SPECIAL REPORT
CMU/SEI-2000-SR-011

Improving
Predictability in
Embedded Real-Time
Systems

Peter H. Feiler, Software Engineering Institute
Bruce Lewis, U.S. Army Aviation and Missile Command
Steve Vestal, Honeywell Technology Center

December 2000

—_— Carnegie Mellon

—=— Software Engineering Institute

Pittsburgh, PA 15213-3890

Improving
Predictability in
Embedded Real-Time
Systems

CMU/SEI-2000-SR-011

Peter H. Feiler, Software Engineering Institute
Bruce Lewis, U.S. Army Aviation and Missile Command
Steve Vestal, Honeywell Technology Center

December 2000

Dynamic Systems Program

Unlimited distribution subject to the copyright.

This work was sponsored by the Defense Advanced Research Projects Agency and by the U.S. Army, as well as by the
Office of the Under Secretary of Defense’s Open System Joint Task Force through Curtis Royster and Col. Glen Logan.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S. Depart-
ment of Defense.

Copyright 2000 by Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract

1 Introduction

2 Need for Predictability

3 Model-Based Engineering Approach

4 MetaH: Model-Based Engineering for
Real-Time Systems

5 U.S. Army Case Study
6 Becoming a Reality
7 Summary

References

1"

15

17

19

CMU/SEI-2000-SR-011

CMU/SEI-2000-SR-011

List of Figures

Figure 1: Current Software Process
Figure 2: Architectural Engineering Process

Figure 3: Model-Based Real-Time System
Engineering

Figure 4. A Partitioned Layered Runtime
Architecture

Figure 5: Effort Comparison: Traditional vs.
MetaH Based

10

12

CMU/SEI-2000-SR-011

CMU/SEI-2000-SR-011

Abstract

This paper discusses a model-based architectural approach for improving predictability of
performance in embedded real-time systems. This approach utilizes automated analysis of
task and communication architectures to provide insight into schedulability and reliability
during design. Automatic generation of a runtime executive that performs task dispatching
and inter-task communication eliminates manual coding errors and results in a system that
satisfies the specified execution behavior. The MetaH language and toolset supports this
model-based approach. MetaH has been used by the U.S. Army in a pilot project applied to
missile guidance systems. Reduced time and cost benefits that have been observed will be
discussed as a case study. The paper closes by outlining the current state of commercial avail-
ability of such technology and efforts to develop standards, such as those put forth by the So-
ciety of Automotive Engineers (SAE); Avionics Systems Division (ASD); working group on
Avionics Architecture Description Language (AADL); and the Object Management Group
(OMGQG) Unified Modeling Language (UML) working group on real-time and performance
support in UML.

CMU/SEI-2000-SR-011 v

vi

CMU/SEI-2000-SR-011

1 Introduction

Embedded real-time systems are used today in many mission critical settings. Since they play
a crucial role they are developed through careful analysis and stringent tests. These systems
are evolving from federated systems to integrated systems and are becoming components of
larger and more complex systems. Examples include unmanned air vehicles, autonomous
robots with complex missions, and integrated automotive control.

In addition, systems are deployed using technology whose half-life is three years or less, and
in operational environments that are constantly changing. Not only do we need to scale the
analysis capabilities to handle increasing complexity, but also we need to accommodate in-
creasingly rapid change in capability and technology even in the domain of embedded real-
time systems.

In this paper we present a model-based architectural approach retaining the predictability of
real-time systems in terms of schedulability and reliability while accommodating an increas-
ing degree of flexibility to support rapid evolution. We first elaborate on the need for predict-
ability, followed by a discussion of the key concept of this engineering approach—the use of
architectural models as a key element of software development. We proceed by describing
MetaH, an architecture description language and supporting toolset for embedded real-time
systems, as an example of technology for this approach. This is followed by a case study of
the deployment of this approach and supporting technology in a pilot project at the U.S.
Army. The paper closes by summarizing current activities in the software engineering com-
munity that offer viable commercial methods and tools and supporting standards.

