema
to aggregate the observed data streams, and visualizations of the aggregated
streams. Model-driven approaches can produce inefficient implementations;
however, in this case the performance impact of the metric collection on the
target system was acceptable, consuming less than 2% CPU utilization and
less than 3GiB memory.

We conclude that the reference architecture presented in Chapter 7, based
on model-driven engineering, is a viable approach to achieving runtime ob-
servability in a large-scale data-intensive system.

9.2 Answering the Main Research Question

I began this journey by observing clients and colleagues struggle to achieve suc-
cess when applying traditional architecture practices in complex SoS contexts.
This shaped the main research question of this thesis: How should traditional
software architecture practices be changed to address the challenges of large scale,
complex SoS contexts?

The operational and managerial independence of the constituent systems
in an SoS stress and break the assumptions that underly traditional architec-
ture practices. The Identify Architecture Drivers practice area is more mature
than the other practice areas, possibly due to its overlap with the requirements
engineering practices of systems engineering. Therefore, I address the main
research question by choosing one traditional practice in each of the three
remaining architecture practice areas—Design the Architecture, Document the
Architecture, and Evaluate the Architecture—and developing a replacement that
is sensitive to the forces created by the independence of the constituent sys-
tems. For each of these new practices, I created a prototype implementation
of a treatment to evaluate the new practice. Note that none of the redefined
practices is a radical innovation: Each adapts well-established software archi-

3Available at https://github.com/johnrklein/obs-prototype.

183

https://github.com/johnrklein/obs-prototype

CHAPTER 9. CONCLUSIONS

tecture principles. The Architecture Design practices draw from previous work
in commercial-off-the-shelf (COTS) evaluation, the Architecture Documentation
practice follows the metamodel of the ISO/IEC/IEEE 42010:2011 (E) standard,
and the Architecture Evaluation practice is based on model-driven engineering.

If we interpret the main research question as calling for an exhaustive
inventory of all architecture practice changes needed to be successful in the
SoS context, then clearly, I have not answered that question. However, if we
interpret the question as how to change a traditional practice, then I have
answered the question by providing three exemplars. For each, I show how
the forces in the SoS context break the traditional process, and how established
approaches can be reused to redefine the practice to produce successful results
in the SoS context.

No practice is intrinsically good or bad. As a software engineer, our task is
to choose or create a practice that is fit for use, given our design context. The
contribution of this thesis is guidance for doing this in the SoS context.

9.3 Further Research

This section concludes my thesis, but there is still much work to be done in the
area of architecture practices for SoS. Here, I divide this future research into
two directions. The first direction continues work on the redefined practices
discussed in this thesis, and the second direction considers practices that I did
not address in this thesis.

9.3.1 Continuing this work

Chapter 4 concludes by identifying several open research topics related to
the QuABaseBD knowledge base. The first is improved visualization of the
architecture knowledge to support reasoning and decisions. The LEAP4BD
method provides one example of the type of reasoning that architects perform
using QuABaseBD , and this also points to the opportunity for a tighter linkage
between these artifacts.

184

9.3. FURTHER RESEARCH

The second open research topic related to QuABaseBD is the creation and
curation of product feature knowledge. Manually populating the knowledge
base by having experts read and extract from product documentation is not
scalable. My colleagues started to explore the application of machine learning
to automatically populate the knowledge base4, and found that further work
is needed in this area.

The architecture documentation viewpoint defined in Chapter 6 includes
mappings from constituent system documentation that is based on either
the Views and Beyond approach or the Department of Defense Architecture
Framework (DoDAF) approach. This is another area where research could
consider using machine learning to automatically extract documentation from
one of these frameworks to populate the viewpoint defined here.

Chapter 7 presents a model-driven approach for runtime observability,
based on architecture styles. I have done exploratory work on a catalog of
architecture styles for big data systems 5, however further work is needed in
this area. There is also the possibility that the same model-driven approach
used for runtime observability could be applied to creating prototypes in the
LEAP4BD method.

9.3.2 Complementing this work

I have framed the Identify Architecture Drivers practice area as relatively mature.
The qualifier “relatively” is with respect to the three other practice areas,
where I found significant gaps. However, this should not imply that no
further research is needed in the Identify Architecture Drivers practice area.
In particular, methods such as the Mission Thread Workshop do not have
well-defined stopping criteria, pointing to the need for research to assess what
portion of the architecturally-significant requirements space has been covered
when using such a method.

4This is briefly described in http://resources.sei.cmu.edu/library/asset-view.

cfm?assetid=446274
5This is briefly described in https://resources.sei.cmu.edu/library/asset-view.

cfm?assetID=446337

185

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=446274
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=446274
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=446337
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=446337

CHAPTER 9. CONCLUSIONS

The discussion of the Architecture Design practice area in §1.1.3 identifies
architecture patterns as one element of the architecture body of knowledge
used to make architecture design decisions. In the context of SoS, there has
been exploratory work on architecture patterns that focused on interoperation
[84]; however, as a practitioner, I have found no work on patterns for other
architecture qualities and concerns.

My work in the Architecture Documentation practice area identifies the
information about a constituent system that an SoS architect is concerned
with, and the viewpoint specification explains how this information might be
extracted from existing system documentation. However, such documentation
may not exist, and there are research opportunities to develop approaches
to reconstruct the needed information from the system implementation, for
example by automatically analyzing the code, or by automatically observing
the executing system.

In the Architecture Evaluation practice area, my work focused on runtime
observability. Design-time evaluation is still needed to assess risk early in the
lifecycle. §1.1.3 discusses how traditional methods have scaled up; however,
further research is needed to assess the quality of an evaluation (e.g., com-
pleteness), and to perform an effective evaluation when information about a
constituent system may be limited (e.g., due to the managerial independence
forces limiting access to system data).

Finally, SoS are a point on the spectrum of ultra-large-scale (ULS) systems
[122], and taking a ULS system perspective opens a wide door to future
research in this area.

186

10
Samenvatting

10.1 Nederlandse samenvatting

De architectuur van een systeem van systemen (system of systems, SoS) komt
tot stand door systemen samen te stellen, waarbij ieder deelsysteem onafhanke-
lijke zeggenschap behoudt over zijn werking en evolutie. In de praktijk komen
deze SoS systemen steeds meer voor, bijvoorbeeld doordat we apparaten inte-
greren in het Internet of Things (IoT) en doordat we gegevens-intensieve syste-
men bouwen om informatie uit uiteenlopende bronnen bruikbaar te maken. In
deze SoS context zorgen de krachten die deze onafhankelijke systemen produc-
eren ervoor dat gevestigde architectuurpraktijken niet meer werken, en dat er
nieuwe praktijken nodig zijn. In plaats van de traditionele praktijk van het
kiezen van technologieën om onze architectuurvereisten in te vullen, maken
SoS architecten bijvoorbeeld vroeg in de ontwerpcyclus selecties, en bouwen ze
vervolgens hun architectuur op rondom die selecties. Samenwerking tussen be-
langhebbenden wordt ingeperkt door de onafhankelijkheid van de aansturing,
waardoor de effectiviteit van traditionele architectuur-documentatiepraktijken
wordt beperkt. Tenslotte evolueert de runtime omgeving van SoS systemen
continu, waardoor architectuur-evaluatiepraktijken moeten worden uitge-
breid, en naast de ontwerpfase bijvoorbeeld runtime-monitoring moet worden
ingevoerd.

In dit proefschrift worden drie vervangende parktijken gepresenteerd voor
traditionele architectuurpraktijken, te weten Architectuurontwerp, Architectuur-
documentatie en Architectuurevaluatie. Ieder van deze vervangende praktijken is
gevoelig voor de krachten die veroorzaakt worden door de onafhankelijkheid
van de samenstellende systemen in een SoS.

187

CHAPTER 10. SAMENVATTING

Het gebied van de Architectuurontwerp-praktijk wordt behandeld met een
kennismodel waarin een brug wordt geslagen tussen abstracte architectuur-
analyse op basis van kwaliteitsattributen, patronen en taktieken, en concrete
kenmerken van specifieke technologieën in een specifiek domein (in dit geval
NoSQL data-opslag). Gebaseerd op dit kennismodel werd een prototype voor
een beslis-ondersteunend systeem ontwikkeld en geëvalueerd.

Op het gebied van de Architectuurdocumentatie-praktijk wordt een docu-
mentatie-gezichtspunt gedefinieerd. Het gezichtspunt specificeert en organ-
iseert de informatie die een SoS-architect nodig heeft over een deelsysteem
dat onderdeel wordt van een SoS. Het gezichtspunt wordt op compleetheid
getoetst.

Op het gebied van de Architectuurevaluatie-praktijk tenslotte wordt in dit
proefschrift een prototype geïntroduceerd van een referentie-architectuur die
een modelgedreven constructie-aanpak gebruikt voor de runtime observeer-
baarheid van een grootschalig SoS systeem met honderden of duizenden nodes.
In de referentiearchitectuur wordt modelgedreven constructie (model-driven
engineering) gecombineerd met modelleren op basis van architectuurstijlen.
Modelgedreven constructie zorgt voor de automatisering die nodig is voor
systemen van deze schaal, en door het toepassen van architectuurstijlen wordt
kennis over metrieken en kwaliteit hergebruikt.

Geen enkele praktijk is intrinsiek goed of slecht. Als software-engineers
is het onze taak om een praktijk te kiezen of creëren die past bij de ontwerp-
context. De bijdrage van dit proefschrift is een leidraad hiervoor in de SoS-
context.

