
Assessing Code Smell 
Interest Probability

A Case Study

Sofia Charalampidou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Paris Avgeriou

Apostolos Ampatzoglou
a.ampatzoglou@rug.nl

University of Groningen 
The Netherlands



Context

Technical Debt

Principal Interest



Context

Technical Debt

Principal Interest

Interest Amount

Interest Probability



Context

Technical Debt

Principal Interest

Interest Amount

Interest Probability

Key-Indicator for 

TD Prioritization 



Interest Probability 



Smell Interest Probability 

Interest probability smell X = 0.5 

There is a 50% chance that at least one module suffering 

from smell X will change in the next version of the system

How to read it?



Smell Interest Probability 

(a) Prioritize refactoring of most risky smells

(b) Training
Why to use it?



Smell Interest Probability 

Joint probability of events

(a) number of events

(b) probability of each maintenance event to occur 

(c) P(A|B) = P(A) + P(B) – P(A)*P(B)

How to calculate?



Case Study Design



What smells are we    
interested in?



Case Study Design

Goal of this study: 

What is the interest probability incurred by code smells?

 What is the occurrence frequency for each code smell?

 What is the mean change proneness of the modules in 

which each type of code smell is identified?



Case & Data Collection

5,5K classes

48K methods ~ Units of analysis

16K commits



Data Analysis



Results



Smell Frequency

The most frequent type of code TD is code clones. However, their frequency-level 

is project-related. Concerning long methods, approximately 2-4 can be identified 

in a thousand methods. The frequency of Conditional Complexity is also project 

related since it varies between less than one to 6 per mille in the two projects.



Change Proneness

Methods that suffer from code smells are more change prone than TD-free 

methods. Among specific types of code smells, long methods and the use of 

conditionals instead of polymorphism are usually encountered in change prone 

methods. On the other hand code clones are usually positioned in system 

parts that do not change frequently.



Interest Probability

Code clones is the smell that has the higher probability to produce interest in 

future maintenance activities in the two examined projects. This characteristic 

is mostly attributed to the smell occurrence frequency rather than its 

identification in change prone methods. The long method smell is the code TD 

type that presents the most similar smell interest probability in the examined 

projects.



Implications

Researchers

Existence of smells and method 

change proneness  Extra care in 

change prone methods

High levels of interest probability 

Training in TD prevention and 

repayment

The modification of a clone can 

cause interest in multiple modules 

Alert on types of code TD

Practitioners

More Smells

Different Levels of Granularity

More projects



Threats to Validity

LIMITATIONS

Construct Validity:

- Tool Accuracy

- Existence of Smells other than the 

three examined

Lack of Generalization to:

- Programming Language / Paradigm

- Other smells

Reliability:

- No research bias

- Public repositories



| 20

Questions???

Thank you for your attention!


