
 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Achieving Agility and Stability in Large-Scale Software Development

Ipek Ozkaya
Senior Researcher,
Research, Technology, and System Solutions Program
Ipek Ozkaya is a senior member of the technical staff in the Research, Technology,
and System Solutions Program at the SEI. She is currently engaged in activities
focusing on large scale agile and architecture and works to develop, apply, and
communicate effective methods to improve software development efficiency.
Ozkaya serves as the chair of the advisory board of the IEEE Software magazine
and is also a member of the technical faculty for the Master of Software Engineering
Program at Carnegie Mellon University.

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Agenda

Concepts of scale and root-cause analysis

Tactics that can help

Examples

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Are we asking the right question?

How much should we architect?

• This process, or that one…

When should we architect?

• Balancing anticipation versus adaptation…

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Increased visibility into delivery

0
2
4
6
8

10
12

1 2 3 4 5 6 7

Velocity

0

2

4

6

8

10

12

1 2 3 4 5 6 7

Velocity

Focus on Priority

Focus on Integrated Value

Focus on Cost

0

2

4

6

8

10

12

1 2 3 4 5 6 7

Velocity

?

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Polling question
Which software development process are you currently using?

1. Agile software development (e.g., using Scrum, XP practices,
test-driven development)

2. Waterfall/phased-based development

3. Rational unified process

4. Organization-specific iterative and incremental development

5. None of the above

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Symptoms of failure

 Teams (e.g., Scrum teams, product development teams,
component teams, feature teams) spend almost all of their
time fixing defects, and new capability development is
continuously slipping.

 Integration of products built by different teams reveals that

incompatibility defects cause many failure conditions and lead
to significant out-of-cycle rework in addition to end-to-end
fault-tolerance failure.

 High testing costs result in some testing activities to be
eliminated.

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

A closer look at scale: Scope

 Is the project in a new domain or
technology?

 Does the project have new
requirements—such as standards
compliance, system testing, and
integration lab environments—or
does it simply have more features,
elements, and relationships?

 Is there a need to align systems
engineering and software
development activities?

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

A closer look at scale: Team

• Are there multiple teams that need to
interact, both internal and external to
the organization?

• What are the dependencies between
the work products of system and
software engineers?

• Have you considered the end-to-end
success of features that may require
resources from multiple teams?

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

A closer look at scale: Time

• Does the work require different
schedule constraints for
releases?

• How long is the work product
expected to be in service?

• How important are sustainability
and evolution?

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Polling question
Are you currently doing development in a large-scale context that can
be captured by extended scope, team size, or timelines of scale?

1. Large team size

2. Larger than normal scope

3. Longer development roadmap

4. Product expected to be in service for a long time

5. At least two of the above

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Business

Culture Team Support

Quality
Attributes

Architecture Productivity
Measures

Customer
Collaboration

Response to
Change

Investigate both technical and nontechnical areas, looking at both
Agile software development and software architecture fundamentals.

Root-cause analysis

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Root-cause analysis

Response to change

• Dynamic environment and changing
requirements are understood.

• Necessary technology and processes are
identified to respond to change.

• Impact of uncertainty on the project is
acknowledged.

• Waste is identified and tradeoffs managed
(e.g., technical debt and defects).

Quality
Attributes

Architecture Productivity
Measures

Customer
Collaboration

Business

Culture Team Support

Response to
Change

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Root-cause analysis

Culture
• People are made available (internal and

external), including an appropriate number
of people who have the right skills and
knowledge and clear responsibilities.

• Team members are motivated and
empowered by many degrees of freedom.

• Clear communication among teams and
team members is established.

• There is high-level management support.

Quality
Attributes

Architecture Productivity
Measures

Customer
Collaboration

Business

Team Support Culture

Response to
Change

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Root-cause analysis

Quality attributes
• The importance of quality attribute

requirements is understood.

• Quality attribute requirements are defined
and tied to business goals.

• Means for analysis of necessary quality
attributes are in place and used to predict
system properties.

• Measurement environment is in place to
monitor the implemented system quality
and “done” criteria.

Architecture Productivity
Measures

Customer
Collaboration

Quality
Attributes

Business

Team Support Culture

Response to
Change

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Root-cause analysis

Architecture
• Evidence is provided that the architecture

satisfies quality attribute requirements.

