

SPECIAL REPORT
CMU/SEI-2001-SR-010

 SEI Workshop on
Software
Architecture
Representation,
16-17 January 2001

Felix Bachmann
Paul Clements
David Garlan
James Ivers
Reed Little
Robert Nord
Judy Stafford

May 2001

Pittsburgh, PA 15213-3890

SEI Workshop on
Software Architecture
Representation,
16-17 January 2001

CMU/SEI-2001-SR-010

Felix Bachmann
Paul Clements
David Garlan
James Ivers
Reed Little
Robert Nord
Judy Stafford

May 2001

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2001-SR-010 i

Table of Contents

Acknowledgements v

Abstract vii

1 Introduction 1

2 Workshop Summary 3

3 Report of Working Group #1 7
3.1 Working Group Goals 7
3.2 ELA and PLA: Similarities and

Differences 7
3.3 ELA vs. ALA 7
3.4 ELA Consumers 8
3.5 ELA Description 9

4 Report of Working Group #2 11
4.1 Working Group Goals 11
4.2 Experience 11
4.3 Qualities of Interest 12
4.4 What the Meaning of “Is” Is 12
4.5 Maintenance and the Role of Tools 13
4.6 Validating Architecture Documentation 13
4.7 A Skeletal Active Design Review for

Architecture 14

5 Conclusion 17

References 19

ii CMU/SEI-2001-SR-010

Appendix A: Position Paper for SEI Software
Architecture Documentation
Workshop January 16-17, 2001 21
A.1 Introduction 21
A.2 Characteristics for Good

Architecture
Documentation 22

A.3 Tool Support for Self-
Documentation 24

A.4 References 24

Appendix B: IEEE Std 1471 and Beyond 27
B.1 Overview 27
B.2 IEEE Std 1471 ... 27
B.3 Content Requirements

on ADs 28
B.4 And Beyond 30
B.5 References 31

Appendix C: Constructing Blueprints for
Product Line Platforms 33
C.1 Overview 33
C.2 Business Layer 37
C.3 Technology Layer 37
C.4 Information Layer 38
C.5 Behavioral View 38
C.6 Recent Adaptations 38

Appendix D: DREAM Framework A Context for
System Development 41
D.1 Problem-Statement 41
D.2 Approach 42
D.3 Suggested artifacts 43
D.4 Progress 44
D.5 Conclusion 44

Appendix E: Position on Software Architecture
Documentation 47
E.1 Introduction 47
E.2 Principles 47
E.3 Qualities 49
E.4 Good Examples 50

CMU/SEI-2001-SR-010 iii

List of Figures

Figure 1: Relationship of ELA and PLA to
Applications 8

Figure B-1: IEEE 1471 Conceptual Framework 29

iv CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 v

Acknowledgements

Our sincere appreciation goes to our participants who gave their knowledge and shared their
experience willingly. Thanks also go to Kurt Wallnau of the SEI who participated in our
workshop and made an excellent and thought-provoking presentation on documenting com-
ponent-based systems using the concept of credentials.

vi CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 vii

Abstract

To further its work in architecture-related ideas, the SEI held its first Architecture Represen-
tation Workshop, January 16-17, 2001. Five leading software architects and practitioners
were invited to discuss aspects of architecture representation with senior members of the SEI
technical staff. The workshop articulated best practices, identified gaps in the available tech-
nology, and set the direction for future efforts.

viii CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 1

1 Introduction

The SEI Architecture Tradeoff Analysis initiative (SEI ATA) performs original and innovative
work in architecture evaluation, attribute-based architectural styles, and other architecture-
related areas. As part of this effort, the SEI created the Software Architecture Representation
task to codify and extend best practices in representing and documenting software architec-
ture. The goal is to produce a handbook to help practitioners describe a software architecture
in a clear, concise, and consistent manner. Although there has been no shortage of material
and literature about languages and notations that claim to do the job, we distinguish between
what you write down and the language or notation that you use to capture the information.

The handbook is intended to fill this gap. It will be constructed around two axioms: First,
what you document about an architecture depends upon how the information will be used.
Different stakeholders require different information. For example, documentation that was
designed to introduce a system will differ from documentation that was designed for an
architectural evaluation. Second, documenting an architecture is primarily a matter of
detailing the relevant structures or views, and then detailing the appropriate trans-view
information. A view depicts the software architecture by documenting only certain entities
and relations. Choosing the specific view to document depends, again, on its intended use
and other factors. Furthermore, chosen views should complement and be consistent with each
other. The entire documentation package should also include rationale, usage guidance, and
other information that applies to more than one view or to the architecture as a whole.

The handbook will address both what information to include and how best to present it. The
SEI took a major step toward addressing these issues through its first Software Architecture
Representation Workshop, which was held January 16-17, 2001. The format of the workshop
followed others held by the SEI. It was built around a small cadre of experts and attendance
was by invitation only. This insured a high-bandwidth information exchange among people
with first-hand knowledge of the topic. Furthermore, the participants delivered papers on
their areas of expertise. (These papers are included as appendices to this report.) Following
the presentations, participants were assigned to working groups that addressed particular as-
pects of the topic. At the conclusion of the event, the working groups reported to each other.

Following each of its workshops, the SEI produces and distributes a report to all participants.
They, in turn, review it to ensure that the report does not disclose any confidential or proprie-
tary information and that it captures the facts correctly. After they approve the contents, the
SEI releases the report for community review. The following is the report from the first SEI
Software Architecture Representation Workshop, January 16-17, 2001.

2 CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 3

2 Workshop Summary

At this first Software Architecture Representation workshop, we were joined by five leading
practitioners in the field:

• Christopher Dabrowski, National Institute of Standards and Technology (NIST),
Gaithersburg, MD

• Rich Hilliard, ConsentCache, Inc., Littleton, MA

• Stephen B. Ornburn, GBC-Group, Inc., Marietta, GA

• Tony Thomson, IT/Warner Music Group, Burbank, CA

• Jeffrey Tyree, Capital One, Glen Allen, VA

Chris Dabrowski is involved in a project at NIST to transition the use of architecture descrip-
tion languages (ADLs) into government and industry. Rich Hilliard, a consultant specializing
in software architecture, was technical editor for the working group that produced an IEEE
standard recommended practice dealing with architecture representation and documentation
[IEEE 00]. Steve Ornburn is an independent consultant with extensive experience in the field.
Tony Thompson and Jeff Tyree are architects with their respective organizations.

Each participant made a short presentation.

Chris Dabrowski spoke about NIST’s efforts to transition ADLs to industrial use, with the
ultimate goal of ADL standardization. In his view, good documentation requires a domain-
specific architecture description, and ADLs are poised to make a major contribution in this
area. ADLs, for example, could help with managing different architectural views as well as
tracking consistencies (and inconsistencies) among them. ADLs also could help with the ef-
fective and routine use of architectural styles. They could present documentation at different
levels of detail on demand for different uses and different stakeholders’ needs. The complex-
ity of architecture specifications suggests the need for sophisticated automation. Clearly, the
system that manages the architecture should be the one that manages its documentation.
NIST has been working with Rapide, Meta-H, ACME, UML, and others.

Rich Hilliard reported on his work formalizing architecture documentation practice into IEEE
Std 1471-2000, Recommended Practice for Architectural Description of Software-Intensive
Systems [IEEE 00]. The standard established a framework of concepts and a vocabulary for
discussing architectural issues of software systems. It does not specify the format or media
for descriptions or prescribe a notation. It does, however, specify required content. The stan-

4 CMU/SEI-2001-SR-010

dard seeks to ensure that architecture documentation addresses all of its stakeholders’ con-
cerns. These are embraced in the concept of a view, which represents the entire system from
the perspective of a set of concerns. A view may contain one or more models, and thus be
expressed in one or more notations. The standard requires the documentation to explain any
known inconsistencies between views. A viewpoint gives the constraints for constructing a
view. The standard does not specify a set of viewpoints (and hence, does not specify a set of
views). It does, however, require the architect to identify each viewpoint used by naming it,
listing the stakeholders whose concerns it addresses, and presenting the source (if any) of the
viewpoint, as well as the language, modeling techniques, or analytical methods employed.

Steve Ornburn shared his experiences helping organizations construct blueprints for product-
line platforms with up to 1000 developers. In this world, enterprise architecture is an impor-
tant factor. A picture of the enterprise architecture will show deployment and component dia-
grams. The picture also provides context—namely, constraints and opportunities for others to
fit their applications into this product-line platform. Steve reported that, despite the popular-
ity and usefulness of multi-view architectural documentation, he has encountered some resis-
tance getting people to accept different diagrams with separate views. Stakeholders would
rather have one diagram. These stakeholders include architects, technical leads, senior man-
agers in IT, and business managers. Steve uses attributes to capture provided services, under-
lying technical layers, and software to support services. Attributes are used for communicat-
ing design to stakeholders, for analysis, and so forth. He finds layering a useful concept for
explication and analysis and has refined his documents to make the layering clear.

Tony Thompson of Warner Music Group told us about a development process his organiza-
tion uses to capture relevant system information. Called the DREAM Framework, it is a col-
lection of tools and methods that shepherd the entire software engineering effort. Four views,
or system perspectives, are used to capture the software architecture:

• technology view, which defines the collection of technologies comprising the solution,
including staff skill mix requirements

• application view, which defines the structure and relationships of the software that em-
bodies the business processes

• development view, which defines the environment of tools, methods, processes, and team
structures necessary to develop and maintain systems

• data view, which defines the structure and models of the information assets of the organi-
zation, through databases and digital content

He also shared the artifact set used in his organization. It is similar to the consolidated set
called for by IEEE/EIA standard 12207 that descends from MIL-STD-2167. While it is, ad-
mittedly, a very heavyweight artifact set, it has the virtue of being well defined. There is no
ambiguity about what is required.

