
© 2012 Carnegie Mellon University

Source Code Analysis
Laboratory (SCALe)

Robert C. Seacord

Twitter: #SEIwebinar

How to interact with Us

Twitter: #SEIwebinar

Today’s Speaker
Robert C. Seacord is a computer security specialist and writer. He is the author
of books on computer security, legacy system modernization, and component-
based software engineering.

Robert manages the Secure Coding Initiative at CERT, located in Carnegie
Mellon's Software Engineering Institute in Pittsburgh, Pennsylvania. CERT,
among other security-related activities, regularly analyzes software vulnerability
reports and assesses the risk to the Internet and other critical infrastructure.
Robert is an adjunct professor in the Carnegie Mellon University School of
Computer Science and in the Information Networking Institute.

Robert started programming professionally for IBM in 1982, working in
communications and operating system software, processor development, and
software engineering. Robert also has worked at the X Consortium, where he
developed and maintained code for the Common Desktop Environment and the
X Window System. Robert has a bachelor's degree in computer science from
Rensselaer Polytechnic Institute.

Twitter: #SEIwebinar

Increasing Vulnerabilities

Reacting to vulnerabilities in
existing systems is not working

Twitter: #SEIwebinar

Application Security

Twitter: #SEIwebinar

Problem Description
Increasingly, compiler writers are taking advantage of
undefined behaviors in the C and C++ programming
languages to improve optimizations.
Frequently, these optimizations are interfering with
the ability of developers to perform cause-effect
analysis on their source code, that is, analyzing the
dependence of downstream results on prior results.
Consequently, these optimizations are eliminating
causality in software and are increasing the
probability of software faults, defects, and
vulnerabilities.

Twitter: #SEIwebinar

Undefined Behaviors
Behaviors are classified as “undefined” by the standards
committees to:

• give the implementer license not to catch certain program errors
that are difficult to diagnose;

• avoid defining obscure corner cases which would favor one
implementation strategy over another;

• identify areas of possible conforming language extension: the
implementer may augment the language by providing a definition
of the officially undefined behavior.

Implementations may
• ignore undefined behavior completely with unpredictable results
• behave in a documented manner characteristic of the environment

(with or without issuing a diagnostic)
• terminate a translation or execution (with issuing a diagnostic).

Twitter: #SEIwebinar

Compiler Optimizations
The basic design of an optimizer for a C compiler is largely
the same as an optimizer for any other procedural
programming language.
The fundamental principle of optimization is to replace a
computation with a more efficient method that computes the
same result.
However, some optimizations change behavior

• Eliminate undefined behaviors (good)
• Introduce vulnerabilities (bad)

Twitter: #SEIwebinar

“As If” Rule 1

The ANSI C standard specifies the results of computations
as if on an abstract machine, but the methods used by the
compiler are not specified.
In the abstract machine, all expressions are evaluated as
specified by the semantics.
An actual implementation need not evaluate part of an
expression if it can deduce that

• its value is not used
• that no needed side effects are produced (including any caused

by calling a function or accessing a volatile object).

The compiler’s optimizer is free to choose any method that
produces the correct result.

Twitter: #SEIwebinar

“As If” Rule 2

This clause gives compilers the leeway to remove
code deemed unused or unneeded when building
a program.
This is commonly called the “as if” rule, because the
program must run as if it were executing on the
abstract machine.
While this is usually beneficial, sometimes the
compiler removes code that it thinks is not needed,
even if the code has been added with security
in mind.

Twitter: #SEIwebinar

Implementation Strategies
Hardware behavior

• Generate the corresponding assembler code, and let the hardware
do whatever the hardware does.

• For many years, this was the nearly-universal policy, so several
generations of C and C++ programmers have assumed that all
compilers behave this way.

Super debug
• Provide an intensive debugging environment to trap (nearly) every

undefined behavior.
• This policy severely degrades the application’s performance, so is

seldom used for building applications.

Total license
• Treat any possible undefined behavior as a “can’t happen” condition.
• This permits aggressive optimizations.

Twitter: #SEIwebinar

Adding a Pointer and an Integer
The C Standard states:
When an expression that has integer type is added to
or subtracted from a pointer, the result has the type
of the pointer operand.
An expression like P[N] is translated into *(P+N).

Twitter: #SEIwebinar

Adding a Pointer and an Integer
If both the pointer operand and the result point to
elements of the same array object, or one past the
last element of the array object, the evaluation shall
not produce an overflow; otherwise, the behavior is
undefined.

If the result points one past the last element of the
array object, it shall not be used as the operand of
a unary * operator that is evaluated.

Twitter: #SEIwebinar

Bounds Checking 1

A programmer might code a bounds-check such as
 char *ptr; // ptr to start of array

 char *max; // ptr to end of array

 size_t len;

 if (ptr + len > max)

 return EINVAL;

No matter what model is used, there is a bug.
If len is very large, it can cause ptr + len to overflow,
which creates undefined behavior.
Under the hardware behavior model, the result would typically
wrap-around—pointing to an address that is actually lower in
memory than ptr.

