
Quality Attribute
Workshop
Participants
Handbook

Mario R. Barbacci

Robert J. Ellison

Charles B. Weinstock

William G. Wood

January 2000

SPECIAL REPORT
CMU/SEI-2000-SR-001

���������	�

��
��������	
��������	��������
Pittsburgh, PA 15213-3890

Quality Attribute
Workshop
Participants
Handbook

CMU/SEI-2000-SR-001
ECS-SR-2000-01

Mario R. Barbacci

Robert J. Ellison

Charles B. Weinstock

William G. Wood

Unlimited distribution subject to the copyright.

January 2000

Architecture Tradeoff Intitiative

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in
the interest of scientific and technical information exchange.

FOR THE COMMANDER

Joanne E. Spriggs
Contracting Office Representative

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright © 2000 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should
be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
52.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our
Web site (http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2000-SR-001 i

Table of Contents

Introduction 1
Roadmap Activities 2
Roadmap Inputs and Tools 3

Questions, Scenarios, and Quality Attributes 5
Questions 5
Scenarios 6
Quality Attributes 7
Generic Questions 8
Generic Questions - Apply to all Attributes 8

Dependability 9
Stimulus 9
Response 10
Architecture 10
Dependability Stimulus 12
Dependability Response 12
Dependability Architecture Mechanisms 13
Dependability Questions 14
Dependability Scenarios 15

Security 17
Stimulus 17
Response 18
Architecture 18
Security Stimulus 20
Security Response 20
Security Architecture Mechanisms 21
Security Questions 22
Security Scenarios 23

Modifiability 25
Stimulus 25
Response 26
Architecture 26
Modifiability Stimulus 27
Modifiability Response 27
Modifiability Architecture Mechanisms 28

ii CMU/SEI-2000-SR-001

Modifiability Questions 29
Modifiability Scenarios 30

Interoperability 31
Stimulus 31
Response 31
Architecture 32
Interoperability Stimulus 33
Interoperability Response 33
Interoperability Architecture Mechanisms 34
Interoperability Questions 35
Interoperability Scenarios 36

Performance 37
Stimulus 37
Response 37
Architecture 38
Performance Stimulus 39
Performance Response 39
Performance Architecture Mechanisms 40
Performance Question 41
Performance Scenarios 42

References 43

CMU/SEI-2000-SR-001 iii

List of Figures

Roadmap Activities 2

iv CMU/SEI-2000-SR-001

CMU/SEI-2000-SR-001 v

List of Tables

Generic Questions - Apply to all Attributes 8

Dependability Stimulus 12

Dependability Response 12

Dependability Architecture Mechanisms 13

Dependability Questions 14

Dependability Scenarios 15

Security Stimulus 20

Security Response 20

Security Architecture Mechanisms 21

Security Questions 22

Security Scenarios 23

Modifiability Stimulus 27

Modifiability Response 27

Modifiability Architecture Mechanisms 28

Modifiability Questions 29

Modifiability Scenarios 30

Interoperability Stimulus 33

Interoperability Response 33

Interoperability Architecture Mechanisms 34

Interoperability Questions 35

Interoperability Scenarios 36

Performance Stimulus 39

Performance Response 39

Performance Architecture Mechanisms 40

Performance Question 41

Performance Scenarios 42

vi CMU/SEI-2000-SR-001

CMU/SEI-2000-SR-001 vii

Abstract

In large software systems, the achievement of qualities such as performance, security, and
modifiability is dependent not only on code-level practices but also on the overall software
architecture. Thus, it is in developers’ best interests to determine, at the time a system’s soft-
ware architecture is specified, whether the system will have the desired qualities.

With the sponsorship of the U.S. Coast Guard’s Deepwater Acquisition Project the SEI has
developed the concept of a “Quality Attribute Workshop” in which system stakeholders focus
on the analysis and evaluation of system requirements and quality attributes. The purpose of
the workshop is to identify scenarios from the point of view of a diverse group of stakeholders
and to identify risks (e.g., inadequate performance, successful denial-of-service attacks) and
possible mitigation strategies (e.g., replication, prototyping, simulation). Stakeholders include
architects, developers, users, maintainers, and people involved in installation, deployment,
logistics, planning, and acquisition. This special report describes the process we use to conduct
a workshop, information required, suggested tools, and expected outcomes of a workshop.

viii CMU/SEI-2000-SR-001

CMU/SEI-2000-SR-001 1

1 Introduction

In large software systems, the achievement of qualities such as performance, availability, secu-
rity, and modifiability is dependent not only upon code-level practices (e.g., language choice,
detailed design, algorithms, data structures, and testing), but also upon the overall software
architecture. Quality attributes of large systems can be highly constrained by a system’s soft-
ware architecture. Thus, it is in our best interest to try to determine at the time a system’s soft-
ware architecture is specified whether the system will have the desired qualities.

A variety of qualitative and quantitative techniques are used for analyzing specific quality
attributes [Barbacci 95, Barbacci 96, Rushby 93]. These techniques have evolved in separate
communities, each with its own vernacular and point of view, and have typically been per-

formed in isolation.1 However, the attribute-specific analyses are interdependent; for example,
performance affects modifiability, availability affects safety, security affects performance, and
everything affects cost. In other words, achieving a quality attribute can have side effects on
other attributes [Boehm 78]. These side effects represent dependencies between attributes and
are defined by parameters that are shared among attribute models. If we can identify these side
effects, the results from one analysis can feed into the others.

Quality-attribute goals, by themselves, are not definitive enough either for design or for evalu-
ation. They must be made more concrete. Using modifiability as an example, if a system can
be easily adapted to have different user interfaces but is dependent upon a particular operating
system, is it modifiable? The answer is that it depends on what modifications are expected to
the system over its lifetime. That is, the abstract quality goal of modifiability must be made
concrete. The same observation is true for other attributes.

This workshop is intended as a forum for the discussion of quality attributes and their evalua-
tion. It is important to point out that we will not aim at an absolute measure of “architecture
quality”; rather our purpose is to identify scenarios from the point of view of a diverse group
of stakeholders (e.g., the architect, developers, users, sponsors) and to identify risks (e.g.,
inadequate performance, successful denial-of-service attacks) and possible mitigation strate-
gies (e.g., prototyping, modeling, simulation).

1. Emerging international standards might eventually bring some clarity to the field [IEEE-610.12, IEEE-1061, ISO-9126]

2 CMU/SEI-2000-SR-001

1.1 Roadmap Activities

Figure 1 illustrates the Quality Attribute Roadmap, the process we will use to discover and
document quality attribute risks, sensitivity points and tradeoffs in the architecture, where

• Risks are architecture decisions that might create future problems for some quality
attribute requirement.

• Sensitivity points are architecture parameters for which a slight change makes a signifi-
cant difference in some quality attribute.

• Tradeoffs are architecture parameters affecting more than one quality attribute.

Scenario generation takes place during a facilitated brainstorming process; stakeholders pro-
pose scenarios that test the effectiveness of a C4ISR architecture to achieve specific quality
attributes within a specific Deepwater mission and geographic context. For prioritization, each
stakeholder is assigned a number of votes that she can allocate as desired.