Jeff Tyree spoke about architecture documentation principles and practical problems. Archi-
tecture documentation, he said, must adhere to these principles:

CMU/SEI-2001-SR-010 5

• It must support the shared vision; that is, it must be consistent with how an organization
views architecture and its role(s).

• It must support the organization’s communication channels and various stakeholders’
needs.

• It must be compatible with supporting tools. These tools are necessary to help the docu-
mentation evolve over time and to make it accessible to stakeholders throughout the or-
ganization.

• It must support the architectural process in use. In particular, it must support all the work
products called for by the organization’s chosen process. For example, if you are using
Rational’s Unified Process, the documentation must support the 4+1 views it requires.

In addition, documentation must

• follow the seven rules for good documentation given in Software Architecture Documen-
tation in Practice: Documenting Architectural Layers [Bachmann 00]

• contain enough precise and detailed information to support actual construction

• support reasoning about the architecture

• support system qualities and account for a “changing of the guard” should the original
architect leave

Finally, Kurt Wallnau of the SEI delivered a presentation on documenting component-based
systems. He introduced the concept of a blackboard, a way to document properties of a com-
ponent ensemble. Adopting Mary Shaw’s idea of a credential, he presented a scheme for
documenting systems in which all information is not available—the standard situation in
component-based software engineering. A credential is a 3-tuple: <property, value, knowl-
edge>, where the third element explains how we know (and with what confidence) that the
second is, in fact, the correct value of the first. Credentials apply to components, or ensem-
bles of components, that are regarded as a unit. The idea is to sum up what we know about
components to draw conclusions (with a known confidence and source) about ensembles of
components, and so on, until we can gain knowledge about a system.

After the presentations, the workshop divided into two groups. One group discussed the spe-
cial needs that enterprise and product line architectures bring to the documentation table. The
second addressed how best to promulgate and disseminate architecture documentation
throughout an organization. The reports of the two working groups follow.

6 CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 7

3 Report of Working Group #1

3.1 Working Group Goals
Working Group #1 addressed three issues related to identifying the nature of good architec-
tural documentation. Specifically, the working group members attempted to

1. Define an architectural documentation strategy to describe product level architecture
(PLA) and enterprise level architecture (ELA).

2. Determine what information is required.

3. Identify those that the information serves.

3.2 ELA and PLA: Similarities and Differences
The group first explored the similarities and differences between PLAs and ELAs. Both types
are concerned with families of applications and identifying commonalities among applica-
tions. The group observed that differences between the two center on perspective. The ELA
supports creating a family of applications for use in a single enterprise, while a PLA supports
creating a family of applications that serve a variety of consumers. Another difference: the
ELA results from focusing on the internal needs of an enterprise, while PLA is the result of
focusing on external consumers. From a different perspective, the major difference is one of
“constraint versus generate.” In the first case, a set of applications exists within an enterprise.
An enterprise architect recognizes that it would be more cost effective to design a reference
architecture for sets of applications that exhibit some amount of commonality. The motiva-
tion is to reduce the cost of developing, using, and maintaining the applications. The refer-
ence architecture is then used to constrain the architectures for the related applications. In the
case of product-line systems, the goal is to create an architecture that enables many product
variations to be built using the same basic architecture.

3.3 ELA vs. ALA
Next, Working Group #1 identified what types of information should be documented to sup-
port creating ELA-conforming applications.

8 CMU/SEI-2001-SR-010

Figure 1: Relationship of ELA and PLA to Applications

The group recognized that ELAs and application level architectures (ALAs) share many rela-
tionships. The simplest of these is the one-to-many relationship; one ELA is used for many
ALAs. In a somewhat more interesting variation, an ELA may itself be a product for an en-
terprise and may become an application that warrants constructing a PLA. Additionally, many
types of power relationships exist within corporate cultures that affect the design of an ELA.
The group suggested a metaphor using federal, confederate, parliamentary, dictatorial, theo-
cratic, and anarchic models. In the federal model, the ELA has power over the ALA but the
ALA retains control over many decisions. In the confederate model, the ELA is weak and the
rules of architecting are decided on an application-by-application basis. The working group
members readily agreed that the choice of model is based heavily on the culture of the or-
ganization, and that this fact supports creating and retaining the appropriate reference archi-
tecture.

3.4 ELA Consumers
At this point, the group turned its attention toward identifying stakeholders and, in particular,
a document’s target stakeholder. There was consensus that understanding and documenting
the intended audience is very important. Potential stakeholders include

• capacity planners

• production support planners

• developers

• marketing strategists

• procurement specialists

• application architects

• data architects

• business process modelers

ELA

Applications

PLA

Applications

Constrain Generate

ELA

Applications

ELA

Applications

PLA

Applications

PLA

Applications

Constrain Generate

CMU/SEI-2001-SR-010 9

The ALA document is intended for the applications architect.

3.5 ELA Description
The following contains the outline for a description of an ELA. A completed document
should help an applications architect to satisfy the criteria defined at the enterprise level. It
should also clearly identify where points of variability exist and what procedures should be
followed when the architect wishes to deviate from the plan. The outline that we have in-
cluded here assumes that the organization uses a federal model type of power structure. We
have called our document “Proposed eStandards for the Application Architect,” and the work-
ing group report concluded with its table of contents.

1. Rules of Engagement

a. Conformance criteria

b. Standard work products

c. Guidelines for reviewing application architectures

d. Waivers & amendment process

2. Wiring Diagrams

a. “As is” Wiring Diagram

b. “To be” Wiring Diagram

3. Technical Infrastructure Standards

a. Deployment environment

b. For each “flex point,” what options exist, when are they selected, why is the choice
provided, how you do it (design heuristics, samples, etc.)

c. Development environment

d. Reuse commitments: components, frameworks, patterns, and shared services

e. External standards: industry, regulatory, legal, and environmental

4. Model of Application-Independent Required Components

a. Component-Specific Product Selections

b. Component-Specific Technology Selections

5. Flexpoints of Architecture

6. [PLA Infrastructure and Flexpoints]

10 CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 11

4 Report of Working Group #2

4.1 Working Group Goals
This working group tried to determine how best to instill a coherent, consistent architectural
vision within an organization. In other words, how can one ensure that the overall concepts
within the architecture documentation package are thoroughly and effectively disseminated
throughout the organization?

The group realized that this was a two-sided question. One side hinged on the organization,
its structure, its culture, its past experience with architecture, its degree of maturity with re-
spect to concepts such as design or abstraction, and its process infrastructure. Addressing
those issues, while important, seemed well beyond the scope of the working group.

Therefore, Working Group #2 focused on the second side of this question: What qualities
should the architectural documentation package have so that it can be disseminated as thor-
oughly and effectively as possible? This question seemed to align precisely within the
group’s scope.

4.2 Experience
Some of our participants shared the kind of documents produced in their organizations. One
organization, for example, produces a “project document.” It describes the scope, organiza-
tional structure, key milestones, and related projects and groups. It also includes a risk ma-
trix, ground rules, and assumptions. This document provides the means to track the work
breakdown structure. Its goal is to attain buy-in from key stakeholders (the ones who control
the funding) by convincing them that the project is on solid ground in terms of planning and
management. A document like this may impose constraints on the architecture or on other
documents. For example, the architecture may require a phased approach to meet stake-
holders’ deadlines.

Another kind of document that surfaced was the “operational concept document.” Typically,
it contains broad requirements and a general description of the user interface. This presents
the system as seen by its end users. Besides end users, stakeholders for this kind of document
include business analysts who judge whether the system as described will help the develop-
ing organization meet its business goals.

A third type of document contains detailed requirements, including low-level use cases and
broad architectural constraints, as well as subsystems and configuration items (architectural

12 CMU/SEI-2001-SR-010

components). In this “ system requirements document,” any description of a configuration
item must contain a description of behavior and constraints. Stakeholders for this document
include architects and technical leads.

The participants mentioned other documents as well. The point, however, was not to enumer-
ate an exhaustive list, nor to discuss the merits or non-merits of any particular document.
Rather, the discussion revealed some important points for the topic of architecture documen-
tation as a whole. First, it reinforced our conviction that architecture documentation speaks to
a variety of stakeholders who are interested in different aspects of the system. Second, it re-
vealed desired documentation qualities. Some of these are addressed in the next section.

4.3 Qualities of Interest
What documentation properties will help us produce work that will be disseminated and
maintained throughout an organization? A number of criteria emerged from our discussions:

• There must be a clear stakeholder target.

• Architecture must be traceable to requirements.

• Documents must capture constraints and behavior of components, of ensembles of com-
ponents, and of ensembles of ensembles.

• Because systems can be divided into subsets (in the sense of being composed of ensem-
bles), documentation should follow suit.

• Documentation should differentiate between “as designed” and “as built.” As we will see
shortly, even “as designed” has several shades of meaning that should be defined.

• There should be a clear stopping point, so that both the author and the reader know when
the subject has been appropriately covered.

• The documentation must capture rationale, heuristics, and design knowledge.

• It must be readable and manageable. A rule of thumb is that the document should only
run between 25-50 pages.