10.2 English Summary

The architecture of a system of systems (SoS) is created by composing sys-
tems, with each constituent system retaining independent authority over its
operation and evolution. These SoS are increasingly prevalent in practice,
for example, as we integrate devices in the Internet of Things (IoT) and as
we build data-intensive systems to harness the information produced by dis-
parate sources. In this SoS context, the forces produced by the independent
systems cause long-held architecture practices to be ineffective, and differ-
ent practices are needed. For example, rather than the traditional practice of
choosing technologies to satisfy our architecture drivers, SoS architects make
selections early in the design cycle and then build their architecture around

188

10.2. ENGLISH SUMMARY

those selections. Managerial independence restricts stakeholder collaboration,
limiting the effectiveness of traditional architecture documentation practices.
Finally, the runtime environment of the SoS is ever-evolving, and so architec-
ture evaluation practices must extend from design time to include approaches
like runtime monitoring.

This dissertation presents three replacements for traditional architecture
practices, addressing the practice areas of Architecture Design, Architecture
Documentation, and Architecture Evaluation. Each of these replacement practices
is sensitive to the forces created by the independence of the constituent systems
in an SoS.

The Architecture Design practice area was addressed with a knowledge
model that bridges between abstract architecture reasoning based on quality
attributes, patterns, and tactics, and concrete features of specific technologies
in a particular domain (in this case, NoSQL data storage). A prototype decision
support tool based on this knowledge model was developed and evaluated.

In the Architecture Documentation practice area, an architecture documen-
tation viewpoint was defined. The viewpoint specifies and organizes the
information that an SoS architect needs about a constituent system that will be
introduced into an SoS. The viewpoint was evaluated for completeness.

Finally, in the Architecture Evaluation practice area, this dissertation intro-
duces and evaluates a prototype of a reference architecture that uses a model-
driven engineering approach for runtime observability of a large scale SoS
with 100s or 1000s of nodes. The reference architecture combines model-driven
engineering with architecture style modeling. Model-driven engineering pro-
vides the automation needed for systems of this scale, and architecture styles
provide reuse of architecture knowledge about metrics and qualities.

No practice is intrinsically good or bad. As a software engineer, our task
is to choose or create a practice that is fit for use, given our design context.
The contribution of this dissertation is the guidance for doing this in the SoS
context.

189

References

[1] Daniel J. Abadi. Consistency tradeoffs in modern distributed database system
design: CAP is only part of the story. Computer, 45(2):37–42, 2012. doi:10.

1109/MC.2012.33.

[2] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud
computing: current state and future opportunities. In Proc. 14th Int. Conf. on
Extending Database Technology, EDBT/ICDT’11, pages 530–533, March 2011. doi:
10.1145/1951365.1951432.

[3] Art Akerman and Jeff Tyree. Using ontology to support development of software
architectures. IBM Systems Journal, 45(4):813–825, 2006.

[4] M. A Babar, T. Dingsøyr, P. Lago, and H. van Vliet. Software Architecture Knowledge
Management: Theory and Practice. Springer-Verlag, 2009.

[5] L. T. Babu, M. Seetha Ramaiah, T. V. Prabhakar, and D. Rambabu. ArchVoc-
towards an ontology for software architecture. In Proc. 2nd Workshop on SHAr-
ing and Reusing architectural Knowledge-Architecture, Rationale, and Design Intent,
SHARK-ADI ’07, 2007.

[6] Felix Bachmann, Len Bass, and Mark Klein. Preliminary design of ArchE: A
software architecture design assistant. Technical Report CMU/SEI-2003-TR-
021, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, USA, September 2003. URL: http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=6751 [cited 1 March 2017].

[7] Felix Bachmann, Robert L. Nord, and Ipek Ozkaya. Architectural tactics to
support rapid and agile stability. CrossTalk, pages 20–25, May/June 2012.

[8] Kristen Baldwin and Judith Dahmann. Sos considerations in the engineering
of systems. In Proc. 17th Ann. NDIA Systems Eng. Conf. National Defense In-
dustry Association, 2014. URL: http://www.dtic.mil/ndia/2014/system/
16865ThursTrack2Baldwin.pdf [cited 1 June 2017].

[9] Mario R. Barbacci, Robert J. Ellison, Anthony J. Lattanze, Judith A. Stafford,
Charles B. Weinstock, and William G. Wood. Quality attribute workshops
(QAWs), 3rd edn. Technical Report CMU/SEI-2003-TR-016, Software Engi-
neering Institute, Pittsburgh, PA, USA, October 2003. URL: http://resources.
sei.cmu.edu/library/asset-view.cfm?assetID=6687 [cited 24 Septem-
ber 2014].

[10] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, 3rd edition, 2013.

191

http://dx.doi.org/10.1109/MC.2012.33
http://dx.doi.org/10.1109/MC.2012.33
http://dx.doi.org/10.1145/1951365.1951432
http://dx.doi.org/10.1145/1951365.1951432
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6751
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6751
http://www.dtic.mil/ndia/2014/system/16865ThursTrack2Baldwin.pdf
http://www.dtic.mil/ndia/2014/system/16865ThursTrack2Baldwin.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=6687
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=6687

REFERENCES

[11] Len Bass, Paul Clements, Rick Kazman, John Klein, Mark Klein, and Jeanine
Siviy. A workshop on architecture competence. Technical Note CMU/SEI-2009-
TN-005, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, 2009. URL: http://www.sei.cmu.edu/library/abstracts/reports/
09tn005.cfm [cited 15 July 2013].

[12] Thais Batista. Challenges for SoS architecture description. In Proc. 1st Int.
Workshop on Software Engineering for Systems-of-Systems, SESoS ’13, pages 35–37,
2013. doi:10.1145/2489850.2489857.

[13] BBC News. Instagram, Vine and Netflix hit by Amazon glitch [online]. 2013. URL:
http://www.bbc.com/news/technology-23839901 [cited 1 March 2017].

[14] C. Becker, M. Kraxner, and M. Plangg. Improving decision support for software
component selection through systematic cross-referencing and analysis of mul-
tiple decision criteria. In Proc. 46th Hawaii Int. Conf. on System Sciences, HICSS,
pages 1193–1202, 2013.

[15] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio component
model for model-driven performance prediction. J. of Systems and Software,
82(1):3–22, Jan 2009. doi:10.1016/j.jss.2008.03.066.

[16] Sarah Beecham, Tracy Hall, Carol Britton, Michaela Cottee, and Austen Rainer.
Using an expert panel to validate a requirements process improvement model.
Journal of Systems and Software, 76(3):251–275, 2005. doi:10.1016/j.jss.2004.
06.004.

[17] S. Bellomo, R. L. Nord, and I. Ozkaya. A study of enabling factors for rapid
fielding combined practices to balance speed and stability. In Proc. 35th Int. Conf.
on Software Eng., ICSE ’13, pages 982–991, May 2013. doi:10.1109/ICSE.2013.
6606648.

[18] Caesar Benipayo. Understanding system interdependence to improve resilience
of shipboard cyber physical system. In Proc. 19th Ann. NDIA Systems Eng. Conf.
National Defense Industry Association, 2016. URL: http://www.dtic.mil/
ndia/2016/systems/18881_CaesarBenipayo.pdf [cited 1 June 2017].

[19] John Bergey, Jr. Stephen Blanchette, Paul Clements, Michael Gagliardi, Rob
Wojcik, William Wood, and John Klein. U.S. Army workshop on exploring
enterprise, system of systems, system, and software architectures. Technical
Report CMU/SEI-2009-TR-008, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2009. URL: http://resources.sei.cmu.edu/
library/asset-view.cfm?AssetID=9099 [cited 1 Jan 2017].

192

http://www.sei.cmu.edu/library/abstracts/reports/09tn005.cfm
http://www.sei.cmu.edu/library/abstracts/reports/09tn005.cfm
http://dx.doi.org/10.1145/2489850.2489857
http://www.bbc.com/news/technology-23839901
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2004.06.004
http://dx.doi.org/10.1016/j.jss.2004.06.004
http://dx.doi.org/10.1109/ICSE.2013.6606648
http://dx.doi.org/10.1109/ICSE.2013.6606648
http://www.dtic.mil/ndia/2016/systems/18881_CaesarBenipayo.pdf
http://www.dtic.mil/ndia/2016/systems/18881_CaesarBenipayo.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9099
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9099

REFERENCES

[20] Thiago Bianchi, Daniel Soares Santos, and Katia Romero Felizardo. Quality
attributes of systems-of-systems: A systematic literature review. In Proc. 3rd Int.
Workshop on Software Engineering for Systems-of-Systems, SESoS ’15, pages 23–30,
2015. doi:DOI10.1109/SESoS.2015.12.

[21] Randy Bias. Architectures for open and scalable clouds. In Proc. CloudCon-
nect 2012, February 2012. URL: http://www.slideshare.net/randybias/
architectures-for-open-and-scalable-clouds [cited 31 Oct 2014].

[22] J. Boardman and B. Sauser. System of systems - the meaning of of. In Proc.
IEEE/SMC Int. Conf. on System of Systems Eng., SoSE, pages 118–123, April 2006.
doi:10.1109/SYSOSE.2006.1652284.

[23] Jan Bosch. Design & Use of Software Architectures. Addison-Wesley, Harlow, UK,
2000.

[24] Jan Bosch. From software product lines to software ecosystems. In Proc. 13th Int.
Software Product Line Conf., SPLC’09, 2009.

[25] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice. Morgan & Claypool, 2012.

[26] Eric Brewer. CAP twelve years later: How the “rules” have changed. Computer,
45(2):23–29, February 2012. doi:10.1109/MC.2012.37.

[27] John Brøndum and Liming Zhu. Towards an architectural viewpoint for sys-
tems of software intensive systems. In Proc. 2010 ICSE Workshop on Sharing
and Reusing Arch. Knowledge, SHARK ’10, pages 60–63, 2010. doi:10.1145/

1833335.1833344.

[28] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture Volume 1: A System of Patterns.
Wiley, 1996.

