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Today’s Speaker 

 
Grace Lewis 
Senior member of Technical staff 
Software Engineering Institute 

Grace Lewis has over 20 years of professional software development experience, 

mainly in industry. Her main areas of expertise include service-oriented architecture 

(SOA), cloud computing and mobile applications. 

Before joining the SEI, Lewis was Chief of Systems Development for  

Icesi University, where she served as project manager and technical lead for the 

university-wide administrative systems. Other work experience includes Design  

and Development Engineer for the Electronics Division of Carvajal S.A. where she 

developed software for communication between PCs and electronic devices; 

developed embedded software on the microcontroller that was used on the devices; 

and provided technical assistance to sales personnel during on-site visits to potential 

and actual clients.  
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Architecture and Design of Service-
Oriented Systems: Goals 

Present and discuss  

• Basic concepts related to software architecture design 

• Impact of service orientation on system qualities 

• SOA infrastructure design considerations 

• Decomposition of an Enterprise Service Bus (ESB) into patterns and tactics 

as an example of SOA infrastructure 

• Principles of service design 

   

Provide a starting point for using quality attribute requirements to design 

infrastructure and services for service-oriented systems 
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Review Part 1 

A software architecture is the earliest life-cycle artifact that embodies 

significant design decisions: choices and tradeoffs 

Design decisions are made in the context of the architecturally 

significant requirements 

Architectural design patterns are typically chosen to promote one or two 

qualities that are important to an organization 

Service-orientation promotes interoperability and modifiability at the 

expense of performance 

Service-orientation is a starting point that is often augmented by other 

patterns and tactics to create a complete architectural solution 
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Integration Approach 

There are multiple approaches for integration of service consumers and 

service providers, e.g. 

• Point-to-point 

• Hub-and-spoke 

• ESB (Enterprise Service Bus)* 

 

 

 

 

 

*  NOTE: Some ESB vendors contend that ESB is not hub-and-spoke. However, ESB is a logical hub-and-spoke topology where 
components may be distributed to eliminate performance bottleneck or single-point-of-failure (SPOF). 
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ESB vs. Point-to-Point 

Source: Bianco et al. Evaluating a Service-Oriented Architecture. Software Engineering Institute.  
http://www.sei.cmu.edu/reports/07tr015.pdf (2007) 
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Point-to-Point 

Services are directly connected to service consumers 

Each service consumer must adapt to comply with all connected service 

interfaces 

• Interface technology (e.g. asynchronous vs. synchronous, SOAP vs. REST, 

versioning) 

• Business service interface (e.g. call interface including arguments, semantics, 

exceptions, versioning) 

• Security (authentication, authorization and privacy) 

Point-to-point is most acceptable in environments that are 

• Small in number of services and consumers 

• Homogenous in technology 

• Have low pace of change (business and technology) 
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ESB 1 

Services connect to a common backbone using Web services or other 

standards or adapters  

ESBs manage 

• Interface compatibility (technology/service interface and “schema”) 

• Service routing 

– Based on content, availability, load or other rules  

– May be dynamically determined 

– May be one-to-many or aggregate from many-to-one 

• Data transformations (format and business semantics) 

ESBs are most acceptable in environments that 

• Are technologically diverse 

• Rapidly changing 

• Large 
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ESB 2 

Tends to promote a greater degree of loose coupling / independence of 

connected systems 

Advanced tools and techniques are provided for development and 

management 

Specialized development, maintenance and management resources are 

required 
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Bottom Line 

There is a debate often fueled by vendors with vested interest over 

whether to 

• directly integrate applications, or  

• use an ESB strategy 

 

There is no single right answer 

 

Most organizations have some of each 
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Point-to-Point vs. ESB Tradeoffs 1 

Point-to-Point ESB 

Modifiability 

L Changes to a service induce 

change to all service 

consumers 

J Service consumers and 

providers may change 

independent of each other. 

