
 Architecting in a Complex World 
 Twitter #SEIVirtualEvent 
© 2013 Carnegie Mellon University 

Achieving Agility and Stability in Large-Scale Software Development 
 
Ipek Ozkaya 
Senior Researcher, 
Research, Technology, and System Solutions Program 
Ipek Ozkaya is a senior member of the technical staff in the Research, Technology,  
and System Solutions Program at the SEI. She is currently engaged in activities 
focusing on large scale agile and architecture and works to develop, apply, and 
communicate effective methods to improve software development efficiency.  
Ozkaya serves as the chair of the advisory board of the IEEE Software magazine 
and is also a member of the technical faculty for the Master of Software Engineering 
Program at Carnegie Mellon University. 

 



 Architecting in a Complex World 
 Twitter #SEIVirtualEvent 
© 2013 Carnegie Mellon University 

Agenda 

Concepts of scale and root-cause analysis 

Tactics that can help 

Examples 
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Are we asking the right question? 

How much should we architect? 

• This process, or that one… 

 

When should we architect? 

• Balancing anticipation versus adaptation… 
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Increased visibility into delivery 
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Polling question 
Which software development process are you currently using? 
 

1. Agile software development (e.g., using Scrum, XP practices,  
test-driven development) 

2. Waterfall/phased-based development  

3. Rational unified process 

4. Organization-specific iterative and incremental development 

5. None of the above 
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Symptoms of failure 

 Teams (e.g., Scrum teams, product development teams, 
component teams, feature teams) spend almost all of their 
time fixing defects, and new capability development is 
continuously slipping. 

 
 Integration of products built by different teams reveals that 

incompatibility defects cause many failure conditions and lead 
to significant out-of-cycle rework in addition to end-to-end  
fault-tolerance failure.  
 

 High testing costs result in some testing activities to be 
eliminated. 
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A closer look at scale: Scope 

 Is the project in a new domain or 
technology? 
 

 Does the project have new 
requirements—such as standards 
compliance, system testing, and 
integration lab environments—or  
does it simply have more features, 
elements, and relationships? 
 

 Is there a need to align systems 
engineering and software 
development activities? 
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A closer look at scale: Team 

• Are there multiple teams that need to 
interact, both internal and external to 
the organization? 
 

• What are the dependencies between 
the work products of system and 
software engineers? 
 

• Have you considered the end-to-end 
success of features that may require 
resources from multiple teams? 
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A closer look at scale: Time 

• Does the work require different 
schedule constraints for 
releases? 
 

• How long is the work product 
expected to be in service?  
 

• How important are sustainability 
and evolution? 
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Polling question 
Are you currently doing development in a large-scale context that can 
be captured by extended scope, team size, or timelines of scale? 

 

1. Large team size 

2. Larger than normal scope 

3. Longer development roadmap 

4. Product expected to be in service for a long time 

5. At least two of the above 
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Business 

Culture Team Support 

Quality 
Attributes 

Architecture Productivity 
Measures 

Customer 
Collaboration 

Response to 
Change 

Investigate both technical and nontechnical areas, looking at both 
Agile software development and software architecture fundamentals. 
 

Root-cause analysis 
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Root-cause analysis 

Response to change 

• Dynamic environment and changing 
requirements are understood. 

• Necessary technology and processes are 
identified to respond to change. 

• Impact of uncertainty on the project is 
acknowledged. 

• Waste is identified and tradeoffs managed 
(e.g., technical debt and defects). 
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Root-cause analysis 

Culture 
• People are made available (internal and 

external), including an appropriate number 
of people who have the right skills and 
knowledge and clear responsibilities. 

• Team members are motivated and 
empowered by many degrees of freedom. 

• Clear communication among teams and 
team members is established. 

• There is high-level management support. 
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Root-cause analysis 

Quality attributes 
• The importance of quality attribute 

requirements is understood. 

• Quality attribute requirements are defined 
and tied to business goals. 

• Means for analysis of necessary quality 
attributes are in place and used to predict 
system properties. 

• Measurement environment is in place to 
monitor the implemented system quality 
and “done” criteria. 
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Root-cause analysis 

Architecture 
• Evidence is provided that the architecture 

satisfies quality attribute requirements. 

• Appropriate functional requirements are 
assigned to architecture elements. 

• Architectural issues (e.g., technical debt) 
are tracked and managed. 