4.4 What the Meaning of “Is” Is
Documentation in general, and software architecture documentation in particular, contains
many assertions. They include what components are covered, how a component works, and
what relationships exist among components. There are also assertions about why a design
satisfies its requirements, what will change in the future, and, for product line architectures,
what must be changed to get a product-ready instance of the architecture. Furthermore, there
are assertions about who wrote the documentation, when it was written, and where you can
find information. You can think of an architecture document as a package of undiluted asser-
tions. In practice, however, not all assertions are created equal.

CMU/SEI-2001-SR-010 13

Information coming to the architect has various pedigrees. For example, the information may
represent constraints, heuristics, or simply properties.

To this, the architect adds a touch of “assertive freedom.” Some of what the architect writes
are facts, such as properties. Some are requirements or constraints, and no deviation is al-
lowed. Some are non-binding decisions, suggestions, if you will. Some are placeholders,
which comprise a class unto itself. Some placeholders are clearly marked TBD, but others
show desired or possible values. For example, the architect may want to use a particular ven-
dor’s component, but if the product is unavailable at the time of production, something else
must be substituted.

High-quality documentation should address this insidious ambiguity by clarifying the value
and nature of each assertion.

4.5 Maintenance and the Role of Tools
Our group briefly discussed the role of tools in the development and maintenance of architec-
ture documentation. This subject could rightfully occupy an entire conference. Nevertheless,
we felt it important to state a few guidelines:

• Ideally, the same tool used to manage the architecture should be used to manage the ar-
chitecture documentation.

• At the same time, it is not realistic to expect any tool to provide all the documentation.
For example, a business unit vice president wants a few viewgraphs—what architecture
tool prepares viewgraphs?

• Existing tools primarily rely on simple annotation features to help architects track a myr-
iad of different kinds of information. While better than nothing—you can, theoretically,
tag each annotation with an annotation type and write scripts to pull out annotations of a
certain type—its effective use requires pre-planning, a conscientious effort, and extraor-
dinary discipline.

• Navigation and layout problems should not be overlooked. People can only assimilate so
much information on a screen, before preferring a printed copy. We are not yet in the age
of paperless architecture.

4.6 Validating Architecture Documentation
Producing high-quality architecture documentation is one thing, but how will we know if it is
being maintained? Documentation naturally tends to degrade over time. To address this issue,
our working group outlined a review/validation procedure for architecture documentation. It
is a short questionnaire that could accompany an architecture documentation package:

1. Are the document’s stakeholders identified? To whom is it addressed? Are architectur-
ally relevant concerns addressed?

2. Who is missing from the answer to #1?

14 CMU/SEI-2001-SR-010

3. Is every concern addressed by one or more views? Can questions and concerns be an-
swered by the architecture description? “Concerns” should include behavior.

4. Are cross-view relations identified and described? Are consistencies across the views
identified? Are inconsistencies highlighted and justified?

5. Are assertions identified as facts, heuristics, properties, requirements, non-binding deci-
sions, desires, ranges of possibilities, placeholders, etc.?

6. Is the rationale adequately captured? For example, are areas of change explained? Are
traces to requirements included?

7. Does the document explain how to exercise variabilities?

8. Is there needless or harmful redundancy?

9. Can you answer a specific question quickly? In other words, is it organized for lookup
(according to who you are) and is the right information there? Ideally, the documentation
package should provide a table of contents or at least a guide for each type of reader.

10. Does the documentation over-constrain or contain extraneous information?

11. Does it follow “guidelines for good documentation” given in Software Architecture
Documentation in Practice: Documenting Architectural Layers [Bachmann 00]?

12. Is the document manageable? Ideally, each stakeholder’s document should run 25-50
pages in length. This implies the documentation can easily be divided.

To these questions, we added two more:

1. Where can I find the information that relates to each question above?

2. Have all the TBDs been resolved?

4.7 A Skeletal Active Design Review for Architecture
Our group adopted the “Active Design Review” technique as the model for our hypothetical
validation instrument [Parnas 85]. An active design review shuns the traditional all-hands
review meeting. Instead, reviewers fill out a questionnaire about various parts of documenta-
tion. To answer the questionnaire, the reviewers must actually use the documentation, not just
page through it. If the reviewers are able to provide the information, the documentation quali-
fies for its intended use.

What follows is the beginning of an active design review questionnaire for a hypothetical
package of software architecture documentation.

1. Who are all the stakeholders for whom this documentation was written? For each stake-
holder, what architectural concerns are addressed? How do you know? (e.g., point to the
appropriate documentation).

2. Which stakeholder views are missing from the documentation?

3. What views are provided? For each view, where is its view type definition supplied?
Where are the conditions and rationale given? (conformance to view type, refinement,
etc.) Where are consistencies and inconsistencies across views explained?

CMU/SEI-2001-SR-010 15

4. Is every concern addressed by one or more views? Concerns are phrased as questions.
Can the architecture description answer each question? Which views address each con-
cern from #1?

5. Where are cross-view relations identified and described? Where are the conditions and
rationale for consistencies and inconsistencies given?

6. Are assertions identified as constraints, heuristics, properties, facts, (derived) require-
ments (binding on downstream developers), non-binding decisions, desires, ranges of
possibilities, placeholders, etc.? What is the primary architecture information for each
view? What is your source? For each view, where are the constraints, heuristics, and
properties behind the architecture information identified? For each view, where is the ar-
chitecture information distinguished as fact, requirement, etc.? (Architecture information
refers to the information the architect puts in the documentation, e.g., stakeholder con-
cerns, design decisions, etc.)

7. Is the rationale adequately captured? Where are areas of change explained? Are traces
to requirements included? Look for rejected alternatives, how key drivers (concerns) are
addressed, selection criteria for COTS components, risks, and implied issues.

8. Does the documentation explain how to exercise variabilities? For each view, what
variation points are defined and what mechanisms are employed?

9. Is there needless or harmful redundancy? Are two terms introduced that mean the same
thing? Is one term used to mean two different things? Can each view be derived from or
joined to another view? Explain any purposeful redundancy.

10. Can you answer a specific question quickly? Is it organized for lookup (according to
who you are)? Is the right information there? Which sections of the documentation are
applicable to each stakeholder? For a given stakeholder, name some concerns and write
down every place where the answer can be found. Look up a specific component and list
every place it is mentioned. Based on your reading, sketch the salient features of this
view. (Answers should be compared for consistency.)

11. Does the documentation over constrain or contain extraneous information?

12. Does it follow the “Guidelines for Good Documentation” found in Software Architecture
Documentation in Practice: Documenting Architectural Layers [Bachmann 00]?

13. Is the documentation manageable for each stakeholder?

14. Is the information complete? Are interfaces defined fully? Is there standard organization
throughout?

16 CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 17

5 Conclusion

The first Software Architecture Representation Workshop proved to be a high-quality focused
forum for addressing some thorny issues of software architecture documentation. The outline
produced by Working Group #1 and the skeletal active design review produced by Working
Group #2 will both serve to further the work toward a useful handbook of software architec-
ture documentation.

Finally, it has become a custom at these SEI workshops to discover a phrase or aphorism that
expresses the essence of a relevant idea in a new and pithy way. We never have to look for
these phrases; they pop out entirely on their own. This workshop was no different, and the
award for best aphorism goes to Tony Thompson who noted that we’ve all learned for years
that divide-and-conquer is the approach to system building. “In this age of component-based
systems,” he said, “it’s time we learned to integrate and conquer.”

18 CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 19

References

[Bachmann 00] Bachmann, B.; Bass, L.; Carriere, J.; Clements, P.; Garlan, D.;
Ivers, J.; Nord, R. & Little, R. Software Architecture Documenta-
tion in Practice: Documenting Architectural Layers (CMU/SEI-
2000-SR-004, ADA 377988) Available: WWW: <URL:
http://www.sei.cmu.edu/publications/documents/
00.reports/00sr004.html> (2000).

[Parnas 85] Parnas, D. & Weiss, D. “Active Design Reviews: Principles and
Practices,” 132-6, Proceedings of the Eighth International Confer-
ence on Software Engineering, London, England, August, 1985.

[IEEE 00] IEEE Std. 1471–2000, IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems (2000).

20 CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 21

Appendix A: Position Paper for SEI
Software Architecture
Documentation Workshop
January 16-17, 2001

Chris Dabrowski
National Institute of Standards and Technology
January 2, 2001

A.1 Introduction
One of the potential benefits of describing software architecture is the ability to provide
greater clarity and understanding than what is possible in program code. The concise repre-
sentation of the essential provides a basis for communicating system design. This serves as
documentation for different stakeholders and participants in the aspects of the functional
components of a system, their connections and interactions, and their behavior system design
process, including system analysts, designers, implementers, maintainers, and managers.

In current software practice, the development of comprehensive documentation of any aspect
of a systemincluding its architectureis often lengthy and tedious. This is particularly the
case when describing a system using a terminology familiar to customers or when it is neces-
sary to provide alternative views of a system to different stakeholders. To provide the greatest
benefit with the least amount of effort, it should be possible for an architecture description to
be stated completely in a specification created using the ADL. That is, a specification written
in an ADL should be as self-documenting as possible. While additional text will always be
required to provide context and design rationale, the actual specification of software architec-
ture in the ADL should be definitive enough not to require large amounts of additional expla-
nation and comments. For this reason, it is helpful to discuss good characteristics of architec-
tures in the context of ADL features.

