
Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

The layout of your screen is completely customizable by you

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Today’s Speaker

Grace Lewis
Senior member of Technical staff
Software Engineering Institute
Grace Lewis has over 20 years of professional software development experience,
mainly in industry. Her main areas of expertise include service-oriented architecture
(SOA), cloud computing and mobile applications.

Before joining the SEI, Lewis was Chief of Systems Development for
Icesi University, where she served as project manager and technical lead for the
university-wide administrative systems. Other work experience includes Design
and Development Engineer for the Electronics Division of Carvajal S.A. where she
developed software for communication between PCs and electronic devices;
developed embedded software on the microcontroller that was used on the devices;
and provided technical assistance to sales personnel during on-site visits to potential
and actual clients.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Architecture and Design of Service-
Oriented Systems: Goals
Present and discuss
•  Basic concepts related to software architecture design
•  Impact of service orientation on system qualities
•  SOA infrastructure design considerations
•  Decomposition of an Enterprise Service Bus (ESB) into patterns and tactics

as an example of SOA infrastructure
•  Principles of service design

Provide a starting point for using quality attribute requirements to design
infrastructure and services for service-oriented systems

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Tutorial Agenda

Part 1
•  Service-Oriented Architecture: Review of Terminology
•  Architecture-Centric Design Fundamentals
•  Impact of the SOA Architectural Pattern on System Quality

Part 2
•  SOA Infrastructure Design Considerations
•  Service Design Considerations

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Agenda

Service-Oriented Architecture: Review of Terminology
Architecture-Centric Design Fundamentals
Impact of the SOA Architectural Pattern on System Quality

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

What is SOA?

Service-oriented architecture is a way of designing, developing,
deploying and managing systems, in which
•  Services provide reusable business functionality via well-defined interfaces.
•  Service consumers are built using functionality from available services.
•  There is a clear separation between service interface and service

implementation.
– Service interface is just as important as service implementation.

•  An SOA infrastructure enables discovery, composition, and invocation of
services.

•  Protocols are predominantly, but not exclusively, message-based document
exchanges.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Services
Services are reusable components that
represent business/operational tasks.
•  Customer lookup
•  Credit card validation
•  Weather
•  Hotel reservation

Services can be
•  Globally distributed across organizations
•  Reconfigured into new business processes

Service interface definitions are well-
defined artifacts available in some form
of service registry.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

SOA Infrastructure

Set of technologies that bind service consumers to services

•  Products, standards and protocols that support communication—typically

message-based document exchanges
– Web Services (WS*: HTTP, SOAP, WSDL; REST)
– Message-oriented middleware (i.e. IBM Websphere MQ)
– Publish/subscribe (i.e. Java Messaging Service — JMS)
– CORBA …

•  Infrastructure services available to service providers and/or service
consumers to perform common tasks or satisfy QoS requirements of the
environment
– Security, discovery, data transformation, …

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Service Consumers

Clients for the functionality provided by the services
•  End-user applications
•  Internal systems
•  External systems
•  Composite services

Consumers programmatically bind to services.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Components of a Service-Oriented System

End User
Application

Service
A

SOA Infrastructure

Enterprise
Information System

Portal

Internet

External
System

Service
B

Service
C

Service
D

Internal Users

Discovery Security

Legacy or New
Service Code

Internal
System

Service
Consumers

Infrastructure

Service
Implementation

Service Interfaces

External
Consumer

Data
Transformation

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Benefits Associated with SOA Adoption

Cost-Efficiency
•  Services provide functionality that can be reused many times by many

consumers
•  Services become a single point of maintenance and management for

common functionality
Agility
•  Via service discovery mechanisms, developers can find and take advantage

of existing services to reduce development times
Legacy Leverage
•  Separation of service interface from service implementation provides true

platform independence
Adaptability
•  Separation of service interface from service implementation allows for

incremental deployment of services and incremental modernization

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Agenda

Service-Oriented Architecture: Review of Terminology
Architecture-Centric Design Fundamentals
Impact of the SOA Architectural Pattern on System Quality

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Software Architecture

The current literature on software architecture offers many definitions

The definition we use in this course is
 The software architecture of a system is the set of structures
needed to reason about the system, which comprise software
elements, relations among them, and properties of both*

Why create a software architecture?
•  Because a system’s quality attributes can be predicted by studying its

architecture

* Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Third Edition. Boston, MA: Addison-Wesley, 2013.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Architecture-Centric Design

An architecture-centric approach to service-oriented systems design builds on a
set of fundamental concepts
•  Business Goals
–  Every system is built to satisfy business goals
–  Business goals determine a system’s quality attribute requirements

•  Software Quality
–  Degree to which software possesses a desired combination of attributes*
–  Examples of attributes are reliability, interoperability, performance