CMU/SEI-2000-SR-011 1

CMU/SEI-2000-SR-011

2 Predictable Real-Time System Evolution

The performance and reliability of time-sensitive systems depends significantly on the exe-
cution environment (compilers, operating systems, processors, buses, I/O devices). It is often
very expensive to rehost such systems when computing capacity is exceeded or the hardware
becomes obsolete. Embedded real-time software is particularly difficult to rehost because of
1) its tailoring and optimization to fit the limited resource footprint of the hardware and 2) the
need to support specialized device interfaces. Avionics and flight control software adds to the
complexity by requiring multilevel safety, fault tolerance, modular multiprocessor architec-
tures, and very complex multi-mode system behavior.

Because of the complexity of upgrading the software for a new processing environment, one
of the most significant risks in system development of large real-time systems, especially
avionics and flight control systems, is the problem of exceeding the computational resources
during the software development process and during the operational lifetime of the system.
Program after program has had to scale back system requirements to fit on the hardware. In-
tegration, maintenance, and upgrade costs are driven up since software must be shoehorned
into the available resources for as long as possible.

In addition, the execution capacity of many systems is not well understood. The software
system design and analysis techniques often used provide limited quantitative indication of
schedulability bounds and performance limitations early in the life cycle. Furthermore, the
impact of system changes on available resources, real-time performance, and reliability is
often not understood. Even small changes can result in unexpected and difficult-to-resolve
failures. Eventually, these changes exceed the capacity of the system.

In this age of commercial off-the-shelf (COTS) processors, and with the very rapid increase
in power of those processors, finding a higher performing processor is often not the problem.
Again, the greater difficulty is in moving the software onto a new execution platform.

The software portability problem also manifests itself in fielded systems. Military mission
critical weapons and aircraft systems typically have very long lives and must be upgraded
throughout their life cycle. Capacity on the original processors is soon exhausted, if it's not
already exhausted when fielded. Multiple processors become obsolete within the lifetime of
these systems. Millions of dollars and years of effort were spent to upgrade or re-develop the
software each time.

CMU/SEI-2000-SR-011 3

CMU/SEI-2000-SR-011

3 Model-Based Engineering Approach

Many development projects today use computers to develop and maintain their documents.
However, the software development process still imitates a manual, paper-intensive process,
where developers work on design after reading requirements documentation. Similarly, code
is produced manually from design documentation. This introduces opportunity for errors.

Even in projects that deploy tools to support detailed design, architectural design typically is
expressed as box-and-arrows charts; accompanying text specifies expected system behavior
and system quality attributes such as performance and reliability. As detailed design and im-
plementation approaches, the system is divided into computer software configuration items
(CSCI) that are developed independently. Less and less architectural context information is
available. When integration time comes, pieces do not always fit. If the development process
has poor interface control, they may not fit functionally. If quality attributes such as perform-
ance are not well documented and are not analyzed repeatedly, system behavior in terms of
these quality attributes may not be satisfactory when the system is integrated for the first time
or upgraded. This is illustrated in Figure 1.

Requirements
Analysis

Manual, paper intensive, error prone, resistant to change

Figure 1: Current Software Process

CMU/SEI-2000-SR-011 5

Integrated Project Teams alleviate some of the communication problems in this “Over-The-
Wall” approach, but still retain the problems inherent in human interpretation and translation
of documents. Although evaluations of architecture may occur with requirements modeling
tools and simulations, the results are reduced again to paper for impact on the final system
software. Modeling results tend to be disconnected from the next phase and from each other.
Multiple complex modeling languages are required, one for each system analysis area. Inte-
gration of components into a system is manual, often difficult, complex, and very expensive.
Code generation for system or component analysis is for prototyping; requirements are again
specified for human development of a traceable, testable integrated system.

In a model-based engineering process the architecture of a system is made explicit and is
visible throughout the development process (see Figure 2). The architecture is the basis for an
engineering model that allows for repeated analysis of the system from various perspectives,
starting early in the life cycle. The architectural model evolves with the system — being a key
element of the system development. As a result, the impact of changes to a system on system-
wide quality attributes can be quickly validated through re-analysis, based on the architec-
tural model. System integration is performed more smoothly as interface inconsistencies can
be identified early, as well as inconsistencies in various critical quality attributes of the sys-
tem.