• Appropriate functional requirements are
assigned to architecture elements.

• Architectural issues (e.g., technical debt)
are tracked and managed.

• Timeline of critical architectural decisions
is clear and scheduled.

Quality
Attributes

Productivity
Measures

Customer
Collaboration

Architecture

Business

Team Support Culture

Response to
Change

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Tactics to consider

Align feature and system decomposition.

Create an architectural runway.

Use matrix teams and architecture.

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Align feature and system decomposition

Dependencies between
stories & supporting
architectural elements

Understanding the dependencies between
stories and architectural elements enables
staged implementation of technical
infrastructure in support of achieving
stakeholder value.

Dependencies among
architectural elements

Low-dependency architectures are a critical
enabler for scaling up Agile development.1

Dependencies among
stories

High-value stories may require the
implementation of lower value stories as
precursors.2

1. Poppendieck, M., and Poppendieck, T. Leading Lean Software Development. Addison-Wesley
Professional, 2009.

2. Denne, M., and Cleland-Huang, J. Software by Numbers. Prentice Hall, 2003.

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Tension between high-priority features (vertical decomposition)
and common reusable services (horizontal decomposition)

Applications

Services

Drivers

Horizontal decomposition
(e.g., layers)

Infrastructure-driven
approach

Fe
at

ur
e

1

Fe
at

ur
e

2

Fe
at

ur
e

3

Vertical decomposition
(e.g., subsystems, features)

Feature-driven
approach

Services

Drivers

Hybrid approach

Fe
at

ur
e

1

Fe
at

ur
e

2

Fe
at

ur
e

3

Align feature and system decomposition

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Align feature and system decomposition
Two examples

Decouple teams and architecture to ensure parallel
progress as the number of teams increases.

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Presentation Layer

Domain Layer

Data Access Layer
API

API
Common Services

Feature

Common Services

Feature

Common Services

Feature

Layered architecture with frameworks Layered architecture with plug-ins

Plug-in Interfaces

Plug-in Interfaces

Plug-in Interfaces

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Create an architectural runway

The architectural runway provides the degree of
architectural stability to support the next n
iterations of development.

In a Scrum project environment, the architectural
runway may be established during Sprint 0.

• Sprint 0 might have a longer duration than the
rest of the sprints.

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Create an architectural runway

Leffingwell, D. Scaling Software Agility. Addison-Wesley, 2007.
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team

The bigger the system, the longer the runway.
Leffingwell, Martens, Zamora

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Use matrix teams and architecture

Establishing the infrastructure

Presentation Layer

Common Service

Common Service

Common Service

API

APIData Access Layer

Domain Layer

Scrum
Team A

Scrum
Team B

Scrum
Team C

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Use matrix teams and architecture

Feature development in parallel

Presentation Layer

APIDomain Layer

APIData Access Layer

Common
Services

Common
Services

Common
Services

Fe
at

ur
e

1

Fe
at

ur
e

1

Fe
at

ur
e

1

Scrum
Team A

Scrum
Team B

Scrum
Team C

Team member with feature responsibility

Scrum of
Scrums

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Use matrix teams and architecture

Different teams are
assigned to different
features, and some
team members are
assigned to keep
layers and framework
consistent.

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Scrum
Team A

Scrum
Team B

Scrum of
Scrums

Team member with layer responsibility

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Use matrix teams and architecture

Different teams are
assigned to different
features, and a temporary
team is assigned to
prepare layers and
frameworks for future
feature teams.

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Scrum
Team A

Scrum
Team B

Temporary
sprint team

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Example 1: Inability to manage scope and time
Symptom

• Scrum teams spend almost all of their time fixing defects, and
new feature development is continuously slipping.

Root-cause
• Initial focus was “general” rather than “product specific.”

— Time pressure to deliver became the top priority.

— The team delivered an immature product.

— A plethora of variation parameters interact detrimentally.

• There are three different cycles:

1. Customer release (annually, many variants)

2. IV&V Testing (quarterly, 4 variants)

3. Developmental (monthly, 1 variant)

1/14/2013
26

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Solution
Stabilize the architecture.

• Build an architecture for current products.

— Rules, guidelines

— Over a few time boxes

• Reduce the number of “variant parameterizations.”

• Make everyone play from the same sheet music.

• Postpone adding new features.

Re-plan the release cycles/time boxes.

