
Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Architectural Implications of DevOps

Stephany Bellomo
Senior Member of Technical Staff

Stephany Bellomo a senior member of the technical staff at Carnegie Mellon’s
Software Engineering Institute (SEI). Stephany received her Master's degree in
Software Engineering in 1997 and spent several years as a software
developer/technical lead for companies such as Intuit, Verisign and Lockheed Martin
before joining the SEI. While at the SEI has had the privilege of working with a wide
variety of government and DoD organizations such as Army, DHS, Veterans Affairs
and various Intelligence Community Agencies. Current interests include research in
Incremental Software Development. She also has interest in architectural implications
of DevOps and Continuous Integration/Delivery. Stephany is a member of the
organizing committee for the International Workshop on Release Engineering 2014
hosted by Google. She is also guest editor of IEEE Software magazine 2015 Special
Issue on Release Engineering. She has been a Software Architecture Conference
(SATURN) program committee member since 2010 and served as SATURN tutorial
chair in 2014. Stephany also teaches courses in Service-Oriented Architecture and
Software Architecture at the SEI.

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Copyright

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM-0001132

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

The DevOps Movement Began as a Reaction …

To years of disconnect between Dev and Ops which began to
manifest itself as conflict and inefficiency

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Familiar DevOps Problems

Source: Lee Thompson and Andrew Shaffer

• Disconnect between Dev and Ops teams leads to a wall of confusion
between stove-piped teams

• Disconnects between Dev and Ops tools, as well as processes,
cause inefficiency and rework

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

DevOps is helping to finish what Agile started

No Value gained when Software is not Delivered

We saw reduced
development cycle time
with Agile, but due to
issues such as:
• Lack of confidence in

deployment/ rollback

• Inefficient test
approaches, etc.

• Unreliable software

Deployment cycle time
is often weeks or months

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Informal DevOps Definitions

“DevOps is a software development method that
stresses communication, collaboration and integration

between software developers and information
technology (IT) professionals”

 Pant, Rajiv

“DevOps is an umbrella concept for anything that
smooth's out the interaction between development

and operations”
 Damon Edwards

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Scope

The scope for DevOps looks at reducing deployment cycle time and
enabling feedback cycles across the end-to-end Deployment Pipeline …

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Challenges DevOps is trying to Solve

• Non-collaborative stove-piped Dev and Ops teams

• Limited improvement within stove-piped areas (e.g., process, tools,
metrics) but not end-to-end

• Broken feedback cycles; process flows only one way

Forrester, The Seven Habits Of Highly Effective DevOps

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

DevOps Community Future Vision

• Collaborative, Dev and Ops teams combine or working closely together

• Continuous improvement across the deployment pipeline targeted at producing
something of value to a user or organization (inception to dev to release/sustain)

• Effective feedback cycles within each stage

Adapted from Forrester, The Seven Habits Of Highly Effective DevOps

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

More than Dev and Ops Working Together

Those are some of the overarching goals of DevOps, but is easy to think
of DevOps as just a collaborative movement because people get that

But it is really more than that
• There are multiple dimensions to the movement…

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Culture

Process
and

Practices

System/
Architecture

Multiple Dimensions of DevOps

System/Architecture
• Architected to support test

automation and continuous
integration goals

• Applications that support
changes without release (e.g.,
late binding)

• Scalable, secure, reliable, etc.

Automation/
Measurement
• Automate repetitive and

error-prone tasks (e.g., build,
testing, deployment, maintain
consistent environments)

• Static analysis automation
(architecture health)

• Performance dashboards

Culture
• Developer and Ops collaboration

(Ops includes Security)

• Developers and Operations support
releases beyond deployment

• Dev and Ops have access to
stakeholders who understand
business and mission goals

Process and
Practices
• Pipeline streamlining

• Continuous Delivery
practices (e.g,
Continuous Integration,
Test Automation, Script-
driven, automated
deployment, Virtualized,
self-service
environments)

Ignoring any of these dimensions can cause problems

Automation/
Measurement

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Feedback Cycle Breakdown Examples

Examples of Feedback Cycle breakdown due to Architecture Issues:
• F1: Builds take too long due to poorly managed component dependencies; integration builds

are slow and become infrequent
• F2: System doesn’t have architectural interfaces for test automation and manual tests are

slow; tests are skipped
• F3a&b: Architecture creates deployment complexity and error prone manual steps prevent

release; weeks/months without release

Architecture can enable or imped short feedback cycle time

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Challenge Questions

We just gave several examples of how architecture can enable or
impede feedback cycles, and consequently, end-to-end deployment
cycle time (we refer to as Deployability)

However, this raises several questions such as:

• How do we specify Deployability requirements clearly and concisely?