N

Reguirlemfbnts System Integration
nalysis
Explicit Architecture Rap l.d Integration
Model and Analysis Predictable System
Upgradability
Design and
Implementation

Figure 2: Architectural Engineering Process

This new paradigm is based on the ability to specify a real-time system architecture in terms
of software and hardware components and their interfaces, the system execution behavior,
and its quality attributes. This architectural model is the basis for analyzing the system’s
properties and automatically building the system. This is illustrated in Figure 3. First the ar-

6 CMU/SEI-2000-SR-011

chitecture specification is used to model and analyze schedulability, reliability (fault han-
dling), and safety/security dependencies. These issues must be understood early in time- and
safety-critical systems. Once the systems engineer is satisfied with the architecture, the com-
ponents can be developed, reused from another project, or generated in parallel with incre-
mental automated integration of the system. The system is easily re-integrated through re-
generation from the specification. Early integrations may be on a workstation, where behav-
ior and system output can be validated. The final system is automatically integrated from the
specification and components, hardware and software, on the target platform where execution
behavior and results can again be validated.

Processor

Real-Time Architecture Model
Software Hardware
Architecture

o &
N
wﬁﬁ@ Bus
Design

Memory
Hand Coded Configuration
Components
T Domain
: Specific
& Signal Hardware

Processing

Figure 3: Model-Based Real-Time System Engineering

A major benefit is that the specified architecture and execution behavior are captured, not on
paper, in the heads of the designers, or in scattered databases, but in one specification that
integrates the final system and generates the executive that drives its execution. Also, a single
architectural specification is used for multiple formal analyses; therefore the system is gener-
ated compliant, with each of the models used for analysis.

Changes can be quickly made at the specification level for load balancing, scaling, timing,
message passing, shared data, new components, adding fault response modes, etc. Since the
processor, buses, or other hardware devices are part of the architecture specification, they can
quickly be changed to any from a user-expandable library. Hardware dependencies reside in
the specification and toolset rather than the application code, allowing rapid ports to new en-
vironments.

CMU/SEI-2000-SR-011 7

This model-based engineering approach can not only be used in new system development,
but also leveraged in maintenance of existing systems. Architectural modeling and analysis
can provide and document system insight. Based on this insight, the legacy system may be
reengineered to fit within the architectural model. The investment into such an effort has high
payoff, as the architectural description is reused in future maintenance activities. The U.S.
Army case study in Section 5 illustrates the use of this engineering approach in an existing
system.

8 CMU/SEI-2000-SR-011

4 MetaH: Model-Based Engineering for
Real-Time Systems

MetaH is an architecture description language originally intended for use in Avionics appli-
cations [Honeywell 98]. Specifically, it supports the description, analysis, and generation of
task and communication architectures of embedded real-time system applications. The
MetaH notation allows developers to describe an application in terms of tasks, task commu-
nication, operational modes, and composition of tasks in terms of software components,
hardware, and mapping of the software system onto the hardware [Binns 93]. Software com-
ponents themselves may have been developed by hand or by domain-specific application
generators such as SimuLink. The notation currently emphasizes support for processing of
continuous data streams such as continuous control applications, with limited support for dis-
crete event systems.