[29] P.G. Carlock, S.C. Decker, and R.E. Fenton. Agency-level systems engineering for
’systems of systems’. Systems and Information Technology Review Journal, 16:99–110,
1999.

[30] Ronald Carson. Differentiating system architectures. In Proc. 17th Ann. NDIA
Systems Eng. Conf. National Defense Industry Association, 2014. URL: http://
www.dtic.mil/ndia/2014/system/16801ThursTrack6Carson.pdf [cited
1 June 2017].

[31] Humberto Cervantes and Rick Kazman. Designing Software Architectures: A
Practical Approach. Addison-Wesley, Boston, MA, USA, 2016.

193

http://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
http://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
http://dx.doi.org/10.1109/SYSOSE.2006.1652284
http://dx.doi.org/10.1109/MC.2012.37
http://dx.doi.org/10.1145/1833335.1833344
http://dx.doi.org/10.1145/1833335.1833344
http://www.dtic.mil/ndia/2014/system/16801ThursTrack6Carson.pdf
http://www.dtic.mil/ndia/2014/system/16801ThursTrack6Carson.pdf

REFERENCES

[32] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
Bigtable: A distributed storage system for structured data. ACM Trans. Comput.
Syst., 26(2), 2008. doi:10.1145/1365815.1365816.

[33] L. Chen, M. Ali Babar, and N. Ali. Variability management in software product
lines: a systematic review. In Proc. 13th Int. Software Product Line Conf., SPLC,
pages 81–90, 2009.

[34] Paul Clements, Felix Bachman, Len Bass, David Garlan, James Ivers, Reed
Little, Paulo Merson, Robert Nord, and Judith Stafford. Documenting Software
Architectures: Views and Beyond. Addison-Wesley, 2nd edition, 2011.

[35] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley, 2002.

[36] Santiago Comella-Dorda, John Dean, Grace Lewis, Edwin Morris, Patricia
Oberndorf, and Erin Harper. A process for COTS software product evalu-
ation. Technical Report CMU/SEI-2003-TR-017, Software Engineering Insti-
tute, Pittsburgh, PA, USA, July 2004. URL: http://resources.sei.cmu.edu/
library/asset-view.cfm?assetid=6701 [cited 14 Mar 2017].

[37] COMPASS. Comprehensive modelling for advanced systems of systems [online].
2014. URL: http://www.compass-research.eu/index.html [cited 1 June
2017].

[38] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with YCSB. In Proc. 1st ACM Symp.
on Cloud Computing, SoCC ’10, pages 143–154, 2010. doi:10.1145/1807128.
1807152.

[39] Michael Cusumano. The evolution of platform thinking. Comm. ACM, 53(1):32–
34, January 2010. doi:10.1145/1629175.1629189.

[40] J. Dahmann and K. Baldwin. Implications of systems of systems on system
design and engineering. In Proc. 6th Int. Conf. on System of Systems Engineering,
SoSE, pages 131–136, June 2011. doi:10.1109/SYSOSE.2011.5966586.

[41] Judith Dahmann. SoS pain points - INCOSE SoS working group survey. In
Proc. 15th Ann. NDIA Systems Eng. Conf., San Diego, CA, 2012. National De-
fense Industry Association. URL: http://www.dtic.mil/ndia/2012system/
ttrack214770.pdf [cited 27 Sep 2013].

194

http://dx.doi.org/10.1145/1365815.1365816
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6701
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6701
http://www.compass-research.eu/index.html
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1629175.1629189
http://dx.doi.org/10.1109/SYSOSE.2011.5966586
http://www.dtic.mil/ndia/2012system/ttrack214770.pdf
http://www.dtic.mil/ndia/2012system/ttrack214770.pdf

REFERENCES

[42] Judith Dahmann and Rob Heilmann. SoS Systems Engineering (SE) and Test
& Evaluation (T&E): Final Report of the NDIA SE Division SoS SE and T&E
Committees. In 15th Annual NDIA Systems Engineering Conference, San Diego,
CA, March 2012. NDIA. URL: http://www.dtic.mil/ndia/2012system/
ttrack214771.pdf [cited 27 Sep 2013].

[43] Remco C. de Boer, R. Farenhorst, P. Lago, Hans van Vliet, Viktor Clerc, and
Anton Jansen. Architectural knowledge: Getting to the core. In Proc. 3rd Int.
Conf. on the Quality of Software Architectures, pages 197–214, 2007. doi:10.1007/
978-3-540-77619-2_12.

[44] Jeffrey Dean and Luiz André Barroso. The tail at scale. Comm. ACM, 56(2):74–80,
February 2013. doi:10.1145/2408776.2408794.

[45] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. In Proc. 21st ACM SIGOPS Symp. on Operating Systems Principles, SOSP ’07,
pages 205–220. ACM, 2007. doi:10.1145/1294261.1294281.

[46] J. Dimarogonas. A theoretical approach to C4ISR architectures. In Proc. IEEE
Military Comm. Conf., MILCOM, pages 28–33, 2004. doi:10.1109/MILCOM.

2004.1493242.

[47] Torgeir Dingsøyr and Hans van Vliet. Software Architecture Knowledge Manage-
ment: Theory and Practice, chapter Introduction to Software Architecture and
Knowledge Management, pages 1–17. Springer, Heidelberg, 2009.

[48] DOD Deputy Chief Information Officer. The DOD architecture framework
version 2.02. Standard, United States Department of Defense, 2010. URL: http:
//dodcio.defense.gov/Library/DoD-Architecture-Framework/ [cited
18 Oct 2016].

[49] T. Dyba, T. Dingsoyr, and G. K. Hanssen. Applying systematic reviews to
diverse study types: An experience report. In Proc. 1st Int. Symp. on Empirical
Software Eng. and Measurement, ESEM 2007, pages 225–234, Sept 2007. doi:

10.1109/ESEM.2007.59.

[50] Thomas Erl. SOA: Principles of Service Design. Prentice Hall, 1st edition, July
2007.

[51] European Commission. System-of-systems [online]. 2015. URL: https://ec.
europa.eu/digital-single-market/en/system-systems [cited 1 March
2017].

195

http://www.dtic.mil/ndia/2012system/ttrack214771.pdf
http://www.dtic.mil/ndia/2012system/ttrack214771.pdf
http://dx.doi.org/10.1007/978-3-540-77619-2_12
http://dx.doi.org/10.1007/978-3-540-77619-2_12
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1109/MILCOM.2004.1493242
http://dx.doi.org/10.1109/MILCOM.2004.1493242
http://dodcio.defense.gov/Library/DoD-Architecture-Framework/
http://dodcio.defense.gov/Library/DoD-Architecture-Framework/
http://dx.doi.org/10.1109/ESEM.2007.59
http://dx.doi.org/10.1109/ESEM.2007.59
https://ec.europa.eu/digital-single-market/en/system-systems
https://ec.europa.eu/digital-single-market/en/system-systems

REFERENCES

[52] Ricardo De Almeida Falbo, Fabiano Borges Ruy, and Rodrigo Dal Moro. Using
ontologies to add semantics to a software engineering environment. In Proc.
SEKE 2005, SEKE, 2005.

[53] Matthew Finnegan. Boeing 787s to create half a terabyte of data per flight,
says Virgin Atlantic. Computerworld UK, March 2013. URL: https://goo.gl/
T3zhqG [cited 20 Feb 2014].

[54] Kevin Forsberg and Harold Mooz. The relationship of system engineering to the
project cycle. In Proc. 1st Ann. Symp. of National Council on System Eng., pages
57–65, October 1991.

[55] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002.

[56] Michael Gagliardi, William Wood, and Timothy Morrow. Introduction to the
mission thread workshop. Technical Report CMU/SEI-2013-TR-003, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA, October
2013. URL: http://resources.sei.cmu.edu/library/asset-view.cfm?
AssetID=63148 [cited 14 March 2017].

[57] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

[58] Elmer Garduno, Soila P. Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya
Narasimhan. Theia: Visual signatures for problem diagnosis in large Hadoop
clusters. In Proc. 26th Int. Conf. on Large Installation System Administration: Strate-
gies, Tools, and Techniques, lisa’12, pages 33–42, 2012.

[59] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: why reuse is so
hard. IEEE Software, 12(6):17–26, Nov 1995. doi:10.1109/52.469757.

[60] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and
Peter Steenkiste. Rainbow: Architecture-based self adaptation with reusable
infrastructure. IEEE Computer, 37(10), October 2004. doi:10.1109/MC.2004.
175.

[61] David Garlan, Robert T. Monroe, and David Wile. Acme: An architecture
description interchange language. In Proc. 1997 Conf. of Centre for Advanced
Studies on Collaborative Research, CASCON’97, pages 169–183, November 1997.

[62] David A. Garlan. Software engineering in an uncertain world. In Proc. FSE/SDP
Workshop on the Future of Software Engineering Research, FoSER, pages 125–128,
November 2010. doi:10.1145/1882362.1882389.

196

https://goo.gl/T3zhqG
https://goo.gl/T3zhqG
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=63148
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=63148
http://dx.doi.org/10.1109/52.469757
http://dx.doi.org/10.1109/MC.2004.175
http://dx.doi.org/10.1109/MC.2004.175
http://dx.doi.org/10.1145/1882362.1882389

REFERENCES

[63] A. Gorod, B. Sauser, and J. Boardman. System-of-systems engineering manage-
ment: A review of modern history and a path forward. IEEE Systems Journal,
2(4):484 –499, December 2008. doi:10.1109/JSYST.2008.2007163.

[64] Ian Gorton. Essential Software Architecture. Springer-Verlag, 2nd edition, 2011.
doi:10.1007/978-3-642-19176-3.