22 CMU/SEI-2001-SR-010

A.2 Characteristics for Good Architecture
Documentation

A.2.1 Domain-Specific Vocabulary and Syntax

It should be possible to rename commonly used architectural constructs such as interfaces,
components, connectors or modules to names familiar in domain. In developing a Rapide [1]
prototype specification for the NIST Real-Time Control System (RCS) [2], the use of familiar
names for types of architectural objects proved to be a significant aid in communicating un-
derstanding of the system design to RCS domain experts [3]. The same benefit may be ob-
tained by modifying language syntax to be more familiar to domain practitioners, especially
with respect to system behavior. For instance, the following examples show a portion of the
RCS specification using Rapide vocabulary and syntax.

TYPE Job_Assignor IS INTERFACE;
ACTION
 OUT
 Schedule_Job (Job : Task_Command_Frame),
 Fetch_task_frame (Job : Task_Command_Frame);
 IN
 Do_task (Job : Task_Command_Frame);

BEHAVIOR

BEGIN

(?Job : Task_Command_Frame)
Do_Task (?Job) ||>
 Fetch_task_frame (?Job);;
…………….

While the above does provide a precise statement of the architecture specification, it still re-
quires explanation of the meaning of individual constructs to domain experts not having ex-
tensive background in computer science. The specification could require less explanation by
substituting more familiar terms such as a domain-specific identifier for INTERFACE, the
term supplied by the ADL. This is accomplished in Rapide, ACME [4], and other ADLs by
creating subclasses of interface types. However for purposes of understanding, it may also be
desirable to substitute the term MESSAGES for ACTION, SENDS for OUT, RECEIVES for
IN, and so on. Using keywords such as IF.THEN, SEND sequence may also more easily
convey behavioral semantics to domain practitioners and allow the architecture specification
to more directly serve as documentation. The modification of language keywords and syntax
to be domain specific is an area where further research may be of benefit.

CMU/SEI-2001-SR-010 23

A.2.2 Organization of Specification for better understandability

The organization of the specification of architecture can affect its understandability. Docu-
mentation of architectures would be improved by permitting alternative organizations. For
instance, it may be desirable to present an architecture specification as a top-down functional
decomposition with its most general architectural elements first followed by lower-level sub-
components. In other circumstances, bottom-up, inside out presentations may be more appro-
priate—or an architecture specification may be organized by classifying modules by function
type. (Tool support would be required to store a specification and present alternative organi-
zations on demand.) These different organizations of an architecture may be combined with
the layered architectural documentation approach [5] to more effectively show overall system
structure1.

It is also desirable to show alternative views of the architecture as described in [6]. It should
be possible to document separate logical and process views of the architecture for presenta-
tion to stakeholders with different perspectives. It may also be necessary to combine perspec-
tives either having separate views each of which contain a functional decomposition or a sin-
gle decomposition whose components have separate views.

The use of architectural styles [7] allows better definition of particular kinds of architecture
organizations, such as top-down, that are familiar in a domain. Styles help ensure that a par-
ticular kind of structure is maintained as the system evolves.

A.2.3 Levels of Abstraction

For documentation to provide complete system understanding, it should be possible to pro-
vide the same architectural specification at different levels of abstraction. A high level of
abstraction is necessary for stakeholders that are not computer specialists or implementers.
More detailed levels are necessary for system analysts, implementers and system maintainers.
Together with support tools (see below), it should be possible to hide detail where necessary
and generate versions of specifications exclude statements that are necessary for compilation
or execution of simulations. Certain aspects of the logical content of the specification should
be controllable as well, as for instance the ability to limit the specification to system structure
alone, to limit presentation of certain views, or to eliminate lower levels of functional de-
composition.

1 We have tried Bachmann’s layered approach in another software architecture project with positive

results. Although it is still a preliminary effort, I will try to bring an example of this to the work-
shop if it can be made ready in time.

24 CMU/SEI-2001-SR-010

A.2.4 Representation of Connections

There are also specific ADL features that help provide the proper level of abstraction for a
particular purpose. Support for connectors as first-class objects would allow links between
modules to be specified declaratively, making it clearer how modules are linked. First-class
connectors allow particular types of modules to be connected by types of connectors, thus
making system structure better defined. Related to this is the description of messages or
events passing between modules in higher and lower levels of architectures. This description
needs to be concise, clear and should not encumber the specification. It is perhaps desirable
to consider some form of default connection in which a containing module is assumed to
send and receive the messages of its components. Further research is necessary to determine
language constructs that better support documentation. However, to fully realize the value of
these constructs in communicating system description, tool support is necessary.

A.3 Tool Support for Self-Documentation
Good documentation requires tool support. Without it, real-world ADL specifications are too
large and complex to allow good documentation to be produced quickly and efficiently. Tools
will be needed to allow specification developers to easily define domain-specific grammars
and to efficiently structure ADL specifications for documentation purposes. Tool support will
also be needed to implement language features that allow users to see ADL specifications
according to different views or at different levels of abstraction, focusing on information ap-
propriate for a particular stakeholder and hiding unnecessary detail.

To document an ADL specification and communicate understanding of a system requires that
readers be able to view individual components in isolation as well as see their logical links to
other parts of the specification. Tools that allow navigation between related parts of a specifi-
cation will greatly aid in this. One can imagine a graphic representation of an architecture
using a layered architectural documentation approach [5] that shows overall system structure.
Readers may be allowed to navigate between different components represented in the dia-
gram in order to view the connections.

A.4 References

 [1] Luckham, D. “Rapide: A Language and Toolset for Simulation of Distributed
Systems by Partial Ordering of Events,” http://anna.stanford.edu/rapide, August
1996.

[2] Albus, J. S. “4-D/RCS: A Reference Model Architecture Demo III.” NISTIR 5994,
National Institute of Standards and Technology, Gaithersburg, MD, 1997.

CMU/SEI-2001-SR-010 25

[3] Dabrowski, C., Huang, H., Messina, E., and Horst, J. “Formalizing the NIST 4-
D/RCS Reference Model Architecture Using an Architecture Description Language,”
NIST Internal Report 6443, December 1999.

[4] Garlan, D, Monroe, R., and Wile, D., “Acme: An Architecture Description Inter-
change Language”, Proceedings of CASCON ’97, November 1997.

[5] Bachmann, F. et. al., Software Architecture Documentation in Practice:
Documenting Architectural Layers, CMU/SEI-2000-SR-004, December 1999.

[6] Kruchten, P. “The 4+1 View Model of Architecture”, IEEE Software, November,
1995, pp. 42-50.

[7] Shaw, M. “Comparing Architectural Design Styles,” IEEE Software, November,
1994, pp. 27-41.

26 CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 27

Appendix B: IEEE Std 1471 and Beyond

Rich Hilliard
ConsentCache, Inc.
rh@ConsentCache.com

B.1 Overview
I describe the key contributions of IEEE Std 1471 to the discipline of software architecture
representation. After reviewing the contributions of IEEE 1471, I discuss how we (the com-
munity interested in Software Architecture) may build upon the foundation provided by IEEE
1471 to continue to improve and disseminate techniques for architectural description.

(Although three pages is insufficient to give a useful example of an IEEE 1471-conformant
architectural description, there are a number of applications of IEEE 1471 in the literature.
Visit the IEEE Architecture Working Group web site (http://www.pithecanthropus.com/~awg)
for links.)

B.2 IEEE Std 1471 ...
IEEE Std 1471-2000 is IEEE’s Recommended Practice for Architectural Description of Soft-
ware-Intensive Systems [7]. To my knowledge, this is the first formal standard to address
what is an architectural description (AD). It was developed by the IEEE Architecture Work-
ing Group with representation from industry, other standards bodies, and academe, and was
subject to intensive reviews by over 150 international reviewers, before its publication this
past Fall.

IEEE 1471 establishes a set of content requirements on an architectural description (AD)—a
collection of products to document an architecture. As such, the Standard plants a stake on
how ADs should be organized, and their information content, while: (1) abstracting away
from specific media (text, HTML, XML); (2) being method-neutral (it is being used with a
variety of existing and new architectural methods and techniques); and (3) being notation-
independent, recognizing that many diverse notations are needed for recording various as-
pects of architectures.

28 CMU/SEI-2001-SR-010

It achieves this by being based upon a conceptual framework for architectural description.
(See Figure 1.) The breadth of this framework is worth appreciating relative to current work
in architectural research and practice. To my mind, much of this work has focused on what
are portrayed as Models in the conceptual framework, including architectural description lan-
guages, and related tools. While important, much of this work lacks a larger context needed
in most practical, industrial strength applications. By reifying notions like Stakeholders
and Concerns, the IEEE 1471 framework suggests a basis for dealing with these wider is-
sues in a theory of architectural description.

B.3 Content Requirements on ADs
The content requirements of IEEE 1471 are stated in the terminology of the conceptual
framework. These requirements define what it means for an architectural description (AD) to
conform to the Standard. The principles underlying these requirements are briefly summa-
rized here:

ADs are interest-relative. The audiences are the various stakeholders of the system, each
with specific concerns (such as security, performance, constructability) for the architecture.
An AD should be explicit in addressing these stakeholders. Therefore, an AD must explicitly
identify the system’s stakeholders and their concerns for the system.

Concerns form the basis for completeness. An AD must addresses all stakeholders’ con-
cerns. If it does not, it is, by definition, incomplete.

Multiple views. An AD is organized into one or more views. Each view is a representation of
the entire system of interest intended to address a particular set of stakeholder concerns.