• How do we design systems for Deployability?
• What kinds of design decisions really matter?
• Are there architectural tactics and/or patterns we might want to leverage to promote

Deployability?

• When planning work, what Deployability-related requirements and design
decisions should be considered early to avoid rework?

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Requirements for Deployability

Lack clear specification for Deployability requirements leads to feedback
cycle breakdowns

Example Vague Requirements:

“Our system, and delivery environment, shall support continuous
delivery and multiple deploys a day like Amazon, Google, etc.”

“When it comes to deployment, everything possible should be
automated”

In next few slides, we give examples of Deployability requirements that
enable better feedback across the deployment pipeline

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Specifying Deployability Requirements

Well specified requirements enable Feedback Cycles; Several
example Deployablity Requirements are shown below:
P1: Build and Continuously Integrate
• Complete full software build in < 5 minutes under peak load

P2: Automated Testing
• Complete execution of Unit tests suite within 10 minutes
• Complete execution of increment tests suite (e.g., NFR) within 5 hours
• Create/build a new system-level test case, avg time to build/test is 1 day

P3: Automated Release
• There is an upgrade being pushed out, 99% of release is automated

and 1% is handled manually
• The team makes a change to feature X (UI and business logic change)

and deploy is pushed out within 2 hours of code/test completion
 Source: ATAM Analysis Data 2006-2013

Source: ATAM analysis of data (2006-2013)

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Requirements Mapped to Feedback Cycles

Complete execution of Unit
tests within 10 minutes;
increment tests complete in
5 hours

The team makes a change to
feature X and deploy is pushed
out within 2 hours of code/test
completion

After a change
is committed,
complete build
in < 5 minutes

Deployablity requirements specified as quality attributes can provide
concrete measures for designing systems to achieve feedback cycle time

Source: Towards Design Decisions to Enable Deployability, DSSO workshop paper submission (in review)

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Design Decisions to promote Deployability

• We just gave examples of Deployability requirements; next we
investigate design decisions. We draw upon interviews with projects
practicing continuous delivery (sampling below)…
 Project Management

Approach
Size Metrics Years

In Use
Release Cadence CI

Cadence
A Agile/Scrum

(last 2 years
and traditional
before that)

1M SLOC 17 Client release
available every 2
months (not all accept
it)

Daily CI
build

B Water/ Scrum/F
all

3M SLOC,
team size 6–
8,
90,000 users

3+ Internal release every
2–3 weeks, external
release as needed

Daily CI
build

C Agile/Scrum Team size 30 2+ Internal release every
2–3 weeks, customer
release every 2–3
months

Daily CI
build

Source: Towards Design Decisions to Enable Deployability, submitted Dependability and Security Workshop,
Bellomo, Kazman, Ernst

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Architecture Partitioning Decision

Decision: Divide components and allocation teams
separately to promote rapid builds and tests
• Changes to blue components (Team B) do not require

rebuild of yellow components (Team A) which shortens build time

Trade-offs
+Modifiability
+Testability
+Reduced Build Time
-Reuse

Source: Ant.patch.org

Team A

Team B

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Integrated Test Harness Decision

Decision: Integrate test harness hooks to
architecture to start and stop application
(start in clean state, end test with clean environment)
• Shortened Test Duration

Application 1

Test execution
engine

Application 2

Start/Stop

Legacy

Component

Legacy
interfaces may

need to be
refactored for

automation

Trade-offs
+Testability
+Modifiability
-Complexity

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Web Services Layer Removal Decision-1a
Decision: Remove web
services layer; replace
with Enterprise Java Bean
implementation
• Minimized Deployment

complexity

Trade-offs
+Releasability
+Reduced
Complexity
+Performance
-Testability
-Modifiability

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Web Services Layer Removal Decision-1b
(Before redesign)

• Before, had to update multiple application servers and web services
to be sure that application and services versions were in synch

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Web Services Layer Removal Decision-1c
(After redesign)

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Connection
Pool Connection

Pool Connection
Pool Connection

Pool

Web Service Consolidation Decision

Decision Example: Consolidate Web Services for easier release,
increased performance and reduced complexity

Application

Service 1

Before

Application

Service 1

After

Connection
Pool

Trade-offs
+Releasability
+Reduced Deploy
Complexity
+Performance
-Testability
-Modifiability

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Mapping Design Decisions to Pipeline

Architecture
Partitioning

Decision

Web Services
Layer Removal

Decision

Web Service
Consolidation

Decision

Integrated Test
Harness
Decision

Each design decision also supports the pipeline feedback loops

Source: Towards Design Decisions to Enable Deployability, DSSO workshop paper submission (in review)