The MetaH toolset provides

e a graphical editor to create and maintain architectural models

e a suite of analysis tools including a schedulability analysis tool based on Generalized Rate

Monotonic Analysis (GRMA); a reliability analysis tool to determine the probability of
failure of a system subjected to randomly arriving faults in terms of a stochastic finite state
reliability model; and a safety analysis tool to investigate the potential of impact between
system components of different safety levels

a generation and build capability that includes a code generator for all task dispatch and
communication code in form of a MetaH executive; a system builder that combines user-
supplied components with the generated task and communication calls; and the runtime

kernel, i.e., real-time operating system, supporting the execution of the application

One key to successful embedded systems is a layered runtime architecture that supports par-
titioning—as illustrated in Figure 4. The major driver for partitioning is the dramatic reduc-
tion in initial and upgrade validation and verification (V&V) effort that can be achieved. Par-
titioning methods have been fielded and their use is spreading rapidly for civil aviation. The
use of partitioning methods to reduce certification effort is recognized in the Radio Technical
Commission for Aeronautics (RTCA) DO-178B standard, in several Aeronautical Radio, Inc.
(ARINC) standards, and by the U.S. Federal Aviation Administration (FAA) and European
Joint Aviation Authorities (JAA).

CMU/SEI-2000-SR-011 9

Software ’ Software V Software 7 Software
Component Component Component Component

MetaH Executive Fault Recovery, Execution Control, Mode

Control, Timing Control, Data Synchronization,
MetaH Kernel Interprocess Communication

Operating Environment

Embedded Hardware Target

Strong Partitioning Portability

+ Timing Protection * Application Components
+ OS Call Restrictions * Tailored MetaH Executive
* Memory Protection * MetaH Kernel

Figure 4: A Partitioned Layered Runtime Architecture

The layered runtime architecture facilitates portability in the following ways. Auto generation
allows for tailoring of the MetaH executive. The MetaH kernel is portable through use of
Ada95 and IEEE POSIX (portable operating interface standard) application programming
interface (API). Timing protection enforces timing constraints at runtime. Their enforcement
ensures validity of analysis results; i.e., a misbehaving process cannot encroach on the re-
sources granted to another process. Applications are restricted from use of operating systems
functions that are key to maintaining integrity established through the MetaH executive and
kernel. Memory protection assures the safety of one component from misbehavior of other
components by preventing access to private memory spaces.

The technology behind the MetaH stems from research started at Honeywell Technology
Center in the late 1980's. Through funding from Honeywell and two Defense Research Proj-
ect Agency (DARPA) programs—Domain Specific Software Architectures (DSSA) and
Evolutionary Design of Complex Systems (EDCS)—the technology has matured from proof
of concept to a notation and toolset that has found its way into actual use in various pilot
projects within Honeywell and other organizations. The U.S. Army Aviation and Missile
Command (AMCOM), Research Development and Engineering Center, Software Engineer-
ing Directorate (SED) has performed laboratory demonstrations and technology integration
with MetaH since 1993.

10 CMU/SEI-2000-SR-011

5 U.S. Army Case Study

This case study describes a pilot application of the MetaH technology by the U.S. Army
AMCOM SED laboratory to missile guidance systems. An existing missile guidance system,
implemented in Jovial, was reengineered to run on a new hardware platform and to fit into a
generic missile reference architecture [McConnell 96]. As part of the reengineering effort the
system was modularized and translated into Ada95. The task architecture consisting of 12-16
concurrent tasks was represented as a MetaH model and the implementation generated auto-
matically from the MetaH model and the Ada95 coded application components. The resulting
system consisted of 12,000 source lines of application component code, 3000 lines of MetaH
executive generated from the MetaH model, and 3000 lines of code representing MetaH ker-
nel services. The engineers doing the reengineering work made a conservative estimate of
effort required to reengineer the system into a pure Ada95 implementation and validated the
estimate with the prime contractor who implemented the missile.

After the initial port into Ada95 and MetaH, the application was ported several more times to
new hardware platforms as processor technology evolution continued its fast pace. These
ports included multiple ports to single and dual processor implementations of the initial target
hardware, as well as new processors, compilers, and O/S. In these successive ports the ex-
ecutables performed correctly on each target environment the first time.

Figure 5 illustrates a comparison of effort in reengineering the application into Ada95 and
performing the ports under the traditional approach (i.e., implementation in Ada95 vs. Ada95
components and a MetaH task and communication model). In both the traditional approach
and the MetaH approach, a JOVIAL-based application is translated into Ada95, then ported
to a new target platform.