Although the use of views is hardly new with IEEE 1471, its contribution is to motivate the
use of views (the source of much hand-waving in the Software Architecture literature) with
respect to addressing specific concerns of specific stakeholders.

CMU/SEI-2001-SR-010 29

Figure B-1: IEEE 1471 Conceptual Framework

Views are modular. A view may consist of one or more architectural models. To satisfy the
concerns to be addressed by a particular view, multiple notations may be used. This is one of
the several places where IEEE 1471 is “parameterized” to accommodate the wide range of
best practices in Software Architecture modeling.

Inter-view consistency. An AD must document any known inconsistencies among the views
it contains. This is a fairly weak requirement—based on current consensus; I imagine as a
community we can do much better in the future (see below).

Views are well-formed. Each view has an underlying viewpoint identifying a set of architec-
tural concerns and specifying how the architectural description meets those concerns, using
languages and notations, models, analytical techniques, and methods. A viewpoint is a set of
conventions for constructing, interpreting and analyzing a view.

This is another “parameter” in IEEE 1471. Organizations may define and select their own set
of useful viewpoints. In fact, IEEE 1471 does not even specify a fixed set of viewpoints; the

30 CMU/SEI-2001-SR-010

Standard is “agnostic” about where viewpoints come from. Instead, the following principle is
employed:

Concerns drive viewpoint selection. Each identified stakeholder concern must be addressed
by one of the selected viewpoints.

Viewpoints are first-class. Each viewpoint used in an AD is “declared" before use (either “in
line” or by reference). A viewpoint declaration establishes the stakeholders addressed by the
viewpoint; the stakeholder concerns to be addressed by the viewpoint; the viewpoint lan-
guage, modeling techniques, or analytical methods used therein; and the source, if any, of the
viewpoint (“prior art”). A viewpoint may also include: any consistency or completeness
checks associated with the underlying method to be applied to the models within the view;
any evaluation or analysis techniques to be applied to models within the view; and any heu-
ristics, patterns, or other guidelines which aid in the synthesis of an associated view or its
models.

This principle is perhaps the primary contribution of IEEE 1471—to provide a means by
which the many architectural techniques in use today may be uniformly described so that
they may be used by others, compared, and combined.

B.4 And Beyond
In addition to codifying best practices in architectural description, a goal of the IEEE for the
development of IEEE 1471 was to provide a foundation for the continuing evolution of the
discipline of Software Architecture. To conclude this position paper, I briefly note a few
opportunities of this kind.

Reuse. Viewpoints, being system-independent, are highly reusable. The viewpoint construct
is intended to facilitate capture of one important kind of architectural knowledge: when to
apply given representational mechanisms to address particular stakeholder concerns [5].
However, very little of present architectural knowledge is captured in this fashion. For exam-
ple, there is much work in the academic literature on modeling architectures via components,
ports, connectors, roles, and their configurations which might be termed a “Structural View-
point.” By having a clear viewpoint declaration, it would be easier to apply this knowledge
more uniformly. One useful role for organizations like SEI would be to serve as a repository
for reusable viewpoints.

View Checking. IEEE 1471 is essentially silent on the issue of checking or analysis of indi-
vidual views, except to say that a view must be well-formed with respect to its viewpoint—
delegating the checking to any technique associated with the viewpoint. Viewpoints will vary
in their rigor, associated analytic techniques, etc., which may be brought to bear on checking
a view. By having uniform declarations it may be possible to “lift” techniques developed for

CMU/SEI-2001-SR-010 31

one notation to use with others. See [2] for a discussion of this in the context of use of the
various notations of UML.

View Integration and Inter-view Consistency. It has been long recognized that introducing
multiple views into architectural descriptions leads to an integration problem—how does one
keep views consistent, non-overlapping?

Complex specifications require structure, such as different segments for different concerns.
However, different concerns also lead to different notations… [T]his leads to a multiple-view
problem: different specifications describe different, but overlapping issues. [8] [my emphasis]

The introduction of viewpoint declarations, while not solving the problem, gives us a tool for
detecting overlaps and inconsistencies, and potentially a substrate for solving the integration
problem. See [3], [4], [1] for three different suggestions for tackling the view integration
problem.

Formalization. The conceptual framework of IEEE 1471 is an informal, qualitative model. If
it is useful, which appears to be the case, it may be insightful to attempt to formalize the con-
cepts therein. Such a formalization could have benefits in several of the topics just men-
tioned: viewpoint reuse, view checking, view integration, and inter-view analysis.

Finally, there is another set of advanced topics in architectural description barely addressed
by today’s languages and tools. See [6] for discussion.

B.5 References
[1] Alexander Egyed and Rich Hilliard. “Architectural integration and evolution in a

model world.” In Bob Balzer and Henk Obbink, editors, Proceedings Fourth Interna-
tional Software Architecture Workshop (ISAW-4), 4 and 5 June 2000, Limerick, Ire-
land, pages 37-40, 2000.

[2] Rich Hilliard. “Using the UML for architectural description.” In Robert France and
Bernhard Rumpe, editors, <UML>’99 The Unified Modeling Language, Second In-
ternational Conference, volume 1723 of Lecture Notes in Computer Science, pages
32-48. Springer, 1999.

[3] Rich Hilliard. “Views and viewpoints in software systems architecture.” Position pa-
per from the First Working IFIP Conference on Software Architecture, San Antonio,
1999.

32 CMU/SEI-2001-SR-010

[4] Rich Hilliard. “Views as modules.” In Bob Balzer and Henk Obbink, editors, Pro-
ceedings Fourth International Software Architecture Workshop (ISAW-4), 4 and 5
June 2000, Limerick, Ireland, pages 7-10, 2000.

[5] Rich Hilliard. “Three models for the description of architectural knowledge: View-
points, styles, and patterns.” Submission to WICSA-2, January 2001.

[6] Rich Hilliard and Timothy B. Rice. “Expressiveness in architecture description lan-
guages.” In Jeff N. Magee and Dewayne E. Perry, editors, Proceedings of the 3rd
International Software Architecture Workshop, pages 65-68. ACM Press, 1998. 1 and
2 November 1998, Orlando FL.

[7] IEEE. Recommended Practice for Architectural Description of Software-Intensive
Systems, October 2000.

[8] Mary Shaw and David Garlan. Software Architecture: Perspectives on an emerging
discipline. Prentice Hall, 1996.

CMU/SEI-2001-SR-010 33

Appendix C: Constructing Blueprints for
Product Line Platforms

Steve Ornburn
GBC-Group, Inc
January 9, 2001
sbo@gbc-group.com

Abstract

An enterprise IT architecture group was established for a client in the financial services in-
dustry. As part of their work, the enterprise architects have experimented with a range of ap-
proaches for representing architectural ideas, testing their approaches with a number of dif-
ferent audiences. Within the team, a consensus is beginning to emerge as to the boundaries of
the systems to be represented, the required views, and the level of detail and notational con-
ventions to be used in those views. The team and its customers are also reaching some
agreements on the processes for collecting, validating and using architectural information.

C.1 Overview
For IT architects to succeed, they must have a role defined in the enterprise’s business and IT
processes, customers for deliverables, sources of information, and methods for engaging their
customers and otherwise carrying out their responsibilities. Architectural drawings, i.e., blue-
prints, and associated written specifications are an architect’s main deliverable. The draw-
ings and specifications are valuable not only as a record of what has been decided; they are
also valuable for having driven the decision making process. Constructing a blueprint and
associated written specification entails a process rich in fact finding, analysis, negotiation,
synthesis and consensus building.

Architecture is about understanding customer needs, relevant constraints, and available de-
sign patterns; an architect generates a solution by finding a combination of patterns that
meets customer needs subject to the relevant constraints.1 A perfect solution is never possi-
ble, so architecture is inevitably about making tradeoffs. In generating and evaluating alter-
natives, architects must consider the solution from a number of points of view. From the
field of systems engineering, architects often view solutions from functional, physical, opera-

1 Christopher Alexander, The Timeless Way of Building, Oxford University Press, 1979.

34 CMU/SEI-2001-SR-010

tional, and user interface perspectives.2 Views often useful to software architects are de-
scribed by Krutchen.3 Yet other approaches to modeling architectures derived from Zach-
man’s work.4,5 All are good, but serve different purposes. In my practice, I often use blue-
prints to bring into view overlooked operational or physical requirements. These frequently
overlooked requirements are important and must be considered when making trade-offs. If
they are not considered, the resulting architectures will be sub-optimal.

A couple of years ago a client asked me to help establish a group of enterprise architects to be
responsible for the long-term technical evolution of the IT infrastructure for a financial ser-
vices company. Establishing a group of enterprise architects has been part of a larger initia-
tive to increase the maturity of the IT department’s development processes. For this IT de-
partment, the critical problem has been that of making the transition from a mainframe shop
responsible for maintaining financial records to a new role as a full partner in developing and
introducing new products and services. Behind this change in role was the reality that IT
technologies had become central elements in all new customer offerings, i.e., IT systems had
become components in product-line architectures.