During scenario analysis, for each of the high-priority scenarios, the stakeholders choose an
appropriate architectural style or architectural fragment as an artifact for analysis, and apply
the scenario to the artifact. The purpose of the analysis is to identify important architecture

decisions and sensitivity points.1

1. As a result of this activity, the stakeholders might decide to conduct additional, more detailed or formal analyses of the sce-
narios or artifacts, but these activities take place off-line, not during the workshop.

Refined
scenarios

Prioritized
scenarios

Tradeoff
alternatives

Scenario
analysis

Tradeoff
and risk
identification

DecisionsScenario
generation

Inputs: Architecture requirements, documentation, styles, stakeholder points of view,...
Tools: Quality attributes taxonomies, questions, scenarios,...

Design
decisions

Figure 1: Roadmap Activities

CMU/SEI-2000-SR-001 3

During tradeoff and risk identification, the stakeholders use the results of the analysis activity
to identify and document risks i.e., potential future problems that might impact cost, schedule,
or quality attributes of the system. Scenarios to consider include

• single scenario that involves two attributes explicitly or implicitly

• multiple scenarios about different attributes sharing common factors (e.g., resources, pro-
tocols)

• multiple contradictory scenarios

1.2 Roadmap Inputs and Tools

We use various sources as inputs for the activities: architecture documentation, stakeholder
points of view, and architecture styles.

Since there are no generally accepted, industry-wide standards for describing a system archi-
tecture, the types of questions and scenarios that can be generated are often constrained by the
available documentation. In the case of systems documented using the C4ISR Architecture
Framework [C4ISR 97], different products or collections of products will differ in their rela-
tive value for generating quality attribute-specific scenarios [Barbacci 99]. Depending on the
quality attributes of concern, C4ISR products might have to be complemented with additional
documents, to address quality attributes concerns that are underrepresented in the framework
products.

The stakeholders generate, prioritize, and analyze the scenarios, and identify tradeoffs and
risks from their point of view, depending on the role they play in the development of the sys-
tem, and their expertise on specific quality attributes. In addition to the architect(s), we assume
to have participating representative users, developers, and maintainers. Additional participants
might include people involved in installation, deployment, logistics, planning, acquisition, etc.

As an additional input source, we try to identify known architectural styles because they can
expedite the process. Architecture styles are abstractions such as “Client/server,” “publish/
subscribe,” “shared memory,” “layered,” “pipe and filter” that can be used as drivers for the
analysis by having “canned” scenarios, known tradeoffs, and likely risks. The results of the
analysis would depend on what architecture styles are used.

Finally, we use a collection of tools during the roadmap activities. These tools are described in
detail in the remainder of the handbook. However, bear in mind that the sample taxonomies,
questions, and scenarios in this handbook show a greater level of detail than expected at this
stage. Taxonomies, questions, and scenarios used during the workshop exercises will adapt to
the level of detail available.

4 CMU/SEI-2000-SR-001

CMU/SEI-2000-SR-001 5

2 Questions, Scenarios, and Quality
Attributes

There is a collection of tools and techniques that we use to perform a quality attribute analysis.
These come under different labels, e.g., screening questions or exploratory scenarios. While
we seem to have an intuitive understanding of what we mean by the terms, it is necessary to be
more precise to ensure that a) we share the same understanding and b) we can decide what
tools to use and when to use them.

2.1 Questions

We use various types of questions to collect and analyze information about current and future
system drivers and architectural solutions.

1. Screening questions are used to quickly narrow or focus the scope of the evaluation.
They are about what is important to the stakeholders.

- Screening questions are qualitative, and the answers are not necessarily precise or
quantifiable. The emphasis is on expediency, on “separating the wheat from the
chaff.”

- Screening questions can be driven by a quality attribute deemed important to some
stakeholders. Sometimes the attribute is clear and explicit (e.g., “the service must be
continuous” identifies availability and security as the quality attributes of concern).
Sometimes the attribute is implied (e.g., “life cycle cost must be minimal” suggests
modifiability and interoperability as the relevant quality attributes).

- Screening questions can also be driven by a subsystem or a service deemed important
to achieve a quality attribute. For example, once an important attribute is identified by
the stakeholders, screening questions can be used to narrow or focus on subsets of the
architecture that are relevant to achieving the attribute (e.g., the user authentication
subsystem, the message filtering and distribution subsystem).

2. Elicitation questions are used to gather information to be analyzed later. They are about
how a quality attribute or a service that was identified as important is achieved by the sys-
tem.

- Elicitation questions collect information about decisions made, and the emphasis is on
extracting quantifiable data.

6 CMU/SEI-2000-SR-001

- Elicitation questions can be driven by an attribute model. The reason to ask for some
quality attribute-specific information is because the answer is a parameter of an
attribute model (e.g., message arrival rates are parameters in a model of throughput,
repair rates are parameters in a Markov model of availability). These elicitation ques-
tions are guided by stimulus/response branches of the quality attribute tables.

- Elicitation questions can also be driven by architecture styles. The reason to ask for
some architectural information is because the answer is important to determine the
“quality” of a particular architecture style choice (e.g., individual latencies are
required to compute the performance of a pipe-and-filter architecture). These elicita-
tion questions are guided by architecture mechanism branch of the quality attribute
tables.

3. Analysis questions are used to conduct analysis using attribute models and information
collected by elicitation questions. Analysis questions refine the information gathered by
elicitation.

There is an implied ordering in the questions (i.e., Screening > Elicitation > Analysis)
although questioning can be carried out in breadth-first or depth-first order:

1. Breadth-first questioning first identifies all important attributes and subsets of the archi-
tecture and then for each one, elicits all the information that will be used later for analysis.

2. Depth-first questioning dives deep into any attribute or subset of the architecture identi-
fied as important before other attributes or subsets of the architecture are considered.

Either order can be used, and the decision might be opportunistic. During a discovery or early
analysis exercise, breadth-first might be more appropriate; during an evaluation or detailed
analysis exercise depth-first might be more appropriate.

The results of questioning techniques are captured in a “utility tree” that shows the attributes
of concern in sufficient detail to allow generation of appropriate scenarios.

2.2 Scenarios

Scenarios are used to exercise the architecture against current and future situations. It is impor-
tant to distinguish these scenarios from the Modeling and Simulation Master Plan (MSMP)
scenarios. The latter are about the operational effectiveness of IDS in performing Coast Guard
missions over extended period of time. The quality attribute scenarios are a test of effective-
ness of the C4ISR architecture with respect to quality attributes. Thus the scenarios we use are
not at the level of IDS missions but at the level of software and hardware systems, subsystems
and components.

There are several types of scenarios:

CMU/SEI-2000-SR-001 7

1. Use case scenarios reflect the normal state or operation of the system. If the system is yet
to be built, these would be about the initial release.

2. Growth scenarios are anticipated changes to the system. These can be about the execu-
tion environment (e.g., double the message traffic) or about the development environment
(e.g., change message format shown on operator console).