Revisit the testing strategy/team assignments against variants.

1/14/2013
27

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Example 2: Inability to manage teams and scope
Symptom

• Integration of products built by different Scrum teams reveals
that incompatibility defects cause many failure conditions and
lead to significant out-of-cycle rework.

Root cause
Cross-team coordination is poor, even though there are many
coordination points and much time spent.

• Different teams have different interpretations of interfaces.

• The product owner on each Scrum team does not see the
big picture.

• A mismatch exists between the architecture and Scrum
development.

1/14/2013

28

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Solution

Stabilize to remove failures.

• Postpone adding new features.

Identify and collapse common services across teams.

Use an architectural runway.

• A system that has an architectural runway contains
existing or planned infrastructure sufficient to allow
incorporation of current and near-term anticipated
requirements without excessive refactoring.

• An architectural runway is represented by infrastructure
initiatives that have the same level of importance as the
larger scale requirements epics that drive the company’s
vision forward.

1/14/2013

29

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Final thoughts

Systematic root-cause analysis is essential for understanding risks arising
in large-scale software development.

Embracing the principles of both Agile software development and software
architecture provide improved visibility of project status and better tactics
for risk management.

• Align feature and system decomposition.

• Create an architectural runway.

• Use matrix teams and architecture.

Architecting is an ongoing activity throughout the software development
life cycle regardless of choice of process.

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

References
Ambler, S. The Agile Scaling Model (ASM): Adapting Agile Methods for Complex Environments. IBM

developerWorks, 2009.

Bachmann, F., Nord, R. L., Ozkaya, I. Architectural Tactics to Support Rapid and Agile Stability.
Crosstalk May/June 2012:

Brown, N., Nord, R., and Ozkaya, I. Enabling Agility Through Architecture. Crosstalk Nov./Dec. 2010:
12−17.

Denne, M., and Cleland-Huang, J. Software by Numbers, Prentice Hall, 2003.

Kruchten, P., Nord, R. L., Ozkaya, I.: Technical Debt: From Metaphor to Theory and Practice. IEEE
Software 29(6): 18-21 (2012)

Kruchten, P. “What Color Is Your Backlog?” Agile Vancouver talk, 2009.
http://files.me.com/philippe.kruchten/vuldw4

Larman, C., and Voddle, B. Scaling Lean & Agile Development. Addison-Wesley, 2009.

Leffingwell, D. Scaling Software Agility. Addison-Wesley, 2007.

Nord, R.L., Ozkaya, I., Sangwan, R. S. Making Architecture Visible to Improve Flow Management in
Lean Software Development. IEEE Software 29(5): 33-39 (2012)

Poppendieck, M., and Poppendieck, T. Leading Lean Software Development. Addison-Wesley
Professional, 2009.

http://files.me.com/philippe.kruchten/vuldw4

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Contact Information

Ipek Ozkaya
Senior Member of the Technical Staff
Research, Technology, and System Solutions Program
Architecture Practices Initiative
Email: ozkaya@sei.cmu.edu

Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

mailto:ozkaya@sei.cmu.edu

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

Copyright 2013 Carnegie Mellon University.

This material is based upon work supported by the Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY
THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other external and/or commercial
use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
*These restrictions do not apply to U.S. government entities.

mailto:permission@sei.cmu.edu

 Architecting in a Complex World
 Twitter #SEIVirtualEvent
© 2013 Carnegie Mellon University

http://www.sei.cmu.edu/training/elearning

	Slide Number 1
	Agenda
	Are we asking the right question?
	Slide Number 4
	Polling question
	Symptoms of failure
	A closer look at scale: Scope
	A closer look at scale: Team
	A closer look at scale: Time
	Polling question
	Root-cause analysis
	Root-cause analysis
	Root-cause analysis
	Root-cause analysis
	Root-cause analysis
	Tactics to consider
	Align feature and system decomposition
	�
	Align feature and system decomposition �Two examples
	Create an architectural runway
	Create an architectural runway
	Use matrix teams and architecture
	Use matrix teams and architecture
	Use matrix teams and architecture
	Use matrix teams and architecture
	Example 1: Inability to manage scope and time
	Solution
	Example 2: Inability to manage teams and scope
	Solution
	Final thoughts
	References
	Contact Information
	Slide Number 33
	Slide Number 34