[65] Ian Gorton and John Klein. Distribution, data, deployment: Software architecture
convergence in big data systems. Software, 32(3):78–85, May-June 2015. doi:

10.1109/MS.2014.51.

[66] Jonathan W. Greenert. Payloads over platforms: Charting a new course. U.S.
Naval Institute Proceedings Magazine, 138(7), July 2012.

[67] Peter Groves, Basel Kayyali, David Knott, and Steve Van Kuiken. The
‘big data’ revolution in healthcare. Report, McKinsey & Company, January
2013. URL: http://www.mckinsey.com/insights/health_systems_and_
services/the_big-data_revolution_in_us_health_care [cited 20 Feb
2014].

[68] Nickolas Guertin. Capability based technical reference frameworks for open
system architecture implementations. In Proc. 17th Ann. NDIA Systems Eng. Conf.
National Defense Industry Association, 2014. URL: http://www.dtic.mil/
ndia/2014/system/16909ThursTrack6Guertin.pdf [cited 1 June 2017].

[69] Milena Guessi, Valdemar V. G. Neto, Thiago Bianchi, Katia R. Felizardo, Flavio
Oquendo, and Elisa Y. Nakagawa. A systematic literature review on the de-
scription of software architectures for systems of systems. In Proc. 30th Ann.
ACM Symp. on Applied Computing, SAC ’15, pages 1433–1440, 2015. doi:

10.1145/2695664.2695795.

[70] Jamieson Gump. An architecture for agile systems engineering of
secure commercial-off-the-shelf (COTS) mobile communications. In
Proc. 17th Ann. NDIA Systems Eng. Conf. National Defense Industry
Association, 2014. URL: http://www.dtic.mil/ndia/2014/system/

16845ThursTrack6Gump.pdf [cited 1 June 2017].

[71] C. Hakim. Contemporary Social Research: 13, chapter Research Design: Strategies
and Choices in the Design of Social Research. Routledge, London, UK, 1987.

[72] H-J. Happel and S. Seedorf. Applications of ontologies in software engineering.
In Proc. Workshop on Sematic Web Enabled Software Eng., SWESE, 2006.

197

http://dx.doi.org/10.1109/JSYST.2008.2007163
http://dx.doi.org/10.1007/978-3-642-19176-3
http://dx.doi.org/10.1109/MS.2014.51
http://dx.doi.org/10.1109/MS.2014.51
http://www.mckinsey.com/insights/health_systems_and_services/the_big-data_revolution_in_us_health_care
http://www.mckinsey.com/insights/health_systems_and_services/the_big-data_revolution_in_us_health_care
http://www.dtic.mil/ndia/2014/system/16909ThursTrack6Guertin.pdf
http://www.dtic.mil/ndia/2014/system/16909ThursTrack6Guertin.pdf
http://dx.doi.org/10.1145/2695664.2695795
http://dx.doi.org/10.1145/2695664.2695795
http://www.dtic.mil/ndia/2014/system/16845ThursTrack6Gump.pdf
http://www.dtic.mil/ndia/2014/system/16845ThursTrack6Gump.pdf

REFERENCES

[73] Yuqin He, Xiangping Chen, and Ge Lin. Composition of monitoring components
for on-demand construction of runtime model based on model synthesis. In Proc.
5th Asia-Pacific Symp. on Internetware, Internetware ’13, pages 20:1–20:4, 2013.
doi:10.1145/2532443.2532472.

[74] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley Professional, 2003.

[75] Eric Honour. DANSE–an effective, tool-supported methodology for systems
of systems engineering in Europe. In Proc. 16th Ann. NDIA Systems Eng. Conf.
National Defense Industry Association, 2013. URL: http://www.dtic.mil/
ndia/2013/system/TH16282_Honour.pdf [cited 1 June 2017].

[76] Emir Imamagic and Dobrisa Dobrenic. Grid infrastructure monitoring system
based on nagios. In Proc. 2007 Workshop on Grid Monitoring, GMW ’07, pages
23–28, 2007. doi:10.1145/1272680.1272685.

[77] INCOSE. A consensus of the INCOSE fellows [online]. October 2006.
URL: http://www.incose.org/practice/fellowsconsensus.aspx [cited
18 Aug 2012].

[78] ISO/IEC. ISO/IEC 9075:2003 database language SQL, parts 1-4, 9-11, 13. Stan-
dard, ISO/IEC, 2003.

[79] ISO/IEC/IEEE. ISO/IEC/IEEE 42010: Systems and software engineering -
architecture description. Standard, ISO/IEC/IEEE, 2011.

[80] A. S. Jadhav and R. M. Sonar. Framework for evaluation and selection of the
software packages: A hybrid knowledge based system approach. J. of Systems and
Software, 84(8):1394–1407, August 2011. doi:10.1016/j.jss.2011.03.034.

[81] Mohommad Jamshidi. System of Systems Engineering: Innovations for the 21st
Century. Wiley Series in Systems Engineering and Management. John Wiley &
Sons, Hoboken, New Jersey, 2009.

[82] A. Jansen and J. Bosch. Software architecture as a set of architectural design
decisions. In Proc. 5th Working IEEE/IFIP Conf. on Software Architecture, WICSA,
pages 109–120, 2005. doi:10.1109/WICSA.2005.61.

[83] A. Jansen, J.S. van der Ven, P. Avgeriou, and Dieter K. Hammer. Tool support
for architectural decisions. In Proc. 6th Working IEEE/IFIP Conf. on Software
Architecture, WICSA, pages 44–53, 2007. doi:10.1109/WICSA.2007.47.

198

http://dx.doi.org/10.1145/2532443.2532472
http://www.dtic.mil/ndia/2013/system/TH16282_Honour.pdf
http://www.dtic.mil/ndia/2013/system/TH16282_Honour.pdf
http://dx.doi.org/10.1145/1272680.1272685
http://www.incose.org/practice/fellowsconsensus.aspx
http://dx.doi.org/10.1016/j.jss.2011.03.034
http://dx.doi.org/10.1109/WICSA.2005.61
http://dx.doi.org/10.1109/WICSA.2007.47

REFERENCES

[84] R. Kazman, K. Schmid, C.B. Nielsen, and J. Klein. Understanding patterns
for system of systems integration. In Proc. 8th Int. Conf. on System of Systems
Engineering, SoSE 2013, pages 141–146, June 2013. doi:10.1109/SYSoSE.2013.
6575257.

[85] Rick Kazman, Michael Gagliardi, and William Wood. Scaling up software
architecture analysis. J. of Systems and Software, 85(7):1511–1519, July 2012.
doi:10.1016/j.jss.2011.03.050.

[86] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, January 2003. doi:10.1109/MC.2003.1160055.

[87] Jung Soo Kim and David Garlan. Analyzing architectural styles. J. of Systems and
Software, 83:1216–1235, 2010. doi:10.1016/j.jss.2010.01.049.

[88] Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic
literature reviews in software engineering, version 2.3. Technical report, Soft-
ware Engineering Group, School of Computer Science and Mathematics, Keele
University, Keele, Staffs ST5 5BG, UK, July 2007.

[89] Barbara A. Kitchenham, Lawrence Pfleeger, Lesley M. Pickard, Peter W. Jones,
David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary guide-
lines for empirical research in software engineering. IEEE Trans. Softw. Eng.,
28(8):721–734, August 2002. doi:10.1109/TSE.2002.1027796.

[90] John Klein, Gary J. Chastek, Sholom Cohen, Rick Kazman, and John D. McGre-
gor. An early look at defining variability requirements for system of systems
platforms. In Proc. 2nd Int. Workshop on Reqts Eng. for Systems of Systems, RESS’12,
pages 30–33, 2012. doi:10.1109/RES4.2012.6347693.

[91] John Klein, Sholom Cohen, and Rick Kazman. Common platforms in system-of-
systems architectures: The state of the practice. In Proc. IEEE/SMC Int. Conf. on
System of Systems Eng., SoSE, 2013. URL: http://resources.sei.cmu.edu/
library/asset-view.cfm?assetID=68315 [cited 1 Jan 2017].

[92] John Klein and Ian Gorton. Runtime performance challenges in big data systems.
In Proc. Workshop on Challenges in Performance Methods for Software Development,
WOSP-C’15, 2015. doi:10.1145/2693561.2693563.

[93] John Klein, Ian Gorton, Neil Ernst, Patrick Donohoe, Kim Pham, and Chrisjan
Matser. Performance evaluation of NoSQL databases: A case study. In Proc. of
1st Workshop on Performance Analysis of Big Data Systems, PABS 2015, Feb 2015.
doi:10.1145/2694730.2694731.

199

http://dx.doi.org/10.1109/SYSoSE.2013.6575257
http://dx.doi.org/10.1109/SYSoSE.2013.6575257
http://dx.doi.org/10.1016/j.jss.2011.03.050
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1016/j.jss.2010.01.049
http://dx.doi.org/10.1109/TSE.2002.1027796
http://dx.doi.org/10.1109/RES4.2012.6347693
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=68315
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=68315
http://dx.doi.org/10.1145/2693561.2693563
http://dx.doi.org/10.1145/2694730.2694731

REFERENCES

[94] John Klein and Hans van Vliet. A systematic review of system-of-systems
architecture research. In Proc. 9th Int. ACM SIGSOFT Conf. on the Quality of
Software Architectures, QoSA’13, pages 13–22, Vancouver, BC, Canada, June 2013.
ACM. doi:10.1145/2465478.2465490.

[95] H. Knublauch. Ontology-driven software development in the context of the
semantic web: An example scenario with Protege/OWL. In Proc. 1st Int. Workshop
on the Model-driven Semantic Web, MDSW2004, 2004.

[96] Kristof Kovacs. Cassandra vs mongodb vs couchdb vs redis vs riak vs hbase
vs couchbase vs orientdb vs aerospike vs neo4j vs hypertable vs elasticsearch
vs accumulo vs voltdb vs scalaris comparison [online]. 2014. URL: http://
kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis [cited 7 Oct
2014].