CMU/SEI-2000-SR-011 11

Total project 50%, Port Phase 90%

7000

6000
4
5 5000 .|
o
I
S
S 4000
<5
(7]

3000 a

Traditional
2000 Approach
1000
Review
3-DOF
Trans- 6-DOF
late)
6DOF .
MetaH g Current form 6DOF RT Build
Missie Debug poy

Debug

Figure 5: Effort Comparison: Traditional vs. MetaH Based

The cost of the translation process from JOVIAL to Ada95 was similar in both efforts. In the
case of the MetaH effort it includes the cost of developing the MetaH specification. In the
initial reengineering effort, the MetaH approach shows payoft in the phases that address the
real-time behavior of the application (RT-6DOF, Transform, RT-Missile) and in integration
test (Debug).

The cost of the port to a new target platform (see the last step in the graph above) demon-
strates the benefit of performing an application port to a new platform based on MetaH. In the
case of the traditional approach, developers had to be concerned with code throughout the
system. In the MetaH approach, time critical behavior was reproduced through regeneration
of the system executive (including creation of new messaging across processors for the new
processing environment) code relevant to the port was localized, performance analysis early
in the port cycle allowed verification of schedulability, and components were automatically
re-integrated. Missile application reengineering including a port to a new processor at the end
of the project resulted in a 50% cost reduction over the non-MetaH approach.

MetaH-based ports to a new platform resulted in even more impressive cost savings:

e Application and MetaH kernel port. Using standards based ports, the user should be able
to port in four weeks (160 hours) with time to debug the environment and do perform-

ance tuning. Some ports require only a week. Use of MetaH resulted in a ratio of 10 to 1
reduction.

12 CMU/SEI-2000-SR-011

o Application port to existing MetaH kernel. Only a few hours were required to rebuild.
Estimated time to port these applications without MetaH is nine months. There was a ra-
tio of 60 to 1 reduction.

Latter examples include

o Single processor Pentium/Aonix/Pharlap target took 90 hours including some bug
workarounds and performance tuning. Honeywell developed and supplied the target. It
took 24 hours to come up to speed with the tools and get application code running. The
missile flew correctly the first time executed.

e Multi-processor Pentium/Aonix/Pharlap target added an additional 75 hours of Hon-
eywell labor; we discovered bug in Tundra chip impacting multi-processor control. It
took 128 hours to find, fix, and implement. The missile flew correctly when executed.

e Workstation Pentium/GNAT Ada95/NT target was available as part of toolset. It took 45
minutes to build with MetaH, compile, link, and execute. However, NT would not let the
support applications (which collected data) run. So we spent two hours creating a clock
interface to the missile so data collection could run. We validated correct flight dynamics
with flight software-in-the-loop, non-real time. Total time was less than three hours to
port application with predefined target.

e PowerPC/Green Hills/VxWorks target was developed by the user organization, SED.
Total time to install, learn, and port the MetaH toolset to the environment, and then fly,
was 36 hours. MetaH correctly constructed the application and it flew correctly the first
flight.

These are imprecise but expert estimates provided by the engineer who did the ports in
MetaH and has been doing ports for hardware-in-the-loop environments for real-time systems
for 18 years.

CMU/SEI-2000-SR-011 13

14

CMU/SEI-2000-SR-011

6 Becoming a Reality

The U.S. Navy, U.S. Air Force, the Ada Joint Program Office, and the U.S. Army Space and
Missile Defense Command have also funded MetaH related projects. The Open Systems -
Joint Task Force (OS-JTF) has funded projects using MetaH’s advanced system building ca-
pabilities for modular avionics to evaluate the IEEE POSIX API and to impact the Society of
Automotive Engineers (SAE) Avionics Systems Division Embedded Computing Systems
committee (AS-5) Generic Open Architecture (GOA) and OS API standards efforts. OS-JTF
is currently supporting the standardization of an Avionics Architecture Description Language
based on MetaH. The synergistic integration of advanced DARPA technology with industrial
standards has resulted in the cost-effective portability of MetaH—based applications as dem-
onstrated in the U.S. Army case study.