3. Exploratory scenarios are extreme changes to the system. These changes are not neces-
sarily anticipated or even desirable situations. Exploratory scenarios are used to explore
the boundaries of the architecture (e.g., message traffic grows 100 times, replace the oper-
ating system).

The distinction between growth and exploratory scenarios is system or situation dependent.
What might be anticipated growth in a business application might be a disaster in a deep space
probe (e.g., 20% growth in message storage per year).

There are no clear rules other than stakeholder consensus that some scenarios are likely (desir-
able or otherwise) and other scenarios are unlikely (but could happen and, if they do, it would
be useful to understand the consequences).

2.3 Quality Attributes

The quality attributes are characterized by stimuli, responses, and architectural decisions that
link them. Stimuli and responses are the activities (operational or developmental) that exer-
cise the system and the observable effects, respectively. For example, a stimuli could be
“change the operating system,” and the response(s) could include “effort to implement,”
“number of subsystems affected,” etc.

Scenarios and questions contain explicit or implied attribute stimulus/response/mechanisms
deemed important. Scenarios and questions might raise doubts or concerns regarding some
aspect of the architecture about which we might have to elicit further information to conduct a
more detailed analysis. They serve to identify potential risks, where risks can arise from deci-
sions made (e.g., choice of middleware) as well as decisions not yet made (e.g., message
encoding).

The ordering of the generation of scenarios and questions can alternate. For example, screen-
ing questions can identify regions of stimuli/responses as sources of use case scenarios which
in turn might suggest questions about architecture mechanisms involved in the scenario. For
example, a screening question might identify message throughput as important, and a scenario
about message throughput would identify the components involved in the message path. The
capacity or speed of some components might be questionable, prompting further elicitation
questions: e.g., time required to process a message or choice of queueing policy.

8 CMU/SEI-2000-SR-001

2.4 Generic Questions

These generic questions are suggested as starting points. They must be instantiated for each
quality attribute as seeds for additional questions about stimuli, response, or architecture
mechanisms.

In addition to these questions, we expect to have between five and seven additional questions
for each attribute. The additional questions should be scattered around the specific attribute
stimuli, responses, and architecture mechanisms.

The questions are not meant to be exhaustive; rather they are meant to serve as starting points
and as examples for stakeholders to generate additional questions about the quality attribute
requirements and the system.

Table 1: Generic Questions - Apply to all Attributes

Question Type No,

R
eq

ui
re

m
en

ts Which are the important services (i.e., services important for
some quality attribute requirement)?

Screen 1.

What services can operate in degraded modes? Screen 2.

F
or

 im
po

rt
an

t
se

rv
ic

es

What are these degraded modes (e.g., X% speed, no training
allowed, online upgrade)?

Elicitation 3.

What are the conditions or events that might lead to a service
degradation (e.g., message sent at the wrong time, incorrect
operator action, supplier going out of business)?

Elicitation 4.

What are the consequences of not meeting the quality require-
ments in various degraded modes (e.g., catastrophe, annoyance,
minor inconvenience)?

Analysis 5.

F
or

 o
th

er

se
rv

ic
es

Are there important services that depend on a non-important
service?

Elicitation 6.

What are the consequences to an important service from the low
quality of a non-important service? (e.g., personal email might
not be important except that it might be assumed to exist in an
important service like training).

Analysis 7.

CMU/SEI-2000-SR-001 9

3 Dependability

Dependability is defined as “that property of a system such that reliance can justifiably be
placed in the service it provides”[Laprie 92]. Depending on the intended application of the
system, different emphasis might be placed on different measures of dependability such as
availability, the system’s readiness for delivery of service, or reliability, the systems’s continu-
ity of service.

3.1 Stimulus

The stimuli are the faults that affect the availability of the system. When a fault propagates
across a predetermined boundary, the fault is said to cause a failure.

The definition of fault/failure is recursive -an internal component fault might cause a container
component failure and this failure is just a fault inside a bigger container. A fault does not nec-
essarily propagate and cause a failure - it might disappear without trace (e.g., by overwriting
an incorrect variable) or it might stay latent and cause a failure at a later time (e.g., by using an
uncorrected, wrong value of a variable some time after the incorrect assignment).

Faults can be classified by their origin as1

• Internal faults - these arise inside a component of the system and propagate to other com-
ponents and possibly to the environment.

• External faults - these arise in the environment and propagate into system components.

Fault can be classified by their types as

• Timing faults - these are expressed as deviations in time (e.g., an event is early or late).

• Value faults - these are expressed as deviations in value (e.g., a value is outside bounds).

• Resource faults - these are expressed as deviations in resource utilization (e.g., a queue
overflows).

• Halting faults - these are extreme cases of timing faults (e.g., an event is never seen).

1. The fault origin corresponds to the “source” node in the performance attribute stimuli. Although the questions might be sim-
ilar, the effects and the analyses thereof are different.

10 CMU/SEI-2000-SR-001

Faults can be further classified by the amount of time they are active as Permanent or Tem-
porary and by their frequency regularity as Periodic or Aperiodic. The latter corresponds to
the “frequency regularity” in the performance stimuli. Although the questions might be simi-
lar, the effects and the analyses thereof are different.

For purposes of documentation, faults can be further classified by the cause (physical, human
generated), nature (accidental, intentional but not malicious, intentional and malicious), and
the time of occurrence (during development, during operation).

3.2 Response

The response is measured in terms of the availability of the services or modes of operation. A
system can operate in various degraded modes, and the response for each mode of operation
has to be calculated separately.

The service availability is expressed in terms of

• Overall availability - Fraction of time that the system is working.

• Instant availability - Probability P(t) that the system is working at time t.

• Failure rates - Number of failures per unit time.

• Repair rates - Number of repairs per unit time.

The failure domains are similar to fault domains, but they are not correlated; a fault of a given
type (e.g., timing) can lead to a failure of a different type (e.g., halting). The perception of the
failure by different observers (systems or humans) can be Consistent (all observers see the
same failure) or Inconsistent (observers see different failures, including no failure at all).

For purposes of documentation, failures can be further classified by their consequence
(benign, catastrophic).

3.3 Architecture

There are two architecture mechanisms to consider depending on whether the detection/con-
tainment/correction actions take place during the operation of the system (fault tolerance)
[Heimerdinger 92, Jalote 94] or during the development of the system (fault avoidance).

Fault tolerance resources that might be consumed by the detection, containment, and recovery
actions for each identified failure can be classified as

• computation (e.g., replicated processors, repeated and redundant operations, additional
checking steps)

CMU/SEI-2000-SR-001 11

• storage (e.g., replicated data and state, saved messages pending acknowledgments)

• communication (e.g., replicated paths, repeated transmissions).

Fault tolerance methods that might be implemented include

• Detection actions are expressed in terms of the types of faults observable in different
components or resources. Faults can change their type as they propagate (e.g., a value fault
injected into a component might emerge later on as a timing fault). It helps to know the
types the fault can assume and the locations where the fault could be detected because
there might be alternative strategies for containment and recovery.

• Containment and recovery actions are expressed in terms of locality and degradation of
service. It helps to know what containment or repair actions can occur because the system
might be degraded and certain obligations might not be met (the system might be degraded
in different ways before, during, and after the repair action).