Compatibility is managed 

within the ESB for certain 

changes 

Performance 

J Tends to perform better (no 

transformation and routing 

layers) 

L Additional layers affect 

performance 

Security 

L Authentication and 

authorization between 

services and consumers must 

be managed on a case-by-

case basis 

J Allows central management of 

security for each service 
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Point to Point vs. ESB Tradeoffs 2 

Point-to-Point ESB 

Serviceability 

L Problem determination is 

spread across services— 

there is no central point to 

manage connectivity 

J  Centralized service interface 

management provides 

opportunity to centrally log/audit 

interactions 

Reliability 

L  Strong coupling between 

consumers and services 

may result in complex 

failure modes and 

unintended dependencies 

L Additional components add 

complexity and introduce failure 

modes 

J Loosely-coupled approach 

improves overall reliability 

Interoperability 

L Consumer and service 

need to both support 

agreed-upon message 

protocols and data formats 

J  ESBs are designed to support 

diverse connection mechanisms 
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Enterprise Service Bus (ESB) 1 

There is no consensus on what constitutes an ESB, although there is a 

wide agreement on many of the responsibilities 

• Some consider ESB a product: “middleware product that connects and 

mediates all communications and interactions between service consumers 

and services, usually based on standards*”  

• Some do not consider ESB a product, but rather a pattern for which there are 

multiple vendor and open source implementations — or you could implement 

your own 

 

In practice, it is common to start from a vendor or open source 

implementation and then to add extensions or customizations to meet 

business needs 

* Source: Wikipedia 
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Enterprise Service Bus (ESB) 2 

Business goals for using an ESB 

• Reuse of IT assets 

• Agility for adding, changing and removing business partners 

• Realignment of responsibilities through business reorganizations 

• Integration with legacy systems 

 

From a general perspective, an ESB is designed to reduce the 

complexity of connecting services with their consumers 

 

From a technical perspective, an ESB is a complex integration pattern 

that can be broken down into several less complex supporting patterns 

and tactics 

• These tactics and patterns have known influence on quality attributes 
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Enterprise Service Bus (ESB) 3 

How do ESBs work? The VETRO Pattern 

Source: Dave Chappell, "Enterprise Service Bus" (O’Reilly: June 2004, ISBN 0-596-00675-6) 
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ESB Patterns: Broker 1 

The Broker architectural pattern is responsible for translating protocols  

and data format* 

 

Supports the interoperability driver 

 

Architectural Tactics 

• Abstract common services (modifiability) 

• Adherence to defined protocols (interoperability, modifiability, developer 

usability)  

• Use of an intermediary (modifiability) 

• Restricted communication paths (modifiability) 

 

 

 

 

 

 

 

* Source: Thomas Erl. SOA Design Patterns. 2009 
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ESB Patterns: Broker 2 
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ESB Patterns: Routing 1 

The Routing architectural pattern is responsible for using runtime factors 

(current logical conditions, business rules or utilization) to route 

messages and to allow dynamic composition of services*  

 

Supports the scalability driver 

 

Architectural Tactics 

• Abstract common services (modifiability) 

• Load balancing (performance, scalability)  

• Runtime binding (modifiability) 

• Component replacement (modifiability) 

* Source: Thomas Erl. SOA Design Patterns. 2009 
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ESB Patterns: Routing 2 
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ESB Patterns: Asynchronous Queue 1 

The Asynchronous Queue architectural pattern provides an intermediate 

buffer that allows service providers and consumers to be temporally 

decoupled*  

 

Supports the reliability driver 

 

Architectural Tactics 

• Adherence to standard protocols (modifiability, interoperability and developer 

usability) 

• Increase available resources (performance)  

* Source: Thomas Erl. SOA Design Patterns. 2009 
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ESB Patterns: Metadata Centralization 1 

The Metadata Centralization architectural pattern provides a registry for 

service metadata to be formally published or registered to allow for 

service discovery by developers of service consumers 

 

Architectural Tactics 

• Adherence to standard protocols (modifiability, interoperability and developer 

usability) 

• Use of an intermediary (modifiability)  

• Maintain existing interface (modifiability) 

* Source: Thomas Erl. SOA Design Patterns. 2009 
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ESB Patterns: Metadata Centralization 2 
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ESB Patterns: Metadata Centralization 3 

Service Consumer/Developer Perspective 

Service Registry

ESB

Service

Metadata

Key

Component Call and ReturnEnd point

Service 

Discovery 

Front-End

Database

Service 

C

Service 

D

Service 

Discovery 

Engine

ODBC/JBDC

Hub

Reference

Service 

Consumer

Query

Service 

Metadata

Service Consumer 

Developer queries the 

Service Registry at 

design time 

Service 

Consumer 

Developer 

writes code 

to invoke 

discovered 

services 

Services are 

invoked by 

Service 

Consumer at 

runtime 



28 

Architecture and Design of  

Service-Oriented Systems - Part 2 

© 2013 Carnegie Mellon University 

Summary 

An ESB can be broken down into several supporting tactics and patterns 

 

These patterns and tactics have a known influence on software quality 

attribute scenario response measures  
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Principles of Service Design* 

Standardized Service Contracts  

Loose Coupling 

Discoverability 

Reusability 

Autonomy 

Statelessness  

Composability 

Abstraction 

 

Main Question: How to determine what type of functionality makes a 

good service? 