•  Quality Attributes
–  Quality attribute requirements exert the strongest influence on architectural design
–  Quality attribute requirements can be expressed in terms of scenarios

•  Architectural Tactics
–  Architectural tactics are an enumeration of techniques that architects use to achieve

particular quality attribute responses
–  Tactics form the building blocks for architectural patterns

* IEEE Definition

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Sample Quality Attributes

Accessibility
Accountability
Adaptability
Administrability
Affordability
Agility
Auditability
Availability
Credibility
Compliant
Composability
Configurability
Customizability
Degradability
Demonstrability

Dependability
Deployability
Distributability
Durability
Evolvability
Extensibility
Flexibility
Installability
Interchangeability
Interoperability
Learnability
Maintainability
Manageability
Mobility
Modularity

Nomadicity
Operability
Performance
Portability
Predictability
Recoverability
Relevance
Reliability
Repeatability
Reproducibility
Reusability
Safety
Scalability
Seamlessness
Security

Serviceability
Simplicity
Stability
Survivability
Sustainability
Tailorability
Testability
Timeliness
Understandability
Usability

What does
each one of
these mean?

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Quality Attribute Scenarios

A fully-specified quality attribute scenario consists of six parts
•  Stimulus: condition effecting the system
•  Response: activity as a result of the stimulus
•  Source of Stimulus: entity that generated the stimulus
•  Environment: condition under which the stimulus occurred
•  Artifact stimulated: artifact that was stimulated
•  Response measure: measure by which the system’s response will be

evaluated

Quality attribute scenarios should be as specific as possible
•  A good scenario makes very clear what the stimulus is and what the desired

responses of the system are, in order to avoid ambiguity

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Example Availability Scenario

An unanticipated external message is received by a process during
normal operation. The process informs the operator of the receipt of the
message and the system continues to operate with no down time.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Architectural Patterns

Software patterns that describe solutions known to promote particular
quality attribute responses
•  Also known as architectural styles

An architectural pattern is often composed of multiple architectural
tactics
 Architectural Pattern Subset of Tactics

Layers •  Restriction of communication paths
•  Semantic coherence
•  Abstract common services

Event Based •  Runtime registration
•  Use of an intermediary

Service Orientation •  Information hiding
•  Restriction of communication paths
•  Adherence to defined protocols

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Tradeoff

Design decision that has a positive influence on one or more quality
attribute responses and has a negative influence on other quality
attribute responses
Example
•  A design decision is made to increase the bit level of encryption to promote

security (confidentiality) which in turn has a negative impact on performance
(latency)

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Categories of Design Decisions

The Coordination Model

The Data Model

Allocation of Functionality

Management of Runtime Resources

Binding Time of the Decisions in the Other Categories

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Category 1: The Coordination Model

What are the communication mechanisms between the system and
external entities?

What are the inter‑element communication mechanisms and what are
their properties (e.g., synchronous, asynchronous, hybrid coupling)?

What are the intra‑element communication mechanisms?

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Category 2: The Data Model

What is the structure—entities and relations, entity attributes—in the
data model?

Which portions of the data model are used by which software elements
in which order?

What are the access rules for the data items?

Where are data items created, modified, and destroyed?

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Category 3: Allocation of Functionality

What are the major processing steps necessary to carry out the work of
the system?

What is the division and assignment of functionality to software
elements?

What are the key abstractions that can be used to provide the services
of the system?

Are the elements stateful or stateless?

What are the activation and deactivation dependencies among software
elements?

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Category 4: Management of Runtime Resources

What scheduling strategies will be employed?

How much do system elements know about time?

What process/thread models will be employed?

What resources must be managed and what are their limits?

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Category 5: Binding Time Decisions

The decisions made to resolve the questions on the previous slides can
be bound at a variety of times
•  design time (built in)
•  compile time (e.g., compiler switches)
•  build time (e.g., replace modules, pick from library)
•  load time (e.g., dynamic link libraries [DLLs])
•  initialization time (e.g., resource files)
•  runtime (e.g., load balancing)

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Summary

A software architecture is the earliest life-cycle artifact that embodies
significant design decisions: choices and tradeoffs

Design decisions are made in the context of the architecturally
significant requirements
•  Consider the impact on the architecturally significant requirements
•  Identify patterns and tactics that support the architecturally significant

requirements

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Agenda

Service-Oriented Architecture: Review of Terminology
Architecture-Centric Design Fundamentals
Impact of the SOA Architectural Pattern on System Quality

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

SOA is NOT a Specific Technology

SOA is an architectural pattern
•  Systems that implement the SOA architectural pattern are called service-

oriented systems
Web Services is one technology for SOA implementation

SOA

WS* Web
Services CORBA

REST
Services
and POX

Key

Class Realization Aggregation

WSDL SOAP ... IDL IIOP ...