[97] Jonah Kowall and Will Cappelli. Magic quadrant for application performance
monitoring. Research Report G00262851, Gartner, Inc., Stamford, CT, USA,
October 2014.

[98] P. Kruchten, R. Capilla, and J.C. Dueas. The decision view’s role in software
architecture practice. IEEE Software, 26(2):36–42, 2009. doi:10.1109/MS.2009.
52.

[99] P. Kruchten, P. Lago, and H. van Vliet. Building up and reasoning about archi-
tectural knowledge. In Proc. 2nd Int. Conf. on the Quality of Software Architectures,
QoSA ’06, pages 39–47, 2006. doi:10.1007/11921998_8.

[100] Philippe Kruchten. An ontology of architectural design decisions in software
intensive systems. In Proc. 2nd Groningen Workshop on Software Variability., 2004.

[101] Phillipe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley
Professional, Boston, MA, USA, 3rd edition, 2003.

[102] Jo Ann Lane, Judith Dahmann, George Rebovich, and Ralph Lowry. Key system
of systems engineering artifacts to guide engineering activities. In Proc. 13th
Ann. NDIA Systems Eng. Conf., San Diego, CA, October 2010. National Defense
Industry Association. URL: http://www.dtic.mil/ndia/2010systemengr/
WednesdayTrack3_10806Lane.pdf [cited 27 Sep 2013].

[103] A. Lapkin. Gartner defines the term ‘enterprise architecture’. Research Report
G00141795, Gartner Group, Stamford, CT, USA, July 2006.

[104] M. Lehman. Programs, life cycles, and laws of software evolution. Proc. IEEE,
68(9):1060–1076, 1980. doi:10.1109/PROC.1980.11805.

200

http://dx.doi.org/10.1145/2465478.2465490
http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis
http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis
http://dx.doi.org/10.1109/MS.2009.52
http://dx.doi.org/10.1109/MS.2009.52
http://dx.doi.org/10.1007/11921998_8
http://www.dtic.mil/ndia/2010systemengr/WednesdayTrack3_10806Lane.pdf
http://www.dtic.mil/ndia/2010systemengr/WednesdayTrack3_10806Lane.pdf
http://dx.doi.org/10.1109/PROC.1980.11805

REFERENCES

[105] Timothy C. Lethbridge, Susan E. Sim, and Janice Singer. Studying software
engineers: data collection techniques for software field studies. Empirical Software
Engineering, 10(3):311–341, 2005. doi:10.1007/s10664-005-1290-x.

[106] Dong Li and Ye Yang. Enhance value by building trustworthy software-reliant
system of systems from software product lines. In Proc. 3rd Int. Workshop on
Product Line Approaches in Software Eng., PLEASE, pages 13–16, June 2012. doi:
10.1109/PLEASE.2012.6229761.

[107] A. Liu and I. Gorton. Accelerating COTS middleware acquisition: the i-Mate
process. IEEE Software, 20(2):72–79, Mar-Apr 2003. doi:10.1109/MS.2003.

1184171.

[108] Yan Liu, Ian Gorton, Len Bass, Cuong Hoang, and Suhail Abanmi. MEMS: A
method for evaluating middleware architectures. In Proc. 2nd Int. Conf. on Quality
of Software Architectures, QoSA’06, pages 9–26, 2006. doi:10.1007/11921998_
6.

[109] Azad M. Madni. Adaptable platform-based engineering: Key enablers and
outlook for the future. Systems Engineering, 15(1):95–107, 2012. doi:10.1002/
sys.20197.

[110] Mark W. Maier. Architecting principles for systems-of-systems. Systems Engineer-
ing, 1(4):267–284, 1998. doi:10.1002/(SICI)1520-6858(1998)1:4<267::

AID-SYS3>3.0.CO;2-D.

[111] Mark W. Maier. System and software architecture reconciliation. Systems Engi-
neering, 9(2):146–159, 2006. doi:10.1002/sys.20050.

[112] M.W. Maier. On architecting and intelligent transport systems. IEEE Transactions
on Aerospace and Electronic Systems, 33(2):610–625, April 1997. doi:10.1109/7.
588379.

[113] M.W. Maier. Research challenges for systems-of-systems. In Proc. IEEE Int. Conf.
on Systems, Man and Cybernetics, volume 4 of SMC, pages 3149 – 3154, 2005.
doi:10.1109/ICSMC.2005.1571630.

[114] Ruth Malan and Dana Bredemeyer. Less is more with minimalist architecture.
IT Pro, 4(5):47–48, Sep-Oct 2002. doi:10.1109/MITP.2002.1041178.

[115] Joe Manas. Test perspectives for architecture. In Proc. 17th Ann. NDIA Systems
Eng. Conf. National Defense Industry Association, 2014. URL: http://www.
dtic.mil/ndia/2014/system/17006ThursTrack6Manas.pdf [cited 1 June
2017].

201

http://dx.doi.org/10.1007/s10664-005-1290-x
http://dx.doi.org/10.1109/PLEASE.2012.6229761
http://dx.doi.org/10.1109/PLEASE.2012.6229761
http://dx.doi.org/10.1109/MS.2003.1184171
http://dx.doi.org/10.1109/MS.2003.1184171
http://dx.doi.org/10.1007/11921998_6
http://dx.doi.org/10.1007/11921998_6
http://dx.doi.org/10.1002/sys.20197
http://dx.doi.org/10.1002/sys.20197
http://dx.doi.org/10.1002/sys.20050
http://dx.doi.org/10.1109/7.588379
http://dx.doi.org/10.1109/7.588379
http://dx.doi.org/10.1109/ICSMC.2005.1571630
http://dx.doi.org/10.1109/MITP.2002.1041178
http://www.dtic.mil/ndia/2014/system/17006ThursTrack6Manas.pdf
http://www.dtic.mil/ndia/2014/system/17006ThursTrack6Manas.pdf

REFERENCES

[116] Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia distributed
monitoring system: design, implementation, and experience. Parallel Computing,
30(7):817–840, 2004. doi:10.1016/j.parco.2004.04.001.

[117] David G. Messerschmitt and Clemens Szyperski. Software Ecosystem: Understand-
ing an Indispensable Technology and Industry. MIT Press, Cambridge, MA, USA,
2003.

[118] Ministry of Defence. MOD architecture framework [online]. 2012. URL:
https://www.gov.uk/guidance/mod-architecture-framework [cited 1
Jan 2017].

[119] Marco Mori, Andrea Ceccarelli, Paolo Lollini, Bernhard Frömel, Francesco Bran-
cati, and Andrea Bondavalli. Systems-of-systems modeling using a comprehen-
sive viewpoint-based sysml profile. Journal of Software: Evolution and Process,
Early View:e1878–n/a, 2017. doi:10.1002/smr.1878.

[120] Robert Nord, Paul C. Clements, David Emery, and Rich Hilliard. A struc-
tured approach for reviewing architecture documentation. Technical Note
CMU/SEI-2009-TN-030, Software Engineering Institute, Pittsburgh, PA, Decem-
ber 2009. URL: http://resources.sei.cmu.edu/library/asset-view.
cfm?assetID=9045# [cited 22 Dec 2013].

[121] Robert Nord, James McHale, and Felix Bachmann. Combining architecture-
centric engineering with the team software process. Technical Report CMU/SEI-
2010-TR-031, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 2010. URL: http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=9649 [cited 1 March 2017].

[122] Linda Northrop, Peter Feiler, Richard P. Gabriel, John Goodenough, Rick Linger,
Tom Longstaff, Rick Kazman, Mark Klein, Douglas Schmidt, Kevin Sullivan,
and Kurt Wallnau. Ultra-large-scale systems: The software challenge of the
future. Technical report, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, 2006. URL: http://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=30519 [cited 1 Apr 2017].

[123] Linda M. Northrop and Paul C. Clements. A framework for software product line
practice, version 5.0. Online, Software Engineering Institute, 2012. URL: http:
//www.sei.cmu.edu/productlines/frame_report/index.html [cited 28
Feb 2013].

[124] Michael Nygard. Release It! Design and Deploy Production-ready Software. Prag-
matic Bookshelf, 2007.

202

http://dx.doi.org/10.1016/j.parco.2004.04.001
https://www.gov.uk/guidance/mod-architecture-framework
http://dx.doi.org/10.1002/smr.1878
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9045#
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9045#
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9649
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9649
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30519
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30519
http://www.sei.cmu.edu/productlines/frame_report/index.html
http://www.sei.cmu.edu/productlines/frame_report/index.html

REFERENCES

[125] ODUSD(A&T). Systems engineering guide for systems of systems, version 1.0.
Guide, US Department of Defense, 2008. URL: http://www.acq.osd.mil/se/
docs/SE-Guide-for-SoS.pdf.

[126] C. Pahl, S. Giesecke, and W. Hasselbring. An ontology-based approach for
modelling architectural styles. In Proc. 2007 European Conference on Software Archi-
tecture, ECSA 2007, pages 60–75, 2007. doi:10.1007/978-3-540-75132-8_6.

[127] David L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Comm. ACM, 15(12):1053–1058, December 1972. doi:10.1145/361598.
361623.

[128] David L. Parnas and David M. Weiss. Active design reviews: principles and
practices. In Proc. 8th Int. Conf. on Software Engineering, ICSE ’85, pages 132–136,
August 1985.

[129] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López,
Garth Gibson, Adam Fuchs, and Billie Rinaldi. YCSB++: Benchmarking and
performance debugging advanced features in scalable table stores. In Proc.
2nd ACM Symp. on Cloud Computing, SOCC ’11, pages 9:1–9:14, 2011. doi:

10.1145/2038916.2038925.