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Relating Terms and Concepts
In the next few slides, we give a few examples that connect from
requirements to design decisions to tactics; The ER diagram below
provides an overview of concepts we are discussing

Stakeholder
Design Drivers

Design
Decisions

Tactics

Influence

Use

Control

Requirements

Solution space Problem space

Quality Attribute
Scenarios

Quality Attribute
Responses

Contain

May be
specified as

Input to

Input to

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Integrated Test Harness Example

Problem: Long testing duration due to problems with establishing
clean test start state and difficulty executing tests in automated
fashion (manual steps required)

Design
Decision:

Integrated
test harness

Broken Feedback loop:
Long Automated Testing Cycle

Tactics Used:
• Specialized Access

Routines
• Record/playback
• Maintain Interfaces,
• State Synchronization &

resychronization

Fixed Feedback loop:
Shortened Test Duration

Requirement
Scenario:

“Complete execution
of increment tests
suite (e.g., NFR)
within 5 hours”

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Modular and Distributed Architecture Example

Problem: Long deployment duration due to problems with
architectural dependencies

Design
Decision:

Distribute &
modularize

architecture

Broken Feedback loop:
Infrequent deployments

Tactics Used:
• Increase Semantic

Coherence
• Encapsulation
• Maintain Existing

Interfaces

Fixed Feedback loop:
Reduced Deployment time

Requirement Scenario:
“The team makes a

change to feature X (UI
and business logic

change) and deploy is
pushed out within 2 hours
of code/test completion”

“If you push the whole three million line application every time a change is
made you are in a world of hurt” Project C

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Deployability Architecture Tactics Tree

Top Row
Represents
Stakeholder

Design Drivers

Source: Towards Design Decisions to Enable Deployability,
submitted Dependability and Security Workshop, Bellomo, Kazman, Ernst

Deployability
Tactics

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Modular and
Distributed

Architecture
Example

Integrated
Test Harness

Example “Need Speed
and Rigor”

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Allocating Deployability

• Our examples suggest some
Deployablity-related design
decisions/trade-offs can have
significant impact

• In cases where the structure
of the architecture is impacted
by a decision, it may make
sense to consider them early
to avoid rework

 Designing for Deployability, like any quality attribute, requires
well informed architectural trade-off analysis

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Wrap Up

In this talk, we have shared an approach for:
• Describing Deployability concerns as architecturally significant scenarios
• Applying trade-off analysis to make Deployment-focused design decisions
• Leveraging tactics to control Deployability-related response measures

Work to be done
• Collect more examples of scenarios, design decisions and tactics
• Expand and further validate the Deployability tactics tree
• Apply Deployabliltiy tactics to help teams reduce deployment cycle time and

enable feedback cycles across the deployment pipeline (e.g., tactic checklist)

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Want to get involved?

Upcoming activities
• IEEE Software Magazine Special Issue on Release Engineering, April/May

2015
• SATURN SEI Software Architecture Conference, 2014, May 5-9 Portland

Oregon, Tutorial on Architecture Tactics to Reduce Deployment Cycle Time

Contact Information:

Stephany Bellomo,
sbellomo@sei.cmu.edu

Rick Kazman
kazman@sei.cmu.edu

Neil Ernst
nernst@sei.cmu.edu

Rod Nord
rn@sei.cmu.edu

	Slide Number 1
	Copyright
	The DevOps Movement Began as a Reaction …
	Familiar DevOps Problems
	DevOps is helping to finish what Agile started
	Informal DevOps Definitions
	Scope
	Challenges DevOps is trying to Solve
	DevOps Community Future Vision
	More than Dev and Ops Working Together
	Multiple Dimensions of DevOps
	Feedback Cycle Breakdown Examples
	Challenge Questions
	Requirements for Deployability
	Specifying Deployability Requirements
	Requirements Mapped to Feedback Cycles
	Design Decisions to promote Deployability
	Architecture Partitioning Decision
	Integrated Test Harness Decision
	Web Services Layer Removal Decision-1a
	Web Services Layer Removal Decision-1b �(Before redesign)
	Web Services Layer Removal Decision-1c �(After redesign)
	Web Service Consolidation Decision
	Mapping Design Decisions to Pipeline
	Relating Terms and Concepts
	Integrated Test Harness Example
	Modular and Distributed Architecture Example
	Deployability Architecture Tactics Tree
	Slide Number 29
	Allocating Deployability
	Wrap Up
	Want to get involved?
	Slide Number 33