Fault avoidance methods include fault prevention, fault removal, and fault forecasting.

• Fault prevention simply applies techniques for avoiding the introduction of faults into the
system in the first place. An example of a fault prevention technique is the peer design
review. Inevitably though, faults will end up in the system, despite prevention attempts.

• Fault removal is concerned with eliminating them from the system before they can be
triggered during operation. There are three steps to fault removal:

- verification - the process of checking whether the system adheres to its requirements
or other verification conditions.

- diagnosis - necessary if the system does not pass its verification conditions. Diagnosis
is used to determine why it is not passing those conditions.

- correction - applied to fix the problem once it has been diagnosed.

Once a fault has been corrected, the entire process should be repeated to ensure that the
removal process has not caused further problems. Fault removal techniques span the
whole spectrum from unit testing to formal verification of critical portions of the system.

• Fault forecasting is concerned with determining how the resulting system is likely to fail.
Fault forecasting is either qualitative (e.g., a failure modes and effects analysis-FMEA, or
a fault tree analysis) or quantitative (as measured by predicted reliability and availabil-
ity).

12 CMU/SEI-2000-SR-001

Table 2: Dependability Stimulus

Table 3: Dependability Response

Stimulus (Faults) 1.
Performance: Stimulus/source 2.
Performance: Stimulus/frequency regularity 3.
type 4.

timing 5.
value 6.
resource 7.
halting 8.

persistence 9.
permanent 10.
temporary 11.

Response (Failures) 1.
service availability 2.

overall availability 3.
instant availability 4.
failure rate 5.
repair rate 6.

failure domain 7.
value 8.
timing 9.
resource 10.
halting 11.

failure perception 12.
consistent 13.
inconsistent 14.

CMU/SEI-2000-SR-001 13

Table 4: Dependability Architecture Mechanisms

Architecture 1.
fault tolerance 2.

resources 3.
computation 4.
storage 5.
communication 6.

methods 7.
detection 8.
diagnosis 9.
containment 10.
recovery 11.

fault avoidance 12.
prevention 13.
removal 14.

diagnosis 15.
correction 16.
verification 17.

forecasting 18.
qualitative 19.
quantitative 20.

14 CMU/SEI-2000-SR-001

Table 5: Dependability Questions

Question Type No.
R

eq
ui

re
m

en
ts Which are the important services (i.e., services whose availabil-

ity is important)?
Screen 1.

Which of these services can operate in degraded modes (i.e.,
have varying levels of availability)?

Screen 2.

F
or

 I
m

po
rt

an
t

S
er

vi
ce

s

What are these degraded modes (e.g., up/down, available 50%
of the time)?

Elicitation 3.

What are the conditions or events that might lead to a service
degradation (e.g., message sent at the wrong time, incorrect
operator action, broken connection)?

Elicitation 4.

What are the consequences of not meeting the quality require-
ments in various degraded modes (e.g., catastrophe, annoyance,
minor inconvenience)?

Analysis 5.

F
or

 O
th

er

S
er

vi
ce

s

What are the consequences to an important service of the low
quality of a non-important service? For example, an important
service like training might assume the existence of a non-impor-
tant service like personal email for backup course delivery.

Analysis 6.

St
im

ul
us

/
R

es
po

ns
e

What faults can occur in each component or connection
involved in a service?

Elicitation 7.

What services can not be allowed to fail (e.g., authentication
services)?

Elicitation 8.

M
ec

ha
ni

sm
s:

F
au

lt
 T

ol
er

an
ce

:

What failure detection techniques are used, if any, for each fail-
ure mode of a component/connection (e.g., majority voting,
leadership)?

Elicitation 9.

How is a failure or degradation of the service perceived or
noted?

Analysis 10.

What kind of fault recovery techniques are used, if any, for each
failure mode of a component/connection (e.g., compensation,
reconfiguration)?

Screen 11.

Could the recovery action introduce new faults (e.g., flushing a
queue to recover from running out of memory might lead to tim-
ing errors in components waiting for the flushed items)?

Analysis 12.

M
ec

ha
ni

sm
s:

F
au

lt
 A

vo
id

an
ce

For each component or subsystem, what techniques are used to
ensure that the design is as fault-free as possible (e.g., modeling,
simulation, prototyping, formal verification, peer reviews)?

Elicitation 13.

What architectural mechanisms are in place to facilitate testing? Elicitation 14.

How do you determine when a component or subsystem has
been sufficiently tested?

Analysis 15.

How do you measure the expected reliability/availability of the
completed system?

Analysis 16.

CMU/SEI-2000-SR-001 15

Table 6: Dependability Scenarios

Scenario Type No.

One processor or server goes down during operation. Half of the proces-
sors or servers go down during operation. The network fails during oper-
ation. One or more input devices fail during operation.

explor-
atory

1.

In a distributed system, change the processor on which a specific piece
of software runs because of a processor failure.

use case 2.

Degraded operation mode: A user wants to continue to operate the sys-
tem (perform useful work) in the presence of one of the following kinds
of failures: database server, application server, or partial network failure.

use case 3.

The requirements for a subsystem change, and it now has to operate for
24 hours a day, 7 days a week.

explor-
atory

4.

Error notification: The user wants to define exception conditions corre-
sponding to the data, have the system notify a defined list of recipients
by email of the existence of an exception condition, and have the system
display the offending conditions in red on data screens.

use case 5.

16 CMU/SEI-2000-SR-001

CMU/SEI-2000-SR-001 17

4 Security

Security risks can take several forms [Howard 98]. Some risks exist because of the lack of
complete knowledge about the environment. Such risks include

• Use of COTS components. Such components may not support security as a critical prop-
erty. The vulnerabilities of widely used components are also well known to the attacker
community.

• Network connections to non-Coast Guard administrated systems. There may be an implied
trust of some outside networks so that a successful attack on such a trusted system could
make it easier to attack Coast Guard systems.

• General Internet connectivity by employees.

• Multiplicity of users. It can be hard to distinguish “inside” and “outside” users. Account
management may be distributed and may not be totally under Coast Guard control.

Other risks may be associated with a particular architecture. Such risks include

• Single points of failure which could be the target of an attack.

• Commonality of components, i.e., a specific vulnerability can be applied against multiple
system components or at multiple sites.

• Recovery is too complex, takes too long or requires closely coordinated actions at multiple
sites.

• The impact of an attack is not easily contained.

4.1 Stimulus

The stimulus for the security attribute are potential attacks. An attack requires internal or
external access and has an specific intent or objective. The specific target will usually depends
on the objective of the attacker. Given an objective, an attacker will scan a system and design
the attack to take advantage of existing vulnerabilities. Specific vulnerabilities in an operating
system or in applications are relatively short-lived, but at any given time, there can be system
weaknesses which the attacker can exploit.

Some attacks will require internal access to assume the identify of a user in order to obtain
access to information. Other attacks such as flooding a network or introducing an electronic
mail virus can be done with only external access to a system.

18 CMU/SEI-2000-SR-001

The attack’s intent might include criminal, political, or financial gain to a person or organi-
zation as well as the increased status for an individual that is often associated with a com-
puter security breech. The political motivation could be to embarrass the Coast Guard.