...

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Quality Attributes in Service-Oriented Systems

The following slides are examples of common quality attribute
scenarios for service-oriented systems, plus an analysis of how the
SOA architectural pattern affects those qualities

The legend to indicate the effect is

The quality is positively affected

The quality is a challenge

It depends …

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Interoperability

Interoperability is about the degree to which two or more systems can
usefully exchange meaningful information via interfaces in a particular
context*

* Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Second Edition. Boston, MA: Addison-Wesley, 2013.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Sample Interoperability Scenarios

Scenario I1: Service Consumer Integrates Service
A new business partner that uses platform ‘X’ is able to implement a
service consumer module that works with our available services in
platform ‘Y’ in two person-days.

Scenario I2: Legacy System Functionality Exposed as a Service
A transaction in a legacy system running on platform ‘X’ is made
available as a Web service to an enterprise application that is being
developed for platform ‘Y’ using Web services technology. The wrapping
of the legacy transaction as a service with proper security verification,
transaction management, and exception handling is done in 10 person-
days.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Comments on Interoperability

Improved interoperability is a prominent benefit of SOA, especially when
Web Services technology is considered
•  Consumers and providers can easily use and provide services implemented

in disparate platforms and different languages
Web Services cross-vendor and cross-platform interoperability
•  Mature when basic standards are used: WSDL and SOAP
•  Falls short when new standards are in the picture (e.g., WS-Security, WS-

Transaction)
WS-I organization was created to promote interoperability (ws-i.org)
•  The goal of WS-I profiles is to provide clarifications, refinements,

interpretations and amplifications in areas of specific standards that are
subject to multiple interpretations

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Performance

Performance is about time and a software system’s ability to meet timing
requirements*
•  How long does it take a system to respond when an event occurs?
–  Interrupts
– Messages
– Requests from users or other systems
– Passage of time

Typical response measures
•  Latency
•  Deadline
•  Throughput
•  Jitter
•  Miss rate
•  Data loss

* Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Second Edition. Boston, MA: Addison-Wesley, 2013.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Sample Performance Scenarios

Scenario P1: Simultaneous Service Requests (Throughput)
The service provider can process up to ‘X’ simultaneous requests during
normal operation, keeping the response time on the server less than ‘Y’
seconds.

Scenario P2: Service Request Roundtrip Time
The roundtrip time for a request from a service consumer in the local
network to service ‘X’ during normal operation is less than ‘Y’ seconds.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Comments on Performance

Performance in a service-oriented context usually relates to response
time or throughput and in most cases is negatively affected
•  SOA is a distributed computing paradigm; the network increases response

time
•  Cross-platform interoperability requires intermediaries to do data marshalling

and handle communication

In Web Services, use of XML impacts performance
•  Studies show that XML messages can be 10 to 20 times larger than binary

messages
•  XML requires three CPU- and memory-intensive activities
– Validation
– Parsing
– Transformation

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Availability and Reliability
Availability is about minimizing service outage time by mitigating faults*
Typical response measures
•  Time interval when the system must be available
•  Availability time
•  Time interval in which the system can be in degraded mode
•  Repair time

Reliability is the degree to which a system, product, or component
performs specified functions under specified conditions for a specified
period of time**
Typical response measures
•  Mean time between failures
•  Time interval for failure detection
•  Recovery time
•  Resource state after recovery
* Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Second Edition. Boston, MA: Addison-Wesley, 2013.
** * ISO/IEC FCD 25010: Systems and Software Engineering—Systems and software product Quality Requirements and
Evaluation (SQuaRE)—System and software quality models

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Sample Availability and
Reliability Scenarios
Scenario A1: Operation after Incorrect Input
An improperly formatted message is received by a system during normal
operation. The system records the message and continues to operate
normally without any downtime.

Scenario A2: Degraded Operation during Maintenance
Unscheduled server maintenance is required on server ‘X.’ The system
remains operational in degraded mode for the duration of the
maintenance.
Scenario R1: Failure Detection
A service becomes unavailable during normal operation. The system
detects the problem and restores the service within two minutes.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Comments on Availability

SOA solutions usually rely on mechanisms provided by the execution
platform or infrastructure
•  Fault detection: monitor, heartbeat, timestamps, etc.
•  Fault recovery: redundancy, degradation, reconfiguration, etc.
•  Fault prevention: deactivation, transactions, etc.