Because of the department’s new role, it became important for IT managers and technical
staff to define platforms supporting the company’s various product and service offerings. To
this end, the company’s enterprise architects use architectural drawings to identify the
boundaries and describe the structure of those IT platforms. The increased attention to IT
platforms and product-line architectures is pivotal: heretofore, the IT department’s attention
had centered on projects, resulting in a siloed environment in which each project had its own,
independently developed requirements, technical design, testing, change management, and
delivery schedule. Now, the enterprise architects are introducing a new model, in which IT
platforms are envisioned as part of a product-line architecture and managed through a process
and released on a schedule. In this new model, projects are viewed as incremental changes to
existing platforms and must be managed as part of that platform’s release process. Archi-
tects, in this new model, are responsible for the technical design of the platform. The three-
way conversation among architects, business analysts, and technical leads is inevitably a ne-
gotiation in which the architectural vision is aligned, on the one hand, with long-term busi-
ness needs and, on the other, with shorter-term project needs. The enterprise architect en-
gages throughout a project to maintain these alignments. Enterprise architects are involved in
project initiation; change control, particularly when architectural trade-offs are at issue; and
in preliminary and critical design reviews. Enterprise architects also participate in the testing

2 Dennis M. Buede, The Engineering Design of Systems, Wiley, 2000.
3 Philippe Kruchten, “Architectural Blue Prints—the 4+1 View Model of Software Architecture”,

IEEE Software, 12(6), Nov., 1995, pp 42-50.
4 Bernard H. Boar, Chapter 2, Constructing Blueprints for Enterprise IT Architectures, Wiley, 1999.
5 Steven H. Spewak, Enterprise Architecture Planning, Wiley, 1992.

CMU/SEI-2001-SR-010 35

and acceptance of project deliverables into release, verifying the architectural qualities have
been suitably addressed.6

The importance of the enterprise architect will continue to grow as the IT platforms are re-
architected to include more purchased software packages; to integrate with service bureaus
and application and network service providers; and to allow for more subcontracted devel-
opment. Each of these changes places an increased burden on the IT department to define
long-term platform strategies, understand platform-level requirements and constraints, and
accurately analyze trade-offs. Failure to carry this burden can result in architectural mis-
matches, unmet expectations, a high-rate of requirements churn, slipped delivery dates and
overall low-quality solutions. While these types of problems are not new to IT projects, they
become more difficult and more expensive to fix when they involve contractual relationships.

For an enterprise architect, blueprints and specifications are key tools in defining and manag-
ing an IT platform. For enterprise architects, identifying platform boundaries, describing
platform structure, and identifying key platform qualities have all required significant data
collection and reverse engineering. Users and business analysts describe operations and how
they are embedded in business process. Software engineers tell us the sequence of steps re-
quired to carry out an operation, naming the components involved and describing the connec-
tivity. Typically, software engineers will also identify the network nodes to which compo-
nents are deployed. Frequently, we observe mismatches between the operations identified by
users and those discussed by software engineers, with software engineers seeing a finer-
grained set of functions and not seeing how users apply those functions to get work done.
Network team sees physical nodes and their connectivity at a low level. Data team provides a
rich understanding of the enterprise data but often cannot describe what the data is used for or
how it is processed.

Initially, enterprise architects recorded architectural data in simple box and arrow diagrams.
The early blueprints revealed at least as many styles and conventions as there were architects.
As architects gained experience drawing, explaining, and reading blueprints, and as they bet-
ter understood the platforms they were characterizing, their drawing styles began to con-
verge. Architects became more selective of details recorded about specific components. Ar-
chitects also adopted more sophisticated techniques for encoding information about
relationships among those components. Furthermore, with experience, the enterprise archi-
tects became more attentive to matters such as notational standards, traceability, change con-
trol, and independent reviews.

Enterprise architects are now making a transition from documenting “as built” architectures
to evaluating those architectures on the basis of their documentation. In the course of these
evaluations, the architects have identified several important architectural qualities that have

6 The architectural practices continue to evolve in a process of mutual adaptation. The enterprise

architects select and adapt to industry best practices and then, with experience, modify those prac-
tices and make them their own.

36 CMU/SEI-2001-SR-010

been neglected in one or more platforms. Examples of points raised in architectural reviews
include:

• Given the high rate of technical innovation, architectures must be extensible, permitting
the addition of new capabilities not foreseen at the time of the original design. Some of
the architectures reviewed have achieved extensibility through the use of layered archi-
tectures, the façade design pattern, and loosely coupled components interconnected
through a message broker.

• Given business uncertainties, particularly around customer and user willingness to adapt
to new information systems, it must be possible to introduce small, exploratory systems
which can then be enhanced and scaled as required. In a distributed environment it
should be possible to incrementally scale a system by adding additional processing nodes
along with mechanisms for fail over and load balancing.

• Architectural blueprints have been the input to several mathematical models or simula-
tions evaluating system performance, including capacity, throughput, and response times.
The relationships between volumes and response times have been forecast, and these re-
sults in turn have driven capacity planning.

• Given the number of third parties who may have occasion to modify or enhance systems,
maintainability is becoming a business-critical architectural quality. To enhance main-
tainability, attention must be given to selecting and following well-known design pat-
terns, accurate and readable documentation, particularly for architectures and high-level
designs, requirements traceability, and effective configuration, requirements, and change
management.

• By including operational procedures in business models, enterprise architects have been
able to ensure that those procedures and associated support systems have been designed
in a way that is consistent with availability and reliability requirements.

• Architectural review of behavioral models, while not looking at overall system correct-
ness, has been able to ensure that key safety, liveness, and fairness properties have been
satisfied. For example, architectural review detected potential race conditions—e.g., on
system initialization it was possible for one thread to read a data structure before another
had initialized it.

We have found that for these reviews, the most useful artifact is a blueprint providing a com-
posite view of the architecture. This composite view combines structural information often
found in separate logical (application), component, and deployment views. The composite
structural view also allows architects to express relationships by overlaying business, tech-
nology, and information architectures. While behavioral descriptions of the system, e.g., se-
quence diagrams or state charts, are shown separately, they can easily be related back to the
composite structural view.

Some new readers have said that the density with which information is packed onto a blue-
print can make composite structural views hard to understand. However, experienced readers
(including one sr. vice president from the IT department) seem to prefer the convenience of a
single reference diagram. Experienced readers also have found the overlaying of information
from multiple views helps show how the parts make the whole.

CMU/SEI-2001-SR-010 37

C.2 Business Layer
The business layer shows the touch points between business processes and IT systems. Activ-
ity at touch points can be included as part of use case. Touch points are generally represented
with an icon for user or device. The business layer also identifies the applications that can be
accessed through the touch points. Applications are represented as shaded boxes into which
technology components can be placed. Sometimes an application may be divided into com-
ponents representing different capabilities or processing steps. Enterprise architects have ex-
tended the concept of application to include processes and services related to the operation
and maintenance of IT systems. Architects made this extension after discovering cases for
operational requirements and procedures were not considered during system design, resulting
in solutions that could not be upgraded without significant customer impact.

C.3 Technology Layer
Technology components are represented as white boxes placed within the shaded areas repre-
senting applications. Typically, in a distributed environment, a technology component is a
server and the software and hardware components installed on it. The text within the white
box identifies the software and hardware components deployed on that server. If the compo-
nents work together to provide a service, some notation may be made to represent their col-
laboration. The list of software and hardware can include system software, hardware plat-
form, lower-level services and frameworks used, development environment, hardware
platform and other resources needed for the application. When the relationships among tech-
nology components are many and complex, an analysis diagram detailing those relationships
may be provided. It may also be useful to provide “cross-sectional” views of the component
by describing its internal structure and behavior. These cross sections may be provided either
as insets on the main diagram (space permitting) or on a separate page.

Connectors, represented as lines on the structural view, are mechanisms for transferring con-
trol or information from one technology component to another. While represented as lines
rather than boxes, connectors are nevertheless considered first-class components, and may be
associated with attributes or a cross-sectional view. Enterprise architects have characterized a
variety of connectors, including some embedded in other multi-function components, some
implemented as separate pieces of software, and yet others available to developers as features
in their programming languages. Architects have also characterized connectors employing
extensive object-relational mapping using tools such as TopLink and Persistence Builder. Yet
another connector characterized by architects used the façade design pattern to maintain ex-
tensibility and promote reuse.

38 CMU/SEI-2001-SR-010

C.4 Information Layer
At the information layer, components typically identify distinct subject matters. Cross sec-
tions can be used to show details about the information model. The cross section may make
of any of a variety of information modeling techniques including object models and ER dia-
grams. In some cases the architect may choose to describe how the information model has
been optimized as for use in data mart.

C.5 Behavioral View
Structural views generally must be accompanied by some description of how the components
work together to effect some result or behavior. Enterprise architects frequently use sequence
diagrams to characterize behavior. Generally, architects are not interested in complete behav-
ioral specifications. Instead, they characterize key fairness, liveness and safety the system
must satisfy. For example, a safety constraint might have the form “when component x fails,
it must fail in a way that does not create a security hole.”

Every system includes logic for generating the behavior. In some cases the logic for deciding
what to implement next is based on an architecturally interesting coordination mechanism.
Some systems use a distinct workflow engine to decide what to do. Other systems employ a
coordination mechanism based on publish/subscribe messaging. There are many other types
of coordination mechanisms that may be used. When the coordination mechanism is architec-
turally interesting, its structure and behavior can be described by means of cross-sectional
views.

C.6 Recent Adaptations
Enterprise architects continue to adapt their conventions for representing architectures. The
systems they work with are heterogeneous, but at the top level, systems can be conveniently
viewed as having an n-tiered, client server structure. This structure is now being used to con-
trol the placement of technical components; each component is classified as belonging to
presentation interfaces, middle tier presentation services, middle tier business logic, work-
flow control, enterprise business logic, enterprise data, and enterprise data movement. Some
multi-function components may span more than one tier. Architects have generalized the no-
tions of the tiers to ensure that various systems can be classified.