[130] Eltjo R. Poort and Hans van Vliet. RCDA: Architecting as a risk- and cost
management discipline. Journal of Systems and Software, 85(9):1995–2013, 2012.
doi:10.1016/j.jss.2012.03.071.

[131] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile
Toolkit. Addison-Wesley Professional, 2003.

[132] William Pritchett. Application of a ground system architecture framework using
SysML. In Proc. 16th Ann. NDIA Systems Eng. Conf. National Defense Industry As-
sociation, 2013. URL: http://www.dtic.mil/ndia/2013/system/W16096_
Pritchett.pdf [cited 1 June 2017].

[133] Samuel T. Redwine, Jr. and William E. Riddle. Software technology maturation.
In Proc. 8th Int. Conf. on Software Engineering, ICSE ’85, pages 189–200, 1985.

[134] Kai Ren, Julio López, and Garth Gibson. Otus: Resource attribution in data-
intensive clusters. In Proc. 2nd Int. Workshop on MapReduce and its Applica-
tions, MapReduce’11, June 2011. URL: http://www.pdl.cmu.edu/PDL-FTP/
Monitoring/map611-ren.pdf.

[135] Thomas Rischbeck and Thomas Erl. SOA Design Patterns. The Prentice Hall
Service-Oriented Computing Series from Thomas Erl. Prentice Hall, 1st edition,
January 2009.

203

http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf
http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf
http://dx.doi.org/10.1007/978-3-540-75132-8_6
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1145/2038916.2038925
http://dx.doi.org/10.1145/2038916.2038925
http://dx.doi.org/10.1016/j.jss.2012.03.071
http://www.dtic.mil/ndia/2013/system/W16096_Pritchett.pdf
http://www.dtic.mil/ndia/2013/system/W16096_Pritchett.pdf
http://www.pdl.cmu.edu/PDL-FTP/Monitoring/map611-ren.pdf
http://www.pdl.cmu.edu/PDL-FTP/Monitoring/map611-ren.pdf

REFERENCES

[136] J.W. Ross, P. Weill, and D.C. Robertson. Enterprise Architecture as Strategy. Harvard
Business School Press, 2006.

[137] Nick Rozanski and Eoin Woods. Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives. Addison-Wesley, 2005.

[138] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering, 14(2):131–
164, April 2009. doi:10.1007/s10664-008-9102-8.

[139] Pramod J. Sadalage and Martin Fowler. NoSQL Distilled. Addison-Wesley
Professional, 2012.

[140] Carolyn B. Seaman. Guide to Advanced Empirical Software Engineering, chapter
Qualitative Methods. Springer, 2008.

[141] M. Shahin, P. Liang, and M.R. Khayyambashi. Architectural design decision:
Existing models and tools. In Proc. 7th Working IEEE/IFIP Conf. on Software Archi-
tecture, WICSA’09, pages 293–296, 2009. doi:10.1109/WICSA.2009.5290823.

[142] Mary Shaw. The coming-of-age of software archititecture research. In Proc.
23rd Int. Conf. on Software Eng., ICSE ’01, pages 656–664a, 2001. URL: http:
//dl.acm.org/citation.cfm?id=381473.381549 [cited 27 Feb 2017].

[143] Mary Shaw. What makes good research in software engineering? Int. J. of
Software Tools for Technology Transfer, 4(1):1–7, October 2002. doi:10.1007/

s10009-002-0083-4.

[144] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[145] Eduardo Silva, Everton Cavalcante, Thais Batista, Flavio Oquendo, Flavia C.
Delicato, and Paulo F. Pires. On the characterization of missions of systems-of-
systems. In Proc. of the 2014 European Conf. on Software Architecture Workshops,
ECSAW ’14, pages 26:1–26:8, 2014. doi:10.1145/2642803.2642829.

[146] Valerie Sitterle. Cross-scale resilience: Bridging system of systems and con-
sitituent systems engineering and analysis. In Proc. 19th Ann. NDIA Sys-
tems Eng. Conf. National Defense Industry Association, 2016. URL: http://
www.dtic.mil/ndia/2016/systems/18864_ValerieSitterle.pdf [cited
1 June 2017].

204

http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1109/WICSA.2009.5290823
http://dl.acm.org/citation.cfm?id=381473.381549
http://dl.acm.org/citation.cfm?id=381473.381549
http://dx.doi.org/10.1007/s10009-002-0083-4
http://dx.doi.org/10.1007/s10009-002-0083-4
http://dx.doi.org/10.1145/2642803.2642829
http://www.dtic.mil/ndia/2016/systems/18864_ValerieSitterle.pdf
http://www.dtic.mil/ndia/2016/systems/18864_ValerieSitterle.pdf

REFERENCES

[147] Jim Smith, Patrick Place, Marc Novakouski, and David Carney. Examining
the role of context in data interoperability. In Proc. 14th Ann. NDIA Sys-
tems Eng. Conf., San Diego, CA, 2011. National Defense Industry Association.
URL: http://www.dtic.mil/ndia/2011system/13101_SmithWednesday.
pdf [cited 27 Sep 2013].

[148] Antony Tang and Hans van Vliet. Software Architecture Knowledge Management:
Theory and Practice, chapter Software Architecture Design Reasoning, pages 155–
174. Springer, Heidelberg, 2009.

[149] Vernon Turner, John F. Gantz, David Reinsel, and Stephen Minton. The digital
universe of opportunities: Rich data and the increasing value of the internet of
things. White Paper IDC_1672, International Data Corporation, Framingham,
MA, USA, April 2014. URL: http://idcdocserv.com/1678 [cited 10 Nov
2014].

[150] Marcel A. P. M. van den Bosch, Marlies E. van Steenbergen, Marcel Lamaitre,
and Rik Bos. A selection-method for enterprise application integration solutions.
In Proc. 9th Int. Conf. on Business Informatics Research, BIR 2010, pages 176–187,
Sept 2010. doi:10.1007/978-3-642-16101-8_14.

[151] J.S. van der Ven, A. Jansen, J. Nijhuis, and Jan Bosch. Rationale Manage-
ment in Software Engineering, chapter Design decisions: The Bridge between
Rationale and Architecture, pages 329–346. Springer, 2006. doi:10.1007/

978-3-540-30998-7_16.

[152] Werner Vogels. Amazon.com: E-commerce at interplanetary scale. In
Proc. O’Reilly Emerging Technology Conf., 2005. URL: http://conferences.
oreillynet.com/cs/et2005/view/e_sess/5974 [cited 7 Nov 2014].

[153] Cory Watson. Observability at Twitter [online]. 2013. URL: https://blog.
twitter.com/2013/observability-at-twitter [cited 10 Nov 2014].

[154] Janet Weiner and Nathan Bronson. Facebook’s top open data problems [online].
2014. URL: https://research.facebook.com/blog/1522692927972019/
facebook-s-top-open-data-problems/ [cited 10 Nov 2014].

[155] C. A. Welty and D. A. Ferrucci. A formal ontology for re-use of software ar-
chitecture documents. In Proc. 14th IEEE Int. Conf. on Automated Software Eng.,
1999.

[156] Roel J. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Springer, Heidelberg, Germany, 2014.

205

http://www.dtic.mil/ndia/2011system/13101_SmithWednesday.pdf
http://www.dtic.mil/ndia/2011system/13101_SmithWednesday.pdf
http://idcdocserv.com/1678
http://dx.doi.org/10.1007/978-3-642-16101-8_14
http://dx.doi.org/10.1007/978-3-540-30998-7_16
http://dx.doi.org/10.1007/978-3-540-30998-7_16
http://conferences.oreillynet.com/cs/et2005/view/e_sess/5974
http://conferences.oreillynet.com/cs/et2005/view/e_sess/5974
https://blog.twitter.com/2013/observability-at-twitter
https://blog.twitter.com/2013/observability-at-twitter
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/

REFERENCES

[157] Wiki. Proto pattern [online]. undated. URL: http://c2.com/cgi/wiki?
ProtoPattern [cited 18 December 2012].

[158] Bruce Wong and Christos Kalantzis. A state of Xen - chaos monkey & Cas-
sandra [online]. 2014. URL: http://techblog.netflix.com/2014/10/
a-state-of-xen-chaos-monkey-cassandra.html [cited 30 Oct 2014].

[159] E. Woods and N. Rozanski. The system context architectural viewpoint. In Proc.
Joint European Conf. on Software Arch. and Working IEEE/IFIP Conf. on Software
Arch., WICSA/ECSA’09, pages 333–336, Sept 2009. doi:10.1109/WICSA.2009.
5290673.

[160] Jianxiong Yin, Peng Sun, Yonggang Wen, Haigang Gong, Ming Liu, Xuelong Li,
Haipeng You, Jinqi Gao, and Cynthia Lin. Cloud3DView: An interactive tool for
cloud data center operations. In Proc. ACM Conf. on SIGCOMM, SIGCOMM ’13,
pages 499–500, 2013. doi:10.1145/2486001.2491704.

[161] R.K. Yin. Case Study Research: Design and Methods. Applied Social Research
Methods Series. Sage Publications, 3rd edition, 2003.

[162] Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow systems for
grid computing. J. of Grid Computing, 3(3-4):171–200, September 2005. doi:

10.1145/1084805.1084814.

[163] J. Zahid, A. Sattar, and M. Faridi. Unsolved tricky issues on COTS selection and
evaluation. Global Journal of Computer Science and Technology, 12(10-D), 2012.

[164] He Zhang, Muhammad Ali Babar, and Paolo Tell. Identifying relevant studies
in software engineering. Information and Software Technology, 53(6):625–637, June
2011. doi:10.1016/j.infsof.2010.12.010.