Twitter: #SEIwebinar

Bounds Checking 2

In attempting to fix the bug, the experienced programmer (who
has internalized the hardware behavior model of undefined
behavior) might write a check like this:
 if (ptr + len < ptr || ptr + len > max)

 return EINVAL;

However, compilers that follow the total license model may
optimize out the first part of the check leaving the whole
bounds check defeated
This is allowed because

• if ptr plus (an unsigned) len compares less than ptr, then an
undefined behavior occurred during calculation of ptr + len

• the compiler can assume that undefined behavior never happens
• consequently ptr + len < ptr is dead code and can be removed

Twitter: #SEIwebinar

Algebraic Simplification
Optimizations may be performed for comparisons between
P + V1 and P + V2, where P is the same pointer and V1 and
V2 are variables of some integer type.
The total license model permits this to be reduced to a
comparison between V1 and V2.
However, if V1 or V2 are such that the sum with P overflows,
then the comparison of V1 and V2 will not yield the same
result as actually computing P + V1 and P + V2 and
comparing the sums.
Because of possible overflows, computer arithmetic does not
always obey the algebraic identities of mathematics.

Twitter: #SEIwebinar

Algebraic Simplification Applied
In our example:
 if (ptr + len < ptr || ptr + len > max)

 return EINVAL;
this optimization translates as follows:
 ptr + len < ptr

 ptr + len < ptr + 0

 len < 0 (impossible, len is unsigned)

Twitter: #SEIwebinar

Mitigation
This problem is easy to remediate, once it is called to
the attention of the programmer, such as by a
diagnostic message when dead code is eliminated.
For example, if it is known that ptr is less-or-equal-
to max, then the programmer could write:

 if (len > max – ptr)

 return EINVAL;

This conditional expression eliminates the possibility
of undefined behavior.

Twitter: #SEIwebinar

University courses
• CMU
• Stevens Institute
• Purdue
• University of Florida
• Santa Clara University
• St. John Fisher College

Adoption by Analyzer Tools
• LDRA
• Klocwork

Analyzer
conformance test

SCALe
Testbed

Secure Design
Patterns Influence International

Standard Bodies

Br
ea

dt
h

of
 im

pa
ct

2003 Time 2014

Adoption by software developers and
acquirers
• Cisco
• Raytheon
• NAVSEA
•Lockheed Martin Aeronautics
• General Atomics
•Qualcomm

WG14 C Secure Coding
Rules Study Group

Open & free online course
• USC, Matt Bishop
• Stevens, Sven Dietrich
• CMU

Secure Coding

•Thread role analysis
• Security-enhanced compiler

SEI Secure
Coding Course

Licensed to:
• Computer Associates
• Siemens

Twitter: #SEIwebinar

CERT Secure Coding Standards

 CERT C Secure Coding Standard
• Version 1.0 (C99) - published
• Version 2.0 (C11) - under development

 CERT C++ Secure Coding Standard
• Version 1.0 (C++ 11) under

development
CERT Oracle Secure Coding Standard
for Java

• Version 1.0 for Java SE 6 published
• Static analysis under development

The CERT Perl Secure Coding Standard
• Version 1.0 under development

Develop
Guidelines

Develop
checkers

Evaluate
checkers by
analyzing

source code

Twitter: #SEIwebinar

The CERT C Secure Coding Standard
Developed with community
involvement, including over
500 registered participants
on the wiki.
Version 1.0 published by
Addison-Wesley in
September, 2008.

• 134 Recommendations
• 89 Rules

Twitter: #SEIwebinar

Noncompliant Examples & Compliant Solutions

Noncompliant Code Example
In this noncompliant code example, the char pointer p is
initialized to the address of a string literal. Attempting to modify
the string literal results in undefined behavior.
 char *p = "string literal"; p[0] = 'S';

Compliant Solution
As an array initializer, a string literal specifies the initial values
of characters in an array as well as the size of the array. This
code creates a copy of the string literal in the space allocated
to the character array a. The string stored in a can be safely
modified.
 char a[] = "string literal"; a[0] = 'S';

Twitter: #SEIwebinar

Risk Assessment
Risk assessment is performed using failure mode,
effects, and criticality analysis

Severity – how serious are the consequences of
the rule being ignored?

Value Meaning Examples of Vulnerability

1 low denial-of-service attack, abnormal
termination

2 medium data integrity violation, uninten-
tional information disclosure

3 high run arbitrary code

Likelihood – how likely is it that a flaw introduced
by ignoring the rule can lead to an exploitable vul-
nerability?

Value Meaning

1 unlikely
2 probable
3 likely

Cost – the cost of mitigating the vulnerability.