Naturally Web browsers are classified as presentation interface, and fat clients span both
presentation interface and presentation services. The mailroom, responsible for scanning in-
coming mail and placing in workflow queues, is presentation. The component containing the
logic for putting the document image on the workflow queue is itself classified as workflow.
The menuing system on the IVR spans presentation and presentation services. Other compo-
nents on the IVR are classified as middle tier business logic. The Geotel system for call rout-

CMU/SEI-2001-SR-010 39

ing and computer telephony integration is classified as a workflow engine. Record keeping
systems are enterprise business logic and the associated data stores are enterprise data. Off
site storage of documents is also enterprise data. In some cases, semi-automated record keep-
ing is enterprise business logic, with people and their business processes encapsulated within
a technology component.

40 CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 41

Appendix D: DREAM Framework
A Context for System
Development

Tony Thompson
Information Technology
Warner Music Group
Burbank, CA 91505

Abstract

The Web has transitioned enterprises from an informal data system initiative to a content-rich,
data-driven distributed system with a mission-critical imperative. A descriptive requirements en-
gineering attribute method (DREAM) framework is presented as one tool in an architectural “in-
tegrate and conquer” strategy towards rapid, reliable system development and deployment. As
the need for architectural description becomes critical, a “lighter-weight” framework is proposed
as a philosophical asset within the overall system lifecycle process. Within this context, the pro-
duction of several documentation artifacts is needed as the organization manages the project, pro-
vides the necessary development infrastructure and training for project members, and improves
the project's software process. Done properly, organizations/companies will have the opportunity
to reuse inventories of code, which will make it faster and easier for the deployment of new Web
Applications and data-driven Web sites.

D.1 Problem-Statement
With the lure of growing their market faster, the creation of systems more cost effectively, and
utilization of open source code centric approaches, companies are revolutionizing the software
industry and enterprise systems. The migration to standards-based applications creates a varie-
gated component-dependent architecture, affecting how the systems are designed, developed and
deployed.

A specific component brings a specific implementation-dependent application package. Package
viability, albeit vendors for commercial packages and project participants for open-source, intro-
duces an unmatched form of investment risk exposure, which must be managed from the incep-
tion phase of the system. A technical challenge is also faced during the migration of an existing
application to a competing product judged to be of superior constitution.

42 CMU/SEI-2001-SR-010

Setting aside any contractual considerations, the similarity of the described conditions mandates
that requirements management, design knowledge capture, and interface and architectural attrib-
utes are well formed and sufficiently described throughout the system life-cycle.

D.2 Approach
The DREAM framework draws necessarily upon predecessor life-cycle process systems (such as
ISO/IEC 12207). DREAM differs as it challenges the common knowledge that requirements are
descriptions of what the software does, while the design describes how the software does it.
Rather DREAM introduces the paradigmatic shift that the design is a configuration item that is
merely an attribute of the architecture. The configuration item might utilize more than one piece
of technology to meet its obligation. Technology is traded-off as a dimension against other archi-
tectural dimensions:

Application Architecture which defines the structure and relationships of the software that em-
bodies the business processes

Development Architecture which defines the environment of tools, methods, processes, and team
structures to develop and maintain systems

Data Architecture which defines the structure and models of the information assets of the organi-
zation, principally databases, but also digital content

Although one might argue that this might be some semantic slight-of-hand, the framework is not
at all oriented towards the rigidity seen in previous standards (vis-à-vis MIL-STD-2167). The
framework rather extends a pattern witnessed in human hierarchical systems. It allocates to a de-
sign configuration item the accountability, responsibility, and authority for performance of those
assigned architectural attributes. Within a behavioral context, the architectural attributes equate
to the assigned system tasks of that particular element.

Allegorically, this is akin to building a wall by ensuring tight fit between cut stones rather than by
uniform brick. Unlike previous life-cycle systems, the details of “how to” perform the activities
and tasks included in the configuration item are mandatory. The implementation requirements are
then attributed to the package and integral components, as a direct consequence of their intrinsic
capabilities. Behavior is dynamic, and can be more readily associated with so-called quality fac-
tors, like performance, which are difficult to capture in UML.

By adapting material from the Windows DNA team, we can formally state what characteristics
the documentation artifacts must have to be of greatest utility to a specific project. Some of the
most common causes of failed deliveries of systems are:

CMU/SEI-2001-SR-010 43

Dissociation between the developer and the business decision-maker – Lack of visibility into
the status of the project is a significant issue. The documentation artifacts should provide for
succinct resolution of assigned attributes at the time of inspection. Requirements traced to these
attributes will correctly provide assessment of feature incorporation, and should ideally be
uniquely identifiable. A primary process problem is that use cases come later than project start.

Insufficient testing and quality control – Conditions related to incompleteness in attribute as-
signment should be easily assessable. The translation of use case material into the architectural
elements should easily provide for optimal feature test cases, which ARE contained in the artifact.

Inadequate requirement management – Lack of skilled capture of business requirements tends
to result in the all too familiar pattern of feature creep. Decisions that resulted in specific archi-
tectural assignments should be visible in the artifacts, as should the rationale for a non-
implementation decision.

Allocating complex processes into a single system element – Feature clustering is an emerging
threat to complexity management in the architecture. Single package or component overload
must be discernable, to assure either reallocation (preferred) or specific risk identification (ac-
ceptable).

Premature component technology changeout –The battle to have the “latest and greatest” and
the “best of breed” prior to fully scoping the attributes and associated requirements results in
suboptimal migration. Although not entirely in the purview of documentation, the artifacts
should be “exposure friendly”, such that the feature set is exposed, even if the allocation state-
ment designates an unused condition. An unused condition provides objective evidence that the
particular feature should not be a driver in product evaluation.

Technology, Applications Development and Data architectures are considered viable and com-
plementary architectural perspectives. Within the UML oriented tools, the notation for assign-
ment into architectural elements is reaching standardization, but has not reached a normalized
condition, and is without a concurrent documentation artifact standard. The most crucial aspect
of system architecture is the component selection. System architecture is challenging. Allocating
architecture attributes based on associated OSI tiers and commercial/open source package capa-
bilities helps to reduce the complexity of the architecture task.

D.3 Suggested artifacts
With an eye on tailoring, the specific documentation should be adjusted as necessary to scale
within the magnitude of the project. This is not inclusive since more plans, records and reports
would conceivably be furnished on an as needed basis. The larger the project, the more complex
the document. Smaller projects can consolidate documents as appropriate. All of these artifacts

44 CMU/SEI-2001-SR-010

must be considered living documents. No formats are presented due to variability between pro-
jects, although acronym correspondence with IEEE/EIA 12207 is deliberate.

1. Project Approach Document (PAD) – Project scope, organization structure, key milestones
and list of related projects and organizations. Similar to a basic statement of work, the PAD
provides the basis for detailed tracking by allocating named personnel to packages as part of
the work breakdown structure.

2. Operation Concept Document (OCD) – Provides the content of a standard OCD, but sup-
ports the incorporation of business user requirements, and may be broken into two support
documents.

3. Functional Requirements Document (FRD) – The business users view of the system. Should
have a one-to-one, but typically one-to-many relationship with lower level requirements.
The document would contain use-cases, and relate to any interactive material in UID.

4. User Interface Document (UID) – The requisite business system screens and general report
requirements.

5. System Requirements Document (SRD) – Provides the high-level association between the
system requirements and the system components, thus defining the architecture. Additional
use cases are provided to indicate interaction between architectural elements. Static func-
tions are assigned as attributes, along with performance concerns. Otherwise similar to the
SSDD from 2167.

6. Software Design Document (SDD) – Provides both the assigned attributes, test require-
ments, and details of the significant objects and methods used. Describes key functions of
the hosting application environment, as applicable, for example specific method calls to an
application server. Changes any time the software changes.

7. Database Design Document (DDD) – Provides standard database specifications, and in-
cludes physical implementation, including stored procedures and triggers.

8. Test and Configuration Management Plan (TCMP) – Provides one-stop physical and process
requirements for the management of tests, versions, and environments. Combines elements
typically found in planning documents entitled Development process, Maintenance process,
Operation process, Software CM, Software integration, and the Test or validation plan.

9. System Training Manual (STM) – Provides information for user training and operations.

D.4 Progress
With systems being built by both employees and consultants, uniformity of format and content
have been decided on a per project basis. Future projects are being mandated for greater compli-
ance with management endorsement, and project documentation is utilizing a standard template
and content standard. It is hoped that these inputs will contribute to establishing baseline for the
documentation artifacts.

D.5 Conclusion
The DREAM framework is provided as a meaningful excursion into the philosophy of system
architecture, requirements engineering, and product realization. Architectural tradeoffs are an es-

CMU/SEI-2001-SR-010 45

sential activity for system implementation. It ensures system compliance and system suitability
for its intended function. Each package involved in the system goes through rigorous iteration
within the context of an architectural element. This iteration includes conceptual build and testing
to ensure package compatibility with assigned architectural attributes. Early implementation en-
hances system reliability through capability assurance, which creates customer confidence. The
document artifacts lend themselves to visibility into the software lifecycle process.