A single attack may be part of a larger goal. Many attacker’s objective is to get increased sys-
tem access to launch a more damaging attack against the site or be able to attack another site.
Thus an attack on a site may begin with attacks on sites which the target site normally trusts.
Theft of resources in this context is use of computing resources to support non-Coast Guard
activities. The remaining impacts are availability, integrity, and confidentiality.

4.2 Response

The responses concentrate on the impact of the attack rather than the details of a specific
attack.

4.3 Architecture

The architectural mechanisms consists of security services to counter the threats. The mecha-
nisms are grouped in three areas: resistance, recovery, and recognition.

Resistance includes

• Access control - user authorization for access to specific data or functions

• Strong user and system authentication - use of technology such as public key certificates
to provide authentication of both users and systems

• Administrative procedures - includes review of modifications, deployment of new
equipment, purchasing guidelines

• Operational security - system and network administration, responsibilities of operators
and system administrators

• Dispersion - resources and essential not concentrated physically in one or a limited num-
ber of locations (includes redundancy of resources)

• Diversity - independent implementation of critical resources to avoid vulnerabilities com-
mon to most components

• Encryption - use of symmetric key and public key encryption

• Strong configuration management and inventory of both resources of and data - proce-
dures for restoration of compromised systems

• Network boundaries - firewalls, proxy servers, boundary controllers between domains
with differing security policies

CMU/SEI-2000-SR-001 19

Recovery includes

• Alternative services - identification of alternate means to meet the mission

• Auditing - recording both user and system actions so as to identify impact

• Data backup and restoration - identification of data, procedures, and recovery times

• Reduced services - continuation of service under attack but with reduced performance or
function

Recognition includes

• Auditing - recognition of attack by impact on data and operations

• Configuration management - recognition of attack by changes in configurations

• Network monitoring - incident detection

20 CMU/SEI-2000-SR-001

Table 7: Security Stimulus

Table 8: Security Response

Stimulus (attack) 1.
access 2.

internal 3.
external 4.

intent 5.
criminal 6.
increased status 7.
financial 8.
political 9.

target 10.
data 11.
network 12.
components 13.
computers 14.

Response (impact) 1.
increased access 2.
disclosure of information 3.
denial of service 4.
theft of resources 5.
corruption of information 6.

CMU/SEI-2000-SR-001 21

Table 9: Security Architecture Mechanisms

Architecture 1.
resistance 2.

access control 3.
user and system authentication 4.
administrative procedures 5.
operational security 6.
dispersion 7.
diversity 8.
encryption 9.
configuration management 10.
network boundaries 11.

recovery 12.
alternate services 13.
auditing 14.
data backup and restoration 15.
function with reduced services 16.

recognition 17.
auditing 18.
configuration management 19.
network monitoring 20.

22 CMU/SEI-2000-SR-001

Table 10: Security Questions

Question Type No.
R

eq
s. What are the trusted entities in the system and how do they com-

municate?
Screen 1.

St
im

ul
us

/
R

es
po

ns
e

Which essential services could be significantly impacted by an
attack?

Analysis 2.

Are there attacks or events which could impact a service across
the entire Integrated Deepwater System?

Analysis 3.

Is there a single point from which the entire system is con-
trolled?

Analysis 4.

For which kind of attacks will recovery be the most difficult? Analysis 5.

R
es

is
ta

nc
e/

R
ec

ov
er

y/
R

ec
og

ni
ti

on

How is user authentication and authorization information main-
tained for Coast Guard employees?

Elicitation 6.

How is access managed for those outside the Coast Guard man-
aged network?

Elicitation 7.

What sensitive information must be protected? Elicitation 8.

What approach is used to protect that data? Elicitation 9.

Which user actions are logged? Elicitation 10.

What kind of monitoring and access controls exist at network
boundaries?

Elicitation 11.

What information is permitted through or filtered out? Analysis 12.

CMU/SEI-2000-SR-001 23

Table 11: Security Scenarios

Scenario Type No.

A new email virus is publicized but has not yet impacted the Integrated
Deepwater System.

use case 1.

A new email virus is publicized and has already impacted the Integrated
Deepwater System.

use case 2.

User access control lists need to be changed for managing access for key
central information which can be accessed from multiple sites.

growth 3.

Non-Coast Guard personnel require access to sensitive but not classified
data which is maintained within a firewall managed system.

use case 4.

An attack is mounted against a key Coast Guard computer. The attacker
is able to penetrate the firewall controlling access to internal systems.

use case 5.

An attack is mounted against a key Coast Guard computer and the
attacker is a Coast Guard employee and hence there was no penetration
of the firewall.

growth 6.

A normally trusted site (non-Coast Guard site) which has regular com-
munications with Coast Guard systems has reported a break-in.

use case 7.

24 CMU/SEI-2000-SR-001

CMU/SEI-2000-SR-001 25

5 Modifiability

Modifiability considers how the system can accommodate anticipated and unanticipated
changes and is largely a measure of how changes can be made locally, with little ripple effect
on the system at large.

5.1 Stimulus

The stimuli are the future anticipated changes1 to the system. These changes are classified ini-
tially by their origin and can be for the operational, development, and test environments

• External Changes. These changes are driven by independent external organizations, such
as CANDI vendor upgrades or the availability of new CANDI capabilities.

- new COTS version. Commercial companies release new versions of their products
periodically. Some of these are minor releases that fix defects in the previous releases,
and others are major releases with significant functionality extensions and interface
changes.

- new COTS product. A new COTS product comes on to the marketplace which is
directly applicable to the system.

- new or improved standard. A new standard is created or an existing standard is
extended.

- changed resource. New resources become available.

- new interface. A new interface is added to the system.

• Internal Changes. These are driven from within the organization, such as the addition of
new operational functionality, or defect corrections.

- defect fix. A defect has been detected in the system, and this change will fix the
defect.

- upgraded function. An existing system function is being upgraded to add new capa-
bilities, or improve quality of service or make the system more easily maintained.

- new function. A new function is added to the system.

1. Since we are discussing this attribute in a large-scale system, the changes may be applicable to the operational environ-
ment, the integration and test environment, or the development environment, or any combination of the three.

26 CMU/SEI-2000-SR-001

5.2 Response
• Operational Robustness. These qualities indicate how well the modifications operate

during test and after installation.

- number of problem reports - the problems reported during integration, test, installa-
tion, and operation.

- mission degradations - the number of times that a mission was significantly impacted
by a change.

• Effort. This is the effort required to make the change, in terms of cost, schedule, and peo-
ple.

• Complexity. The complexity of the system increases as the ratio of the number of inter-
faces to the number of components grows.

5.3 Architecture

The architectural parameters measure the flexibility of the architecture to change.

• Transparency. This is the ability to move functionality within the system without impact-
ing other functions.

- location - knowing the name of a service allows access without the need to know the
specific location.

- yellow pages - knowing the attributes of the service allows access to a service sup-
plier.