[165] William Zola. 6 rules of thumb for MongoDB schema design: Part 1
[online]. 2014. URL: http://blog.mongodb.org/post/87200945828/

6-rules-of-thumb-for-mongodb-schema-design-part-1 [cited 18 Sep
2014].

206

http://c2.com/cgi/wiki?ProtoPattern
http://c2.com/cgi/wiki?ProtoPattern
http://techblog.netflix.com/2014/10/a-state-of-xen-chaos-monkey-cassandra.html
http://techblog.netflix.com/2014/10/a-state-of-xen-chaos-monkey-cassandra.html
http://dx.doi.org/10.1109/WICSA.2009.5290673
http://dx.doi.org/10.1109/WICSA.2009.5290673
http://dx.doi.org/10.1145/2486001.2491704
http://dx.doi.org/10.1145/1084805.1084814
http://dx.doi.org/10.1145/1084805.1084814
http://dx.doi.org/10.1016/j.infsof.2010.12.010
http://blog.mongodb.org/post/87200945828/6-rules-of-thumb-for-mongodb-schema-design-part-1
http://blog.mongodb.org/post/87200945828/6-rules-of-thumb-for-mongodb-schema-design-part-1

SIKS Dissertation Series

2011 01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in
Latent Gaussian Models

02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax and Oper-
ational Semantics of an Organization-Oriented Programming Language

03 Jan Martijn van der Werf (TUE), Compositional Design and Verification of
Component-Based Information Systems

04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal analy-
sis and empirical evaluation of temporal-difference

05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age - Increasing
the Performance of an Emerging Discipline.

06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cultural
Heritage

07 Yujia Cao (UT), Multimodal Information Presentation for High Load Human
Computer Interaction

08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented
Dialogues

09 Tim de Jong (OU), Contextualised Mobile Media for Learning
10 Bart Bogaert (UvT), Cloud Content Contention
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI

Perspective
12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Mining
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for

Airport Ground Handling
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Markets
15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evidence

for Information Retrieval
16 Maarten Schadd (UM), Selective Search in Games of Different Complexity
17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity and Relat-

edness
18 Mark Ponsen (UM), Strategic Decision-Making in complex games
19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles
20 Qing Gu (VU), Guiding service-oriented software engineering - A view-

based approach
21 Linda Terlouw (TUD), Modularization and Specification of Service-Oriented

Systems
22 Junte Zhang (UVA), System Evaluation of Archival Description and Access
23 Wouter Weerkamp (UVA), Finding People and their Utterances in Social

Media
24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Coor-

dination with Virtual Humans On Specifying, Scheduling and Realizing
Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of Models for
Trust Dynamics

26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication -
Emotion Regulation and Involvement-Distance Trade-Offs in Embodied
Conversational Agents and Robots

27 Aniel Bhulai (VU), Dynamic website optimization through autonomous
management of design patterns

28 Rianne Kaptein (UVA), Effective Focused Retrieval by Exploiting Query
Context and Document Structure

29 Faisal Kamiran (TUE), Discrimination-aware Classification
30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling

the mystery of emotions
31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches for

Modeling Bounded Rationality
32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Map-

ping of Science
33 Tom van der Weide (UU), Arguing to Motivate Decisions
34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and

Game-theoretical Investigations
35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training
36 Erik van der Spek (UU), Experiments in serious game design: a cognitive

approach
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applications

for Preference Learning and Supervised Network Inference
38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization
39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games
40 Viktor Clerc (VU), Architectural Knowledge Management in Global Soft-

ware Development
41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access

Control
42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribution
43 Henk van der Schuur (UU), Process Improvement through Software Opera-

tion Knowledge
44 Boris Reuderink (UT), Robust Brain-Computer Interfaces
45 Herman Stehouwer (UvT), Statistical Language Models for Alternative

Sequence Selection
46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-

based Architecture for the Domain of Mobile Police Work
47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for Intelligent

Support of Persons with Depression
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive

Artificial Listening Agent

49 Andreea Niculescu (UT), Conversational interfaces for task-oriented spoken
dialogues: design aspects influencing interaction quality

2012 01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda
02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in Human

and Ambient Agent Models
03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Software

Repositories
04 Jurriaan Souer (UU), Development of Content Management System-based

Web Applications
05 Marijn Plomp (UU), Maturing Interorganisational Information Systems
06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers in

Research Networks
07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring Agent-

based Models of Human Performance under Demanding Conditions
08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories
09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-

Aware Service Platforms
10 David Smits (TUE), Towards a Generic Distributed Adaptive Hypermedia

Environment
11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Preprocess-

ing, Discovery, and Diagnostics
12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration in

Semantic Web Information Systems
13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions of

emotion during playful interactions
14 Evgeny Knutov (TUE), Generic Adaptation Framework for Unifying Adap-

tive Web-based Systems
15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of Inte-

grated Internal and Social Dynamics of Cognitive and Affective Processes.
16 Fiemke Both (VU), Helping people by understanding them - Ambient

Agents supporting task execution and depression treatment
17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Business

Process Compliance
18 Eltjo Poort (VU), Improving Solution Architecting Practices
19 Helen Schonenberg (TUE), What’s Next? Operational Support for Business

Process Execution
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust

Paradigm for Brain-Computer Interfacing
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information Re-

trieval
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare

grootheden?

23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Explor-
ing the Neurophysiology of Affect during Human Media Interaction

24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken
Document Retrieval

25 Silja Eckartz (UT), Managing the Business Case Development in Inter-
Organizational IT Projects: A Methodology and its Application

26 Emile de Maat (UVA), Making Sense of Legal Text
27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation &

Brain-Computer Interface Games
28 Nancy Pascall (UvT), Engendering Technology Empowering Women
29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval
30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Reflec-

tive Decision Making
31 Emily Bagarukayo (RUN), A Learning by Construction Approach for Higher

Order Cognitive Skills Improvement, Building Capacity and Infrastructure
32 Wietske Visser (TUD), Qualitative multi-criteria preference representation

and reasoning
33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)
34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applica-

tions
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of Con-

trollers in Swarm- and Modular Robotics
36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative Mod-

eling Processes
37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architec-

ture Creation
38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolutionary

Algorithms
39 Hassan Fatemi (UT), Risk-aware design of value and coordination networks
40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia
41 Sebastian Kelle (OU), Game Design Patterns for Learning
42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated Learn-

ing
43 Withdrawn
44 Anna Tordai (VU), On Combining Alignment Techniques
45 Benedikt Kratz (UvT), A Model and Language for Business-aware Transac-

tions
46 Simon Carter (UVA), Exploration and Exploitation of Multilingual Data for

Statistical Machine Translation
47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content and Pre-

dicting Behavior
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series Data
49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynamics

of reinforcement learning algorithms in strategic interactions

50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information Sys-
tems Engineering

51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical frame-
work with a case study in elevator dispatching

2013 01 Viorel Milea (EUR), News Analytics for Financial Decision Support
02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store

Database Technology for Efficient and Scalable Stream Processing
03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics
04 Chetan Yadati (TUD), Coordinating autonomous planning and scheduling
05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns
06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and Queries

for a Data Warehouse Audience
07 Giel van Lankveld (UvT), Quantifying Individual Player Differences
08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling for opponent

agents in fighter pilot simulators
09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods

and Applications
10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling Framework

for Service Design.
11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-organization

in Overlay Services
12 Marian Razavian (VU), Knowledge-driven Migration to Services
13 Mohammad Safiri (UT), Service Tailoring: User-centric creation of inte-

grated IT-based homecare services to support independent living of elderly
14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised Learning

Learning
15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Applica-

tions
16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-

agent deliberation
17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart

Electricity Grid
18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification
19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and Schedul-

ing
20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for Infor-

mation Retrieval
21 Sander Wubben (UvT), Text-to-text generation by monolingual machine

translation
22 Tom Claassen (RUN), Causal Discovery and Logic
23 Patricio de Alencar Silva (UvT), Value Activity Monitoring
24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learning

25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision Sup-
port. A new way of representing and implementing clinical guidelines in a
Decision Support System

26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare Ser-
vice Provisioning

27 Mohammad Huq (UT), Inference-based Framework Managing Data Prove-
nance

28 Frans van der Sluis (UT), When Complexity becomes Interesting: An Inquiry
into the Information eXperience

29 Iwan de Kok (UT), Listening Heads
30 Joyce Nakatumba (TUE), Resource-Aware Business Process Management:

Analysis and Support
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineering

Cloud Applications
32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Net-

working in a Lifelong Learner’s Professional Development
33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging

Sphere
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search
35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams
37 Dirk Börner (OUN), Ambient Learning Displays
38 Eelco den Heijer (VU), Autonomous Evolutionary Art
39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of

Enterprise Information Systems
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games
41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dynamic

Systems: A Knowledge Engineering Perspective on Qualitative Reasoning
42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning
43 Marc Bron (UVA), Exploration and Contextualization through Interaction

and Concepts

2014 01 Nicola Barile (UU), Studies in Learning Monotone Models from Data
02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain Mod-

eling Method
03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children: Search

Behavior and Solutions
04 Hanna Jochmann-Mannak (UT), Websites for children: search strategies

and interface design - Three studies on children’s search performance and
evaluation

05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dynamic
Capability

06 Damian Tamburri (VU), Supporting Networked Software Development

07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior
08 Samur Araujo (TUD), Data Integration over Distributed and Heterogeneous

Data Endpoints
09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Repre-

sentation and Computation of Meaning in Natural Language
10 Ivan Salvador Razo Zapata (VU), Service Value Networks
11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social

Support
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous

Vehicle Control
13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change: Mod-

els and Applications in Health and Safety Domains
14 Yangyang Shi (TUD), Language Models With Meta-information
15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human Func-

tioning in Complex Socio-Technical Systems: Applications in Safety and
Healthcare