46 CMU/SEI-2001-SR-010

CMU/SEI-2001-SR-010 47

Appendix E: Position on Software
Architecture Documentation

Jeff Tyree, Enterprise Architect
CapitalOne, Richmond VA
804-934-8961
jeff.tyree@capitalone.com

E.1 Introduction
As an architect for CapitalOne, I have spent quite some time
over the last few months thinking about the question “How
should architecture be documenting?” As the glyph1 to the
right suggests, architecture description is interwoven with
other aspects of architecture construction. This Position on
Software Architecture Documentation will discuss the princi-
ples that architecture must follow, qualities that it must
possess and good examples to use for discussion.

E.2 Principles
Supports the Shared Vision: The architecture description must be determined in such a way
as to be consistent with how one’s organization defines architecture. If the organization sees
architecture’s role as one of providing guidelines and standards for coding and product selec-
tion, the description needs to address these concerns. If the organization sees the role as the
primary driver for how systems are built (e.g., system structuring), the description needs to
meet this need. There can be no disconnect between the organization and an architect(s) on
the vision. The implications associated with this principle are far reaching. If an architect
wishes to stretch the boundaries of how he/she operates, the vision is the first place to start.
A counter-argument to this approach is for architects to construct their architectural vision
and then win over their peers. A difficult, if not impossible, task.

1 Tutorial UML World 2000, Coleman, http://www.architecture.external.hp.com/

48 CMU/SEI-2001-SR-010

E.2.1 Supports the Communication Channels

The architecture description must be determined in such as way as to meet the various stake-
holders’ needs. It needs to be described in such a way as to manage outward (e.g., business,
managers) and manage inward (developers, testers). There needs to be organizational stan-
dards that are agreed upon in order for proper communication to take place. If UML, RM-
ODP, etc. are used then all stakeholders (including peers) need to understand the language
used to communicate. The implication associated with this principle is that the architect
cannot choose languages (e.g., ADLs) indiscriminately. He/she needs to consider the audi-
ence. Consider Janis Putman’s comments in her well-written text on RM-ODP:

Be careful in the selection of a modeling tool for RM-ODP concepts. The

object modeling concepts of RM-ODP are different from those of most modeling
tools. One will need to map the concepts used from RM-ODP to those of the tool
selected2.

MCI Systemhouse authored a 40-page paper describing the mapping between RM-ODP and
UML3. A counter-argument to this approach is that who ever constructs an artifact should be
allowed to choose how (and in what language) it is constructed. Good luck to those on this
path.

E.2.2. Must Integrate with Supporting Tools

Architecture description must be more than Write-Once, Read-Once. One required property
of architecture description is that it must be enduring. As the architecture evolves, so must its
description. The implication of this principle is that it must be straightforward to keep the
description in-sync with the thing it is describing. As engineers are adverse to documenta-
tion-driven pain, this process must be as automated as possible. CASE tools, templates, word
processing and configuration management tools must be integrated to ensure that the archi-
tecture description does not die on the vine. Although the RM-ODP is compelling as a stan-
dard, the lack of tool support is even a more compelling reason to not adopt.

A counter-argument is given by Janis Putman who states

The use of a tool never replaces the needed system engineering, system analysis,
software analysis, or architecture engineering of the system. Tools are always
limited.4

This, of course, is true. Which path you take depends on which you believe to be more true.

2 Architecting with RM-ODP, Janis R. Putman, 2000
3 Relationship of the Unified Model Language with the Reference Model of Open Distributed

Computing, MCI Systemhouse, 1997.
4 Architecting with RM-ODP, Janis Putman, Chapter 4.

CMU/SEI-2001-SR-010 49

E.2.3 Must Support the Architectural Process

The architecture description must conform to the process used to construct it. The template
used for description isn’t a process, but is a starting point for a deliverable. A template
should guide engineers in creating designs that maintain the integrity of the architecture. For
example, if architectural styles are to be used in the description of the architecture (deter-
mined by a step in the process), the template used for description needs to give guidelines as
to how styles are documented and conveyed.

E.3 Qualities
The qualities of good software architecture documentation mimic the qualities of
good architecture.

E.3.1 Is Usable

The architecture description needs to support the seven rules of good software organization5.
These include:

1. Written from the viewpoint of the reader: This implies that multiple viewpoints are
needed in order to support various levels of abstraction. It should also written for ease
of reference, not ease of reading. This aspect promotes read-many versus read-once.

2. Avoids repetition. Don’t you hate it when you read an architecture document that is a re-
hash of the requirements document you just reviewed?

3. Uses a standard organization. (See Supports the Communication Channel.)

4. Records rationale. (See Is Defensible.)

5. Avoids ambiguity. (See Is Actionable and Is Testable.)

6. Remains current. How many times have you reviewed a document to later find out it
was obsolete?

7. Fits its Purpose. This is closely related to the first rule.

E.3.2 Is Actionable (or prescriptive)

Architecture must be described to the level of detail to support its construction. If architec-
ture is used to partition work, where components are to be constructed by developers, the ar-
chitecture needs to describe the interfaces and semantics to a sufficient level of detail to
minimize integration issues, communications paths, etc.

5 Software Architecture Documentation in Practice, see www.sei.cmu.edu site.

50 CMU/SEI-2001-SR-010

E.3.3 Is Testable (or precise)

An architecture needs to be testable. A box and line diagram does not an architecture make.
A level of precision is required in order to support reasoning about the architecture. The level
of precision necessary depends on the validation method.

E.3.4 Is Defensible

The architecture documentation must show how the system supports the quality aspects.
These requirements may conflict and there may be trade-offs among competing concerns.
The documentation must clearly illustrate the principles, constraints and rationale for choices
made. How many times has there been a change in architects with the new architect making
fundamental changes to the system structure? I believe that one of the main reasons for this
churn is that decisions were not clearly articulated and the vision not totally assimilated.

E.4 Good Examples

E.4.1 HP’s Architecture Template

The best example that I’ve seen for describing architecture is HP’s Architecture Template6.
This template has the advantages over others that I've seen, including Rational’s, IBM’s,
MITRE’s and our internal Blueprints. It stands out from the others in the following ways:

• It is integrated with available tools, such as Rational Rose and SoDA.

• It supports a lightweight process.

• It focuses on component models versus logical design models.

• It is a starting point for providing a "teaching" template.

• It acknowledges the fact that Architecture Documents may be overviews or reference
manuals and provides for both types and the evolution from overview to reference.

• The section on component interactions is very good. Coleman keeps true to his Fusion
roots and provides for Component Interaction Models. These models were the best as-
pects of the Fusion Process.

• The acknowledgement of the importance of Mechanisms is significant. When construct-
ing an architecture document for a recent project, I explicitly included a section on
Mechanisms and in many ways it was the most descriptive of the sections I created.

• It provides a good description of meta-architecture.

6 www.architecture.external.hp.com

CMU/SEI-2001-SR-010 51

E.4.2 Bredemeyer’s Action Guides

Dana Bredemeyer and Ruth Mulan7 formerly of HP, have done some excellent work in ex-
tending the HP process and templates. They have provided useful action guides for several
key process items, including capturing stakeholder needs, principles, and a context map.

E.4.3 Grove Graphics Graphic Guides

The Grove Consultants International7 firm has produced some useful Graphics Guides for
strategic visioning. It is nice to see that others hold the view that a vision is not a 50-page
document.

E.4.4 Applied Software Architecture.

The Applied Software Architecture8 text provides an interesting section on Global Analysis
along with a useful way to document issues and strategies.

E.4.5 Software Architecture Documentation in Practice9

The beginnings of this text are very promising.

E.4.6 RM-ODP Standard10
The RM-ODP is the definitive standard for describing distributed architectures. Its descrip-
tions are formal, precise and complete. Its coverage of distribution transparencies and func-
tions is very thorough. (I like its choice of views as they mimic the skill sets of architects that
would be responsible for their construction.)

E.4.7 State of North Carolina11

The State of North Carolina has done a very good job in describing the meta-architecture.
Their descriptions of principles, guidelines, best practices and technology component discus-
sions are some of the best documented that I’ve seen. Unlike other sites, the rationale for
their choices is clear and concise.

7 http://www.grove.com/services/tool_guides.html
8 Applied Software Architecture, Hofmeister, Nord, Soni
9 See www.sei.cmu.edu
10 See www.iso.ch
11 See http://irm.state.nc.us/techarch/archfrm.htm

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

MAY 2001

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

SEI Workshop on Software Architecture Representation, 16-17 January, 2001

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Felix Bachmann, Paul Clements, David Garlan, James Ivers, Reed Little, Robert Nord, Judy Stafford
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-SR-010

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

To further its work in architecture-related ideas, the SEI held its first Architecture Representation Workshop, 16-17,
January, 2001. Five leading software architects and practitioners were invited to discuss aspects of the architecture rep-
resentation with senior members of the SEI technical staff. The workshop articulated best practices, identified gaps in
the available technology, and set the direction for future efforts.

14. SUBJECT TERMS

architecture representation, documentation, use cases, architecture descriptions

15. NUMBER OF PAGES

64
16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	SEI Workshop on Software Architecture Representation, 16-17 January, 2001
	Contents
	Figures
	Acknowledgements
	Abstract
	1 Introduction
	2 Workshop Summary
	3 Report of Working Group #1
	4 Report of Working Group #2
	5 Conclusion
	References
	Appendix A Position Paper for SEI Software Architecture Documentation Workshop January 16-17, 2001
	Appendix B: IEEE Std 1471 and Beyond
	Appendix C: Constructing Blueprints for Product Line Platforms
	Appendix D: DREAM Framework (A Context for System Development)
	Appendix E: Position on Software Architecture Documentation