• Information hiding, abstraction. These ensure that the state information is within well-
defined containers (objects) and is accessed procedurally, and that the interfaces to obtain
this information are well-defined semantically as well as syntactically.

- layering - constructing the system in layers with interfaces between the layers.

- virtual machine - components of the system appear as virtual machines to other com-
ponents.

- interface definition - concise definition of interfaces between components and layers.

• Modularity. The system has been decomposed into modules such that straightforward
changes in functionality have straightforward changes to the system to prevent ripple
effects.

- functional decomposition - the functions are consistently allocated to components
and resources.

- patterns - using architectural styles or defined patterns to capture the system.

CMU/SEI-2000-SR-001 27

Table 12: Modifiability Stimulus

Table 13: Modifiability Response

Stimulus 1.
external change 2.

new COTS version 3.
new COTS product 4.
new or improved standard 5.
changed resource 6.
new interface 7.

internal change 8.
defect fix 9.
upgraded function 10.
new function 11.

Response 1.
operational robustness 2.

problems reported 3.
mission degradations 4.

effort 5.
cost required 6.
elapsed time required 7.
people required 8.

complexity 9.
interfaces per component 10.

28 CMU/SEI-2000-SR-001

Table 14: Modifiability Architecture Mechanisms

Architectural 1.
transparency 2.

location 3.
yellow pages 4.

information hiding 5.
layering 6.
virtual machine 7.
interface definition 8.

modularity 9.
functional decomposition 10.
patterns 11.

CMU/SEI-2000-SR-001 29

Table 15: Modifiability Questions

Question Type No.

R
eq

ui
re

m
en

ts Which are the important anticipated types of upgrades or modi-
fications to the system?

Screen 1.

Will sequential modifications or upgrades to assets cause the
system to operate in a degraded manner for a period of time?

Screen 2.
F

or
 im

po
rt

an
t

se
rv

ic
es

What are the limitations on upgrades or modifications (e.g., can
only be done offline)?

Elicitation 3.

What are the conditions or events outside IDS control that might
lead to a limitation on upgrades or modifications (e.g., change in
standards, suppliers merging, supplier going out of business)?

Elicitation 4.

F
or

 o
th

er

se
rv

ic
es

How will technology refreshment upgrades (operational, devel-
opment, test) and new operational capability upgrades be priori-
tized?

Elicitation 5.

How will the cost of doing upgrades be predicted? Analysis 6.

C
A

N
D

I

What strategy will be used to upgrade versions of systems con-
taining multiple CANDI components released independently?

Screen 7.

How can the impact of new releases of CANDI components or
new CANDI products be effectively evaluated?

Analysis 8.

How can measures of complexity be used to re-engineer the
architecture if changes become very complex?

Analysis 9.

How will the relationship between defects, fixes, upgrades, and
versions be established?

Elicitation 10.

30 CMU/SEI-2000-SR-001

Table 16: Modifiability Scenarios

Scenario Type No.

An operational subsystem uses interdependent CANDI components (e.g.
OS, ORB, database, window manager, widget manager, tracker), and
one or more of these components are upgraded.

use case 1.

A customized component is upgraded regularly and a CANDI replace-
ment becomes available.

growth 2.

An operational defect occurs in a cutter’s software while it is at sea and
the defect degrades the cutter’s mission effectiveness.

use case 3.

An operational defect occurs in an aircraft software while it is on a mis-
sion and the defect degrades the aircraft’s mission effectiveness.

use case 4.

Upgrade the onboard tracker to use GPS. growth 5.

CMU/SEI-2000-SR-001 31

6 Interoperability

The Levels of Information Systems Interoperability (LISI) Capabilities Model provides the
basis for the interoperability stimulus/response/architecture [C4ISR 98].

The LISI Capabilities Model and its associated Implementations Options Tables identify the
suite of capabilities and available technical implementations for attaining various levels of
interoperability, as defined in the LISI Interoperability Maturity Model.

6.1 Stimulus

The interoperability stimuli are the systems applications and data exchanges requirements in

LISI1

The applications (A) attribute encompasses the fundamental purpose and func-
tion for which any system is built - its mission. For interoperability to occur
effectively, similar capabilities or a common understanding of the shared infor-
mation must exist between systems; otherwise, users have no common frame of
reference.

The data (D) attribute focuses on the information processed by the system. This
attribute deals with both the data format (syntax) and its content or meaning
(semantics). The data attribute embodies the entire range of information styles
and formats: free text, formatted text, databases (formal and informal), video,
sound, imagery, graphical (map) information, etc.

6.2 Response

The response is the LISI Level:

- Enterprise level - systems are capable of operating using a distributed global informa-
tion space across multiple domains. Multiple users can access and interact with com-
plex data simultaneously.

1. These are two of the four LISI Interoperability Attributes - Procedures, Applications, Infrastructure, and Data (PAID).

32 CMU/SEI-2000-SR-001

- Domain level - systems are capable of being connected via wide area networks
(WANs) that allow multiple users to access data. Information is shared between inde-
pendent applications.

- Functional level - systems reside on local networks that allow data sets to be passed
from system to system.

- Connected level - systems are capable of being linked electronically and providing
some form of passive electronic exchange.

- Isolated level - systems are isolated or stand-alone.

6.3 Architecture

The architecture mechanisms are the procedures and infrastructure support that affect system

development, integration, and operation1

Items that make up the procedures (P) attribute include

- Standards - includes individual technical standards, architectures, and common oper-
ating environments.

- Management - includes aspects of program management, from systems requirements
definitions to installation and training.

- Security policy - includes procedures to ensure that proper security precautions are
maintained for each implementation.

- Operations

Items that make up the infrastructure (I) attribute include

- Communications and networks

- System services

- Hardware

- Security equipment

1. These are the remaining LISI Interoperability Attributes - Procedures, Applications, Infrastructure, and Data (PAID).

CMU/SEI-2000-SR-001 33

Table 17: Interoperability Stimulus

Table 18: Interoperability Response

Stimulus 1.
applications 2.

interactive (cross applications) 3.
full object cut and paste 4.
shared data (e.g., situation display) 5.
group collaboration (e.g., white-boards, VTC) 6.
full text cut and paste 7.
web browser 8.
basic operations (e.g., briefings, spreadsheets) 9.
advisory messaging (e.g., email + attachments) 10.
basic messaging (e.g., email - attachments) 11.
data file transfer 12.
simple interaction (e.g., telemetry, voice, FAX) 13.

data 14.
cross enterprise models 15.
enterprise model 16.
DBMS 17.
domain models 18.
program models and advanced data formats 19.
basic data formats 20.
media formats 21.
private data 22.

Response 1.
enterprise (LISI Level 4) 2.
domain (LISI Level 3) 3.
functional (LISI Level 2) 4.
connected (LISI Level 1) 5.
isolated (LISI Level 0) 6.

34 CMU/SEI-2000-SR-001

Table 19: Interoperability Architecture Mechanisms

Architecture 1.
procedures for
data exchanges

2.

multi-national enterprises 3.
cross-government enterprises 4.
domain (e.g., service, doctrine, training) 5.
common operating environment compliance 6.
program (e.g., standards procedures, training) 7.
standards compliance (e.g., JTA) 8.
security profile 9.
media exchange procedures 10.
manual access controls (e.g. NATO levels) 11.

infrastructure for
data exchanges

12.

multi-dimensional topologies 13.
WAN 14.
LAN 15.
NET 16.
two-way 17.
one-way 18.
removable media 19.
manual re-entry 20.