16 Krystyna Milian (VU), Supporting trial recruitment and design by automat-
ically interpreting eligibility criteria

17 Kathrin Dentler (VU), Computing healthcare quality indicators automati-
cally: Secondary Use of Patient Data and Semantic Interoperability

18 Mattijs Ghijsen (UVA), Methods and Models for the Design and Study of
Dynamic Agent Organizations

19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative and
Quantitative Evaluation and Tool Support

20 Mena Habib (UT), Named Entity Extraction and Disambiguation for Infor-
mal Text: The Missing Link

21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments
22 Marieke Peeters (UU), Personalized Educational Games - Developing agent-

supported scenario-based training
23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big

Data Era
24 Davide Ceolin (VU), Trusting Semi-structured Web Data
25 Martijn Lappenschaar (RUN), New network models for the analysis of

disease interaction
26 Tim Baarslag (TUD), What to Bid and When to Stop
27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy

and Probabilistic Representations of Uncertainty
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software
30 Peter de Cock (UvT), Anticipating Criminal Behaviour
31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Manu-

facturing and Product Support
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data

33 Tesfa Tegegne (RUN), Service Discovery in eHealth
34 Christina Manteli (VU), The Effect of Governance in Global Software Devel-

opment: Analyzing Transactive Memory Systems.
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Middleware

Design Approach
36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining Structured

Process Models
37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying
38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better: im-

proving usability through post-processing.
39 Jasmina Maric (UvT), Web Communities, Immigration, and Social Capital
40 Walter Omona (RUN), A Framework for Knowledge Management Using

ICT in Higher Education
41 Frederic Hogenboom (EUR), Automated Detection of Financial Events in

News Text
42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance

Models
43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method

Increments
44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel: Intelligence-

gestuurde politiezorg in gebiedsgebonden eenheden.
45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based Ap-

proach
46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy, Diver-

sity
47 Shangsong Liang (UVA), Fusion and Diversification in Information Re-

trieval

2015 01 Niels Netten (UvA), Machine Learning for Relevance of Information in
Crisis Response

02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance Checking in
Customs Controls

03 Twan van Laarhoven (RUN), Machine learning for network data
04 Howard Spoelstra (OUN), Collaborations in Open Learning Environments
05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern Hiding
06 Farideh Heidari (TUD), Business Process Quality Computation - Computing

Non-Functional Requirements to Improve Business Processes
07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation Analysis
08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for

designing and evaluating organizational interactions
09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Support Sys-

tems
10 Henry Hermans (OUN), OpenU: design of an integrated system to support

lifelong learning

11 Yongming Luo (TUE), Designing algorithms for big graph datasets: A study
of computing bisimulation and joins

12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The
Effect of Context on Scientific Collaboration Networks

13 Giuseppe Procaccianti (VU), Energy-Efficient Software
14 Bart van Straalen (UT), A cognitive approach to modeling bad news conver-

sations
15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture Docu-

mentation
16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot

Teamwork
17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Proper-

ties, Combinations and Trade-offs
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data in

Asymmetric Memories
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners
20 Lois Vanhée (UU), Using Culture and Values to Support Flexible Coordina-

tion
21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize Online

Learning
22 Zhemin Zhu (UT), Co-occurrence Rate Networks
23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage
24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Vertical

Search Algorithms and Evaluation
25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection
26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by Se-

mantics and Structure
27 Sándor Héman (CWI), Updating compressed colomn stores
28 Janet Bagorogoza (TiU), Knowledge Management and High Performance;

The Uganda Financial Institutions Model for HPO
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-Player

and Two-Player Domains
30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recognition in E-

Learning
31 Yakup Koç (TUD), On the robustness of Power Grids
32 Jerome Gard (UL), Corporate Venture Management in SMEs
33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Resources
34 Victor de Graaf (UT), Gesocial Recommender Systems
35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Percep-

tion and Effects in Human Robot Interaction

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines
02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews

through decision support: prescribing a better pill to swallow

03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowl-
edge Worker Support

04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and

an Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
07 Jeroen de Man (VU), Measuring and modeling negative emotions for virtual

training
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social

Networks from Unstructured Data
09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on

Cultural Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
11 Anne Schuth (UVA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-

Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Develop-

ment in West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects,

Algorithms and Experiments
16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn

from Human Reward
17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms
18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data
20 Daan Odijk (UVA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces:

Automatic Analysis of Player Behavior in the Interactive Tag Playground
22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging

Systems
23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data;

An Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Search-

ing and Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computational

Models to Study the Role of Human Awareness and Control in Behavioural
Choices, with Applications in Aviation and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study

on epidemic prediction and control

29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems -
Markets and prices for flexible planning

30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability

Risks for Crisis Organisations
33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from just

one example
34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Analysis,

and Enactment
35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classifica-

tion and Recommendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction

behavior optimized for robot-specific morphologies
37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and com-

putational inquiry
38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art &

Interaction Design
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interper-

sonal Style Selection for an Artificial Suspect
40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for

Analysing Institutional Design and Enactment Governance
42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of

Bilingual Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management:

From Theory to Practice
44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic inno-

vation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-

Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Operational

Performance Alignment in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian

Networks using Argumentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Ap-

proach with Autonomous Products and Reconfigurable Manufacturing
Machines

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product

Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in Health

Insurance Data using Outlier Detection and Subgroup Discovery
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational

Perspective on Variation in Text
10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in

Twitter #anticipointment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social

touch through haptic technology
14 Shoshannah Tekofsky, You Are Who You Play You Are: Modelling Player

Traits from Video Game Behavior
15 Peter Berck, Memory-Based Text Correction
16 Aleksandr Chuklin, Understanding and Modeling Users of Modern Search

Engines
17 Daniel Dimov, Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in

Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge

Sharing: The Role of Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious

Gaming (A Play on Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty
23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guide-

lines, with applications to Multimorbidity Analysis and Literature Search
26 Merel Jung (UT), Socially intelligent robots that understand and respond to

human touch
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social

Robots: People’s Preferences, Perceptions and Behaviors
28 John Klein (VU), Architecture Practices for Complex Contexts

	Introduction
	Background
	Systems of Systems
	Data-Intensive Systems
	Software Architecture Practices

	Objectives and Research Questions
	Research Methods
	Thesis at a Glance
	Outline and Origin of Chapters

	Systematic Review of Systems-of-Systems Architecture Research
	Introduction
	Research Method
	Search Strategy and Data Sources
	Search Results
	Data Extraction and Synthesis

	Results and Discussion
	Demographic Data
	Type of Research Result Reported
	Architecture Task Focus
	Application Domain
	Quality Attribute Focus
	Technology Maturity
	Impacts on research and practice
	Study Limitations and Threats to Validity

	Conclusions

	Common Software Platforms in System-of-Systems Architectures: The State of the Practice
	Introduction
	System-of-Systems Context
	Platforms, Product Platforms, & System-of-Systems Platforms
	Goals of this Study

	Research Method
	Interview Questions
	Results and Discussion
	Architecture Framing and Processes
	Challenges and Patterns of Success
	Solution constraints

	Conclusions

	Design Assistant for NoSQL Technology Selection
	Introduction
	Related Work
	Feature Taxonomy
	Data Model
	Query Languages
	Consistency
	Scalability
	Data Distribution
	Data Replication
	Security

	Knowledge Base Overview
	Semantic Knowledge Model
	QuABaseBD Implementation of Feature Taxonomy

	QuABaseBD Use Cases
	Demonstrating Feature Taxonomy Efficacy
	User Trials
	Further Work and Conclusions

	Application-Specific Evaluation of NoSQL Databases
	Introduction
	Electronic Health Record Case Study
	Project Context
	Evaluation Approach

	Prototype and Evaluation Setup
	Test Environment
	Mapping the data model
	Generate and Load Data
	Create Load Test Client
	Define and Execute Test Scripts

	Performance and Scalability Test Results
	Performance Evaluation—Strong Consistency
	Performance Evaluation—Eventual Consistency

	Lessons Learned
	Essential Issues
	Accidental Issues

	Further Work and Conclusions

	System-of-Systems Viewpoint for System Architecture Documentation
	Introduction
	Related Work
	Approach
	Problem Investigation—Identify Stakeholdersand Concerns
	Treatment Design—Define the Architecture Viewpoint
	Treatment Evaluation—Active Design Review byExpert Panel

	Analysis and Results
	Expert Panel Demographics
	Active Review Question Responses
	Subjective Questions
	Interpretation and Viewpoint Rework
	Threats to Validity

	Conclusions and Future Work
	Appendix: Viewpoint Definition
	Viewpoint Name
	Viewpoint Overview
	Concerns Addressed by this Viewpoint
	Typical Stakeholders
	Model Kinds/Metamodels
	Correspondence rules
	Operations on views
	Examples and Notes

	Runtime Performance Challenges in Big Data Systems
	Introduction
	Characteristics of Big Data Systems
	The Need for Observability
	Related Work
	Our Approach
	Model-Driven Design Time Toolkit
	Monitoring and Analysis Runtime Framework

	Future Work
	Conclusion

	Model-Driven Observability for Big Data Storage
	Introduction
	Architecture and Implementation
	Overview of the Observability Architecture
	Metamodel
	Model Editor Client
	Runtime Metric Collection
	Metric Aggregation and Visualization

	Performance Results
	Prior Work
	Conclusions and Future Work

	Conclusions
	Answer to the Research Questions
	Practice Area—Architecture Design
	Practice Area—Architecture Documentation
	Practice Area—Architecture Evaluation

	Answering the Main Research Question
	Further Research
	Continuing this work
	Complementing this work

	Samenvatting
	Nederlandse samenvatting
	English Summary