• Timeline of critical architectural decisions 
is clear and scheduled. 
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Tactics to consider 

Align feature and system decomposition. 

Create an architectural runway. 

Use matrix teams and architecture. 
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Align feature and system decomposition 

Dependencies between  
stories & supporting 
architectural elements 

Understanding the dependencies between 
stories and architectural elements enables 
staged implementation of technical 
infrastructure in support of achieving 
stakeholder value. 

Dependencies among 
architectural elements 

Low-dependency architectures are a critical 
enabler for scaling up Agile development.1 

Dependencies among 
stories 

High-value stories may require the 
implementation of lower value stories as 
precursors.2 

1. Poppendieck, M., and Poppendieck, T. Leading Lean Software Development. Addison-Wesley 
Professional, 2009. 

2. Denne, M., and Cleland-Huang, J. Software by Numbers. Prentice Hall, 2003. 
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Tension between high-priority features (vertical decomposition) 
and common reusable services (horizontal decomposition) 
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Align feature and system decomposition  
Two examples  

Decouple teams and architecture to ensure parallel 
progress as the number of teams increases. 
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Create an architectural runway 

The architectural runway provides the degree of 
architectural stability to support the next n 
iterations of development. 

In a Scrum project environment, the architectural 
runway may be established during Sprint 0.  

• Sprint 0 might have a longer duration than the 
rest of the sprints.  
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Create an architectural runway 

Leffingwell, D. Scaling Software Agility. Addison-Wesley, 2007. 
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team 

The bigger the system, the longer the runway.  
Leffingwell, Martens, Zamora 
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Use matrix teams and architecture 

Establishing the infrastructure 
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Use matrix teams and architecture 

Feature development in parallel 
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Use matrix teams and architecture 

Different teams are 
assigned to different 
features, and some 
team members are 
assigned to keep 
layers and framework 
consistent. 
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Use matrix teams and architecture 

Different teams are 
assigned to different 
features, and a temporary 
team is assigned to 
prepare layers and 
frameworks for future 
feature teams. 
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Example 1: Inability to manage scope and time 
Symptom  

• Scrum teams spend almost all of their time fixing defects, and 
new feature development is continuously slipping. 

Root-cause 
• Initial focus was “general” rather than “product specific.” 

— Time pressure to deliver became the top priority. 

— The team delivered an immature product. 

— A plethora of variation parameters interact detrimentally. 

• There are three different cycles: 

1. Customer release (annually, many variants) 

2. IV&V Testing (quarterly, 4 variants) 

3. Developmental (monthly, 1 variant) 

1/14/2013 
26 
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Solution 
Stabilize the architecture. 

• Build an architecture for current products. 

— Rules, guidelines 

— Over a few time boxes 

• Reduce the number of “variant parameterizations.” 

• Make everyone play from the same sheet music. 

• Postpone adding new features. 

Re-plan the release cycles/time boxes. 

Revisit the testing strategy/team assignments against variants. 
 

1/14/2013 
27 
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Example 2: Inability to manage teams and scope 
Symptom 

• Integration of products built by different Scrum teams reveals 
that incompatibility defects cause many failure conditions and 
lead to significant out-of-cycle rework.  

 
Root cause  
Cross-team coordination is poor, even though there are many 
coordination points and much time spent. 

• Different teams have different interpretations of interfaces. 

• The product owner on each Scrum team does not see the  
big picture. 

• A mismatch exists between the architecture and Scrum 
development. 

 
1/14/2013 
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Solution 

Stabilize to remove failures. 

• Postpone adding new features. 

Identify and collapse common services across teams. 

Use an architectural runway. 

• A system that has an architectural runway contains 
existing or planned infrastructure sufficient to allow 
incorporation of current and near-term anticipated 
requirements without excessive refactoring. 

• An architectural runway is represented by infrastructure 
initiatives that have the same level of importance as the 
larger scale requirements epics that drive the company’s 
vision forward. 

 
1/14/2013 
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Final thoughts 

Systematic root-cause analysis is essential for understanding risks arising 
in large-scale software development. 
 

Embracing the principles of both Agile software development and software 
architecture provide improved visibility of project status and better tactics 
for risk management. 

• Align feature and system decomposition. 

• Create an architectural runway. 

• Use matrix teams and architecture. 
 

Architecting is an ongoing activity throughout the software development 
life cycle regardless of  choice of process.  
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