CMU/SEI-2000-SR-001 35

Table 20: Interoperability Questions

Question Type No.

R
eq

ui
re

m
en

ts Which are the important services that must interoperate? Screen 1.

What services can operate in degraded levels of interoperability
(i.e., at lower LISI level)?

Screen 2.
F

or
 im

po
rt

an
t s

er
vi

ce
s

What are these degraded levels (e.g., LISI level 2b)? Elicitation 3.

What are the conditions or events that might lead to an interop-
erability degradation (e.g., bandwidth reduction that does not
allow sending email attachments would drop LISI from 2a to
1d)?

Elicitation 4.

What are the consequences of not meeting the interoperability
requirements in various degraded modes (e.g., catastrophe,
annoyance, minor inconvenience)?

Analysis 5.

L
IS

I

What other systems may need to interoperate with system X? Elicitation 6.

What are the specific interoperability characteristics of these
systems?

Elicitation 7.

Projecting a system X profile, what does the Potential Interoper-
ability Matrix reveal (any gaps or shortfalls)?

Analysis 8.

What strategy will the systems agree to for eliminating interop-
erability gaps?

Analysis 9.

What is the assessed LISI level for the new system? Elicitation 10.

With which systems (within the existing architecture) is this sys-
tem potentially capable of interoperating immediately?

Analysis 11.

With which system(s) does this system need to interoperate (if
known)?

Screening 12.

What interoperability gaps or shortfalls will exists when adding
the new system?

Analysis 13.

What are the implementation options available to eliminate the
shortfalls?

Elicitation 14.

36 CMU/SEI-2000-SR-001

Table 21: Interoperability Scenarios

Scenario Type No.

Data that was previously transmitted in without encryption now has to
be encrypted.

growth 1.

Exchange data with a new external system. growth 2.

A user attaches screen information to an email message and transmits it
to different users using a variety of email systems.

use case 3.

High priority mission data has to be sent to different parties using a vari-
ety of messaging systems.

use case 4.

A U.S. Navy committee has released a new version of a communication
standard which is used to transmit data critical to IDS operations.

explor-
atory

5.

Migrate to DII COE Level 5.0 runtime compliance. growth 6.

CMU/SEI-2000-SR-001 37

7 Performance

Performance refers to the system responsiveness: either the time required to respond to spe-
cific events, or the number of events processed in a given time interval [Klein 93, Lehoczky
94, Smith 90]

7.1 Stimulus

The stimuli are factors which lead to some level of performance, as measured by the
responses.

• Mode of operation. The performance of a system is affected by the mode it is in. It can be
in regular operating mode, or it can be in an overload situation.

• Source of event. The system is required to respond to events. The source of such events
can be internal (e.g., the system has to respond to an internally generated signal), exter-
nal (e.g., a server has to process a request that arrives from a client process) or via a clock
interrupt.

• Frequency of events. Stimuli can be applied to the system with either periodic, or aperi-
odic frequency.

7.2 Response

The response of the system is determined by its latency (how long it takes the system to
respond to a specific event), its throughput (how many events it can respond to in a given
interval of time), and precedence (how the system determines which events to respond to).

• Latency. The response window is determined by the minimum acceptable latency and the
maximum allowable latency (deadline). Criticality is a measure of the importance of the
function to the system. Jitter is a measure of the variation of the time at which a computed
result is available from cycle to cycle. Other measurable aspects of latency include the
best, average and worst case behavior of the system.

• Throughput. The best, average and worst case behavior of the system is also a key to
measuring the system’s throughput. Criticality is also an important concern and may play
a role in determining throughput requirements. The variability window measures the
interval between the worst case and best case throughput of the system.

38 CMU/SEI-2000-SR-001

• Precedence. The system will respond to incoming events according to some precedence.
This may be determined by the criticality of the event, or some other ordering (e.g., order
of arrival).

7.3 Architecture

Performance architectures are primarily concerned with resources-what they are, how they are
consumed, and how contention for them is dealt with.

• Resource types can be loosely grouped into four categories: devices and sensors, com-
puting (CPU) resources, communication (network) resources, and memory resources.

• Resource consumption deals with how these resources are used (for instance, communi-
cations bandwidth, memory usage, etc).

• Resource arbitration deals with policies and procedures for deciding between competing
requests for a particular resource. This arbitration can be determined offline (for instance,
by pre-computing a schedule for a cyclic executive), or online (via various priority
schemes). There can be several different queuing policies employed. A single queue may
serve multiple resources or a single resource. Items may be removed from a queue accord-
ing to their arrival time or any of a number of other policies. Some systems will want to
implement a preemption policy for scheduled events while others will not. Finally, the
architecture will have to implement a communication policy. This policy would deter-
mine what network topology (both physical and logical), message priorities, and deliv-
ery guarantees (if any) are implemented.

CMU/SEI-2000-SR-001 39

Table 22: Performance Stimulus

Table 23: Performance Response

Stimulus 1.
mode of operation 2.

regular 3.
overload 4.

source of events 5.
internal event 6.
external event 7.
clock interrupt 8.

frequency of events 9.
periodic 10.
aperiodic 11.

Response 1.
latency 1.

response window 2.
criticality 3.
jitter 4.
best/average/worst behavior 5.

throughput 6.
best/average/worst behavior 7.
criticality 8.
variability window 9.

precedence 10.
criticality 11.
ordering 12.

40 CMU/SEI-2000-SR-001

Table 24: Performance Architecture Mechanisms

Architecture
(resources)

1.

resource types 1.
devices/sensors 2.
computing (CPU) 3.
communication
(network)

4.

memory 5.
consumption rates 6.
arbitration policies 7.

scheduling 8.
offline 9.
online 10.

queueing 11.
queueing per resource 12.
queueing order 13.

preemption 14.
Non-preemptive 15.
preemptive 16.

communication 17.
network topology 18.
guarantee of delivery 19.
message priority 20.

CMU/SEI-2000-SR-001 41

Table 25: Performance Question

Question Type No.

R
eq

ui
re

m
en

ts Which are the important services from the point of view of per-
formance?

Screen 1.

What services can operate in degraded performance modes? Screen 2.
Fo

r
Im

po
rt

an
t

Se
rv

ic
es

What are these degraded modes (e.g., X% speed)? Elicitation 3.

What are the conditions or events that might lead to a perfor-
mance degradation?

Elicitation 4.

What are the consequences of not meeting the performance
requirements in various degraded modes (e.g., catastrophe,
annoyance, minor inconvenience)?

Analysis 5.

Which are the time-critical components in the system? Screen 6.

How do these time-critical components communicate (e.g., pro-
tocols, messages received/sent per unit time, message size, pro-
cessing per message)?

Elicitation 7.

How do services respond to clients and can they handle multiple
clients?

Elicitation 8.