Value Meaning Detection Correction

1 high manual manual
2 medium automatic manual
3 low automatic automatic

Twitter: #SEIwebinar

Priorities and Levels

Twitter: #SEIwebinar

Secure Coding Standard for Java

“In the Java world, security is not
viewed as an add-on a feature. It is a
pervasive way of thinking. Those who
forget to think in a secure mindset end
up in trouble. But just because the
facilities are there doesn’t mean that
security is assured automatically. A
set of standard practices has evolved
over the years. The Secure®
Coding® Standard for Java™ is a
compendium of these practices.
These are not theoretical research
papers or product marketing blurbs.
This is all serious, mission-critical,
battle-tested, enterprise-scale stuff.”
–James A. Gosling, Father of the
Java Programming Language

Twitter: #SEIwebinar

Scope
The CERT Oracle Secure Coding Standard for Java focuses
on the Java Standard Edition 6 Platform (Java SE 6)
environment and includes rules for secure coding using the
Java programming language and libraries.
The Java Language Specification (3rd edition) [JLS 2005]
prescribes the behavior of the Java programming language
and served as the primary reference for the development of
this standard.
This coding standard also addresses new features of the Java
SE 7 Platform, primarily, as alternative compliant solutions to
secure coding problems that exist in both the Java SE 6 and
Java SE 7 platforms.

Twitter: #SEIwebinar

Source Code Analysis Laboratory
The CERT Source Code Analysis Laboratory
(SCALe) is an operational capability for application
conformance testing against one of CERT’s secure
coding standards.

• A detailed report of findings is provided to the customer
to repair

• After the developer has addressed these findings, the
product version is certified as conforming to the standard

• The certification is published in a registry of
certified systems

Twitter: #SEIwebinar

Industry Demand
Conformance with CERT Secure Coding Standards
can represent a significant investment by a software
developer, particularly when it is necessary to refactor or otherwise
modernize existing software systems.
However, it is not always possible for a software developer to
benefit from this investment, because it is not always easy to market
code quality.
A goal of conformance testing is to provide an incentive for industry to
invest in developing conforming systems.

• perform conformance testing against CERT secure coding standards
• verify that a software system conforms with a CERT secure coding

standard
• use CERT “seal” when marketing products
• maintain a certificate registry with the certificates of conforming systems

Twitter: #SEIwebinar

CERT SCALe Seal
Developers of software that has been determined by CERT to
conform to a secure coding standard may use the to describe
the conforming software on the developer’s website.
The seal must be specifically tied to the software passing
conformance testing and not applied to untested products, the
company, or the organization.
Use of the CERT SCALe seal is contingent upon the
organization entering into a service agreement with Carnegie
Mellon University and upon the software being designated by
CERT as conforming.

Twitter: #SEIwebinar

SCALe

Merged
flagged

non-
conformities

 Probable
violations

Confirmed
violations

Analysis Tool

Analysis Tool

Analysis Tool

Client Code

Flagged
non-

conformities

Build
Environment

Conformance Testing Process

Twitter: #SEIwebinar

Conformance Testing
The use of secure coding standards defines a proscriptive set of rules
and recommendations to which the source code can be evaluated
for compliance.
For each secure coding standard, the source code is certified as provably
nonconforming, conforming, or provably conforming against each guideline
in the standard:

Evaluation violations of a particular rule ends when a “provably
nonconforming” violation is discovered.

Provably
nonconforming

The code is provably nonconforming if one or more violations of
a rule are discovered for which no deviation has been allowed.

Conforming The code is conforming if no violations of a rule can be identified.

Provably
conforming

Finally, the code is provably conforming if the code has been
verified to adhere to the rule in all possible cases.

Twitter: #SEIwebinar

Deviation Procedure
Strict adherence to all rules is unlikely; consequently,
deviations associated with specific rule violations are
necessary.
Deviations can be used in cases where a true positive finding
is uncontested as a rule violation but the code is nonetheless
determined to be secure.
This may be the result of a design or architecture feature
of the software or because the particular violation occurs for
a valid reason that was unanticipated by the secure
coding standard.

• In this respect, the deviation procedure allows for the possibility that
secure coding rules are overly strict.

Twitter: #SEIwebinar

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

mailto:permission@sei.cmu.edu

Twitter: #SEIwebinar

For More Information
Visit CERT® web sites:
http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/

Contact Presenter
Robert C. Seacord
rcs@cert.org

(412) 268-7608

Contact CERT:
Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh PA 15213-3890

USA

http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/
mailto:rcs@cert.org

	Source Code Analysis Laboratory (SCALe)
	How to interact with Us
	Today’s Speaker
	Increasing Vulnerabilities
	Application Security
	Problem Description
	Undefined Behaviors
	Compiler Optimizations
	“As If” Rule 1
	“As If” Rule 2
	Implementation Strategies
	Adding a Pointer and an Integer
	Adding a Pointer and an Integer
	Bounds Checking 1
	Bounds Checking 2
	Algebraic Simplification
	Algebraic Simplification Applied
	Mitigation
	Secure Coding
	CERT Secure Coding Standards
	The CERT C Secure Coding Standard
	Noncompliant Examples & Compliant Solutions
	Risk Assessment
	Priorities and Levels
	Secure Coding Standard for Java
	Scope
	Source Code Analysis Laboratory
	Industry Demand
	CERT SCALe Seal
	Conformance Testing Process
	Conformance Testing
	Deviation Procedure
	Slide Number 33
	For More Information