The MetaH is currently available from Honeywell under a no-fee license. A modified version
of the language and toolset was included on a ground-based testing system supplied by
NASA to International Space Station developers worldwide. To date MetaH has only been
used for advanced development and demonstration projects. Therefore a discussion of the
intended and possible uses for MetaH is somewhat speculative.

e Most of the studies, demonstrations, and technology exchanges that have involved MetaH
have been for avionics applications, both civil and military. These include International
Space Station ground-based test system, Boeing 777 flight management systems, business
jet real-time operating systems, Lockheed-Martin Joint Strike Fighter vehicle control, and
C-130 mission management system.

e Medical devices have requirements for high reliability and safety, and control systems for
some medical devices may be well suited for MetaH. Initial discussion with Siemens Re-
search Center and Guidant Corporation indicate that this market may require increased dis-
crete-event control to complement continuous control support.

e Automotive control systems, particularly power train and braking systems, seem well
suited for MetaH and have been investigated in discussions with Ford and Visteon. They
have high performance requirements (control rates of several kilohertz, higher than most
avionics systems), and stringent efficiency and size requirements due to high recurring
hardware cost. Future drive-by-wire and brake-by-wire systems will have extremely high
reliability and safety requirements.

e Robot control systems built using Honeywell MetaH tools have been demonstrated on
simulators, though not yet in actual robots. Robot control systems combine a need for real-
time execution and, in some markets, high reliability and assurance of safety. To date,
work in this area consists of one demonstration program focused on unmanned ground ve-
hicles.

e Engine control systems (jet, turbine, and automotive), seem well suited for MetaH. Like
automotive applications, they have high requirements in performance, efficiency, reliabil-

CMU/SEI-2000-SR-011 15

ity, and assurance. Applied Dynamics International is developing an interface between the
Beacon/MatLab Computer-Aided Control System Engineering (CACSE) toolset and
MetaH.

Commercial toolsets aim to support design and development of real-time applications. They
include ObjecTime (ObjecTime Ltd., Ontario, Canada)—now part of Rational Rose Real-
Time (www.rational.com), ObjectGEODE (www.verilog.fr)—recently purchased by Tele-
logic, ControlShell (www.realtimeinnovations.com), Tau (www.telelogic.com), Real-Time
Studio (www.artisansw.com), and Rhapsody (www.ilogix.com). Many of these products sup-
port design notations that have their roots in detailed design and emphasize discrete event
modeling in terms of finite state machines. Primary application domains have been in the
telecommunication arena. Capabilities for schedulability analysis are available by interfacing
with real-time modeling and analysis toolsets such as TimeWiz (www.timesys.com) or
RAPID (www.tripac.com).

This market is going through a consolidation in the form of mergers and by companies
aligning their products with the Object Management Group (OMG) standard Unified Mod-
eling Language (UML). In 1999 the OMG initiated an effort to define a UML profile for
scheduling, performance, and time with all of the key players in the method and tool commu-
nity participating [OMG 99]. In that context, an extension to UML itself to better support ar-
chitectural modeling is being considered.

The Avionics community has also recognized the need for better modeling support for em-
bedded real-time systems. In the Fall of 1998 the Society of Automotive Engineers (SAE)
Aerospace Avionics Systems Division (ASD) Embedded Computing Systems committee
(AS-5) initiated a working group to investigate the standardization of an Avionics Architec-
ture Description Language (AADL) [www.sae.org/technicalcommittees/aasd.htm]. This
community brings a strong avionics systems development perspective to the table. MetaH
was chosen as a starting point of discussion. In 2000 this has become a full-fledged subcom-
mittee. A requirements document has been balloted and work is starting on the language
standard document itself. An effort is being made to align its evolution with progress in the
standardization of real-time UML.

16 CMU/SEI-2000-SR-011

7 Summary

In this paper we have examined an approach for model-based engineering of embedded real-
time systems. This approach leverages architectural modeling of real-time aspects of a system
by supporting analysis of schedulability, performance, and reliability. The approach also sup-
ports automatic generation of runtime executives specific to the application, and system build
of the complete system from developer-supplied components and the generated executive.