What are the requirements for which latency is (a) critical and
(b) not relevant?

Screen 9.

How does a particular component or subsystem respond during
periods of high stress (e.g., does an overload effect the data
flowing through a particular communication link)?

Analysis 10.

Are there sources of potential resource contention (e.g., specific
devices, CPU cycles, network bandwidth, memory usage)?

Analysis 11.

How does the system arbitrate between components contending
for the same resources? Is this accomplished online (i.e., at runt-
ime) or offline (i.e., by precomputing schedules)?

Analysis 12.

42 CMU/SEI-2000-SR-001

Table 26: Performance Scenarios

Scenario Type No.

The communications network is overloaded. Reassign missions to
reduce traffic.

use case 1.

The LAN on a cutter is overloaded. Reassign tasks to reduce traffic. use case 2.

Change the process to processor allocation to balance the load. use case 3.

Data throughput is doubled. growth 4.

The number of users and/or the number of vessels doubles. growth 5.

HQ needs real-time video data from a cutter. explor-
atory

6.

Important but not mission-critical traffic doubles in volume. growth 7.

CMU/SEI-2000-SR-001 43

8 References

Bass 98 Bass, L., Clements, P. & Kazman, R. Software Architecture in Practice.
Reading, MA: Addison Wesley Publishing Company, 1998.

Barbacci 95 Barbacci, M., Klein, M., Longstaff,T. & Weinstock, C. Quality
Attributes. (CMU/SEI-95-TR-21, ADA307888), Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University, 1995. Available
WWW <URL: http://www.sei.cmu.edu/publications/documents/
95.reports/95.tr.021.html

Barbacci 96 Barbacci, M., Klein, M., & Weinstock, C. Principles for Evaluating the
Quality Attributes of a Software Architecture. (CMU/SEI-96-TR-36,
ADA324233), Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1996. Available WWW <URL: http://
www.sei.cmu.edu/publications/documents/96.reports/96.tr.036.html

Barbacci 99 Barbacci, M. & Wood, W. Architecture Tradeoffs Analyses of C4ISR
Products. (CMU/SEI-99-TR-014), Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, 1999. Available WWW
<URL: http://www.sei.cmu.edu/publications/documents/99.reports/
99tr014/99tr014abstract.html

Boehm 78 Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.J. &
Merritt, M.J. Characteristics of Software Quality. New York, NY:
Elsevier North-Holland Publishing Company, Inc., 1978.

C4ISR 97 C4ISR Architectures Working Group, C4ISR Architecture Framework
Version 2.0. 18 December 1997. Available WWW <URL: http://
www.c3i.osd.mil/org/cio/i3/AWG_Digital_Library/pdfdocs/fw.pdf

C4ISR 98 C4ISR Architectures Working Group, Levels of Information Systems
Interoperability (LISI). 30 March 1998. Avalable WWW <URL:
http://www.c31.osd.mil/org/cio/i3/AWG_Digital_Library/pdfdocs/lis

Heimerdinger 92 Heimerdinger, W. L. & Weinstock, C. B. A Conceptual Framework for
System Fault Tolerance, (CMU/SEI-92-TR-33, ADA258457). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University,
1992. Available <URL: http://www.sei.cmu.edu/publications/docu-
ments/92.reports/92.tr.033.html

Howard 98 Howard, J. & Longstaff, T. A Common Language for Computer Security
Incidents. Albuquerque, NM: Sandia National Laboratories Report
SAND98-8667, Oct. 1998.

IEEE-610.12 IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engi-
neering Terminology. New York, NY: Institute of Electrical and Elec-
tronics Engineers, 1990.

44 CMU/SEI-2000-SR-001

IEEE-1061 IEEE Standard 1061-1992, Standard for a Software Quality Metrics
Methodology. New York, NY: Institute of Electrical and Electronics
Engineers, 1992.

ISO-9126 ISO Standard 9126, Information Technology - Software Product Evalua-
tion - Quality Characteristics And Guidelines For Their Use. Geneva,
Switzerland: International Organization For Standardization, 1991.

Jalote 94 Jalote, P. Fault Tolerance in Distributed Systems. Englewood Cliffs, NJ:
Prentice Hall, 1994.

Klein 93 Klein, M., Ralya, T., Pollak, B., Obenza, R., & Gonzales, M. A Practi-
tioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems. Kluwer Academic, 1993.

Laprie 92 Laprie, J.C., ed. Dependable Computing and Fault-Tolerant Systems.
Vol. 5, Dependability: Basic Concepts and Terminology in English,
French, German, Italian, and Japanese. New York, NY: Springer-Ver-
lag, 1992.

Lehoczky 94 Lehoczky, J.P. “Real-Time Resource Management Techniques” Ency-
clopedia of Software Engineering, Marciniak, J.J (ed.). New York, NY:
J. Wiley, 1994. 1011-1020.

Rushby 93 Rushby, J. Critical System Properties: Survey and Taxonomy. (CSL-93-
01). Menlo Park, CA: Computer Science Laboratory, SRI International,
1993.

Smith 90 Smith, C. U. Performance Engineering of Software Systems. The SEI
Series in Software Engineering, Reading, MA: Addison-Wesley Pub-
lishing Company, 1990.

ll

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

9. AGENCY USE ONLY (leave blank) 10. REPORT DATE

July 2000

11. REPORT TYPE AND DATES COVERED

Final

12. TITLE AND SUBTITLE

**Quality Attribute Workshop Participants Handbook

13. FUNDING NUMBERS

C — F19628-95-C-0003

14. AUTHOR(S)

Mario Barbacci, Robert Ellison,Charles Weinstock, William Wood
15. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

16. PERFORMING ORGANIZATION
REPORT NUMBER

**CMU/SEI-2000-SR-001
17. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

18. SPONSORING/MONITORING
AGENCY REPORT NUMBER

**ESC NUMBER

19. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In large software systems, the achievement of qualities such as performance, security, and
modifiability is dependent not only on code-level practices but also on the overall software
architecture. Thus, it is in developers’ best interests to determine, at the time a system’s software
architecture is specified, whether the system will have the desired qualities.

With the sponsorship of the U.S. Coast Guard’s Deepwater Acquisition Project the SEI has
developed the concept of a “Quality Attribute Workshop” in which system stakeholders focus on the
analysis and evaluation of system requirements and quality attributes. The purpose of the
workshop is to identify scenarios from the point of view of a diverse group of stakeholders and to
identify risks (e.g., inadequate performance, successful denial-of-service attacks) and possible
mitigation strategies (e.g., replication, prototyping, simulation). Stakeholders include architects,
developers, users, maintainers, and people involved in installation, deployment, logistics, planning,
and acquisition.This special report describes the process we use to conduct a workshop,
information required, suggested tools, and expected outcomes of a workshop.

14. SUBJECT TERMS

Quality attributes, availability, security, performance, interoperability,
attribute architecture mechanisms, attribute stimulus and response.

15. NUMBER OF PAGES

**PAGE COUNT
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Questions, Scenarios, and Quality Attributes
	3 Dependability
	4 Security
	5 Modifiability
	6 Interoperability
	7 Performance
	8 References