SLAs for services typically define availability requirements as an Annual
Uptime Percentage

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Comments on Reliability

There are two types of reliability discussed in service-oriented systems
•  Message reliability
– Messages should be delivered in order and exactly once
– This is usually a concern of the SOA execution platform, not the service

developer
– Available standards: WS-Reliability and WS-ReliableMessaging
– WS-I has a Reliable Secure Profile that covers WS-ReliableMessaging

•  Service reliability
– Goal is for the service to operate without failure or to report any failure
– Typically service have a heartbeat method to ensure service reliability

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Scalability

There are two kinds of scalability
•  Horizontal (scaling out): adding more resources to logical units
•  Vertical (scaling up): adding more resources to a physical unit

Typical response measures
•  Difference in quality of service measures
•  Time interval in which the system can be in degraded mode
•  Time interval for additional resources to become online/offline
•  Amount of human intervention

* Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Second Edition. Boston, MA: Addison-Wesley, 2013.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Sample Scalability Scenarios

Scenario S1: Process Higher Volumes
Marketing landed several new high-volume accounts that will increase
service request volume by a factor of 10. During normal operation, the
service requests are processed without affecting the current quality of
service.

Scenario S2: Process According to SLAs
Marketing landed several new high-volume accounts that will increase
service request volume by a factor of 10. During normal operation, the
service requests are processed according to the Service-Level
Agreements negotiated with each account.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Comments on Scalability

Similar to availability and reliability, SOA solutions usually rely on
mechanisms provided by the execution platform or infrastructure
In addition to horizontal and vertical scaling, a scalability tactic is service
scope: configure when a new instance of a service should be created
•  Once to serve all requests
•  For each new service consumer
•  For each new request

Another tactic is to design services to be stateless
•  To enable replication and load-balancing

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Security

Security is a measure of the system’s ability to protect data and
information from unauthorized access while still providing access to
people and systems that are authorized*
Typical response measures
•  Time/effort/resources to circumvent security measures with probability of

success
•  Probability of detecting attack
•  Probability of identifying individual responsible for attack or access/

modification of data and/or services
•  Percentage of services still available under denial-of-service attacks
•  Restore data/services
•  Extent to which data/services damaged and/or legitimate access denied

* Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Second Edition. Boston, MA: Addison-Wesley, 2013.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Sample Security Scenarios
Scenario 1: Leak of Sensitive Data
An attack is launched attempting to access confidential customer data.
The attacker is not able to break the encryption used in all the hops of
the communication and where the data is persisted. The system logs the
event and notifies the system administrators.

Scenario 2: Identification of Third-Party Service Provider
A request needs to be sent to a third-party service provider, but the
provider’s identity cannot be validated. The system does not make the
service request and logs all relevant information. The third party is
notified as well as with the system administrator.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Comments on Security

Some aspects of SOA solutions impact security
•  Messages may be transmitted in text format and contain sensitive metadata
•  If external services are used
–  Identity of service providers should be authenticated
– Data should be transmitted and stored securely

•  Data in the service registry should be reliable
•  Authorization of clients to access services has to be configured

Transport security is usually addressed at the network level (e.g., SSL)

There are tradeoffs with interoperability, modifiability and performance

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Modifiability

Modifiability is the ability to make changes to a system quickly and cost
effectively*
Typical response measures
•  Cost in terms of number of elements affected, effort, money
•  Extent to which this affects other functions or quality attributes

* Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Second Edition. Boston, MA: Addison-Wesley, 2013.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Sample Modifiability Scenarios

Scenario M1: Change in Service Implementation
A service provider changes the service implementation, but the syntax
and the semantics of the interface do not change. This change does not
affect the service users.

Scenario M2: Change in Service Interface
A service provider changes the interface of a service that is publicly
available. The old version of the service is maintained for 12 months,
and existing service users are not affected within that period.

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Modifiability

SOA promotes loose coupling between service consumers and
providers
•  Services are modular and self-contained
•  There are few well-known dependencies, therefore reducing the cost of

modifying the services
Changing published interfaces can be a challenge, but SOA solutions
deal with these changes through
•  Versioning mechanisms
•  Flexible contracts specified in XML
•  Special components in the infrastructure, such as the registry

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Summary

Architectural design patterns are typically chosen to promote one or two
qualities that are important to an organization

Service-orientation promotes interoperability and modifiability at the
expense of performance

Service-orientation is a starting point that is often augmented by other
patterns and tactics to create a complete architectural solution

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Join Us for Part 2!

SOA Infrastructure Design Considerations

Service Design Considerations

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

As projects continue to grow in scale and complexity, effective collaboration across geographical, cultural, and technical boundaries is
increasingly prevalent and essential to system success. SATURN 2012 will explore the theme of “Architecture: Catalyst for Collaboration.”

www.sei.cmu.edu/saturn/2013

Architecture and Design of
Service-Oriented Systems - Part 1
© 2013 Carnegie Mellon University

Copyright 2013 Carnegie Mellon University
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of Cost Recovery or the United States Department of Defense.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
This material has been approved for public release and unlimited distribution except as restricted below.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to
the copyright license under the clause at 252.227-7013 and 252.227-7013 Alternate I.
This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0000203