 

 

 

* Source: Thomas Erl. SOA Design Patterns. 2009 
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Service Identification: The Strategic Perspective 

Two common approaches 

• Top-Down: starting with business process inventory 

– Business processes to support business goals are identified. 

– Shared steps between business processes are identified as service 

candidates. 

• Bottom-Up: starting with legacy system inventory 

– Systems with capabilities to support business goals are identified as 

migration candidates. 

– Key capabilities are identified as service candidates. 

 

In practice it is usually a combination of both 

• Service prioritization is done based on relationship to business goals for SOA 

adoption 
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Service Identification: The Technical 
Perspective 

Common criteria for service selection 

• Strategic reuse 

• Functionality or data that is private and requires access control 

• Functionality that needs to be highly reliable and/or highly available 

• Functionality that needs to be run concurrently   

• Functionality that will be accessed often (scalability) 

 

In practice, a combination of the strategic and technical perspectives will 

lead to a good service portfolio 

• Service prioritization should be done based on relationship to business and 

technical goals for SOA adoption 
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Service Design 

Creating service layers responsible for abstracting logic based on 

functional type can improve reuse and promote agility  

• Layers that represent generic logic (not related to functional context) 

• Layers that represent single-purpose logic (related to functional context) 

 

Three typical service layers are 

• Utility 

• Entity or data 

• Process or task 
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Utility Service Layer 

Provides reusable utilities services for use by other services in the 

inventory 

 

Goal is to maintain strict separation of utility-based functions and 

specific business functionality to avoid replication of the utility-based 

functions across the service inventory 

 

Examples of utility services 

• Notifications 

• Logging 

• Auditing 

• Authentication 

• Data transformation 
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Entity or Data Service Layer 

Provides services associated with the processing of business entities 

Goal is to maintain strict separation of entity-based functions and 

specific business functionality because business entities are generally 

more stable 

• Businesses processes change whenever organizations change the way they 

do business, but the entities that are operated on change less frequently  

Entity services are derived from a logical or enterprise data model 

• Granularity is not always determined by the underlying data model 

– Some services may operate on multiple entities and some entities may be 

operated on by more than one service  

Examples of entity services 
• Employee 

• Customer 

• Sales Order 
• Invoice 
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Process or Task Layer 

Usually created after the entity and utility services have been defined 

• A process service will typically be a composition of business logic plus 

invocation of entity, utility and process services 

 

Separating the process layer from the other layers promotes service 

inventory agility for business process changes 

• Separating the task-specific functionality from the task-agnostic utilities 

reduces redundant implementation of the utilities 

• The goal is to change only the process-layer internal logic and recompose 

with the other layers 

• Separating the business entities from the specific tasks reduces governance 

challenges 

– The business entity expertise and the business process expertise often 
reside in different groups 
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Summary 

The design of individual services has a huge impact on overall system 

quality 

• Stateless services can be replicated to promote scalability 

• Services that are discoverable potentially allow for runtime binding 

(modifiability)   

• Services that use a standardized service contract  promote interoperability 

Defining services requires careful consideration 

• Is the functionality useful in other contexts? 

• Constraints may eliminate certain candidates, e.g. regulations, technology 

availability 

Logically grouping services into layers can reduce the complexity of 

compositions and promote reuse 

• Utility, entity or data, and process or task layers are a good place to start 
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Summary 

Quality attributes have the strongest influence on architectural design 

decisions 

• Quality attributes requirements can be captured  as scenarios 

 

SOA is a design pattern that promotes interoperability and modifiability 

• SOA is not a complete architecture 

• It is often combined with other patterns and tactics 

 

There are many ways to design service-oriented systems 

• A service-oriented design can be as simple as a small set of services that are 

integrated point-to-point 

• A service-oriented design can include a complex infrastructure that helps 

enterprises manage rapidly evolving business processes in more agile ways 
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As projects continue to grow in scale and complexity, effective collaboration across geographical, cultural, and technical boundaries is 

increasingly prevalent and essential to system success. SATURN 2012 will explore the theme of “Architecture: Catalyst for Collaboration.” 

www.sei.cmu.edu/saturn/2013 
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