We have demonstrated the practicality of this approach in the context of MetaH, a real-time
system architecture description language and supporting toolset for analysis and generation.
A U.S. Army AMCOM case study has demonstrated the benefits of deploying such technol-
ogy to existing systems. These benefits include system analysis and validation of non-
functional properties, such as timing and performance, early in the life cycle; separation of
concerns regarding functionality of the application and the real-time behavior in terms of task
dispatching and communication; and automatic generation of executive code from the model
against commercial and standard runtime environments, such as IEEE POSIX conformant
real-time operating systems or language runtime systems such as Ada95. This has resulted in
a major reduction in cost for porting embedded applications to new hardware configurations
and platforms.

The software engineering community has recognized the need for model-based engineering
of real-time systems and has initiated standards efforts through SAE and OMG to put the ap-
propriate technology infrastructure in place.

CMU/SEI-2000-SR-011 17

18

CMU/SEI-2000-SR-011

References

[Binns 93]

[Honeywell 98]

[McConnell 96]

[OMG 99]

Binns, Pam & Vestal, Steve. “Scheduling and Communication in
MetaH,” IEEE Real-Time Systems Symposium. Raleigh-Durham
NC, December 1993.

Honeywell, Inc. MetaH Product Information. Available
URL:<http://www.htc.honeywell.com/metah/prodinfo.html>

McConnell, David J.; Lewis, Bruce; & Grey, Lisa. “Re-engineering
a Single Threaded Embedded Missile Application Onto a Parallel
Processing Platform Using MetaH,” Proceedings of 4" Interna-
tional Workshop on Parallel and Distributed Real-Time Systems.
Honolulu, HI, April 1996.

The Object Management Group. RFP: UML Profile for Scheduling,
Performance, and Time. (OMG Document ad/99-03-13) Framing
ham, MA: March 1999. Available URL:<http://www.omg.org/cgi-
bin/doc?ad/99-03-13.pdf>

CMU/SEI-2000-SR-011

19

http://www.htc.honeywell.com/metah/prodinfo.html
http://www.omg.org/cgi-bin/doc?ad/99-03-13.pdf
http://www.omg.org/cgi-bin/doc?ad/99-03-13.pdf

20

CMU/SEI-2000-SR-011

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave Blank) December 2000 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Improving Predictability in Embedded Real-Time Systems F19628-00-C-0003

6. AUTHOR(S)
Peter H. Feiler, Bruce Lewis, Steve Vestal

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2000-SR-011
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
HQ ESC/XPK REPORT NUMBER
5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
This paper discusses a model-based architectural approach for improving predictability of performance in embedded
real-time systems. This approach utilizes automated analysis of task and communication architectures to provide insight
into schedulability and reliability during design. Automatic generation of a runtime executive that performs task dis-
patching and inter-task communication eliminates manual coding errors and results in a system that satisfies the speci-
fied execution behavior. The MetaH language and toolset supports this model-based approach. MetaH has been used
by the U.S Army in a pilot project applied to missile guidance systems. Reduced time and cost benefits that have been
observed will be discussed as a case study. The paper closes by outlining the current state of commercial availability of
such technology and efforts to develop standards, such as those put forth by the Society of Automotive Engineers
(SAE); Avionics Systems Division (ASD); working group on Avionics Architecture Description Language (AADL); and
the Object Management Group (OMG) Unified Modeling Language (UML) working group on real-time and performance
support in UML.

14. SUBJECT TERMS 15. NUMBER OF PAGES
model-based architectural approach, improving predictability, real-time systems, 20
MetaH

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

20. LIMITATION OF ABSTRACT
uL

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

CMU/SEI-2000-SR-011

21

	Table of Contents
	List of Figures
	Introduction
	Predictable Real-Time System Evolution
	Model-Based Engineering Approach
	MetaH: Model-Based Engineering for Real-Time Systems
	U.S. Army Case Study
	Becoming a Reality
	Summary

