Selling the Business Case for
Architectural Debt Reduction

Eltjo Poort
Ninth International Workshop on Managing Technical Debt — XP 2017 ‘ G I

© CGI Group Inc. Experience the commitment®

Eltjo Poort

CGI Architecture Practice lead
* Reviewing Bids & Projects
e Standardizing & Improving Architecture Practices

Researcher
* With Universities (VU, Twente, Groningen, Eindhoven)
* Member of IFIP WG 2.10 Software Architecture

SATURN 2016

LINDA M. NORTHROP
SOFTWARE ARCHITECTURE
AWARD

Eltjc; Poort

An architect’s view on technical debt

A business case for architectural debt reduction

Architect your time dimension

Architecture roadmapping

CaGi

An Architect’'s Responsibilities

Elicit architectural
requirements

Architectural

Concerns

ldentify
Stakeholders Address
Promote Architectural
acceptance Decide Decisions
Document

Architect
Document

_ Establish & maintain
overseeing) | conceptual integrity Design Solution
Fulfillment

(overseeing)

Blueprint

Describe

CaGi

An Architect’'s View on Technical Debt

Architectural Technical Debt is a type of
Concerns Architectural Concern

Address

Architectural Taking on Technical Debt can be an
Decisions an Architectural Decision

|dentify
Document
Architect

Document

Solution
Blueprint

CaGi

What is architecture about?

Editor: Martin Fowler

ThoughtWorks

fawler@acm.org

Who Needs an Architect?

“Fundamental concepts or properties of a
system in its environment embodied in its
elements, relationships, and in the principles
of its design and evolution”.

Marlin Fowler

[ISO/IEEE]

“Architecture is about the important stuff.
Whatever that is.”

[Fowler] :

IEEE SOFTWARE Fublis bed by the IEEE

andering down our corridor a while
ago, I saw my colleagne Dave Rice
in a particularly grumpy mood. My
bief question caused a violent
statemen, “We shouldn't interview
anyone who has “architece’ on his
sesume.” At first blush, this was an cd tum of
phrasc, becausc we usually introduce Dave as
onc of our leading archicets.

The reason for his title schizo-
pheenia s the fact that, even by cur
industry’s standards, “architoct”
and “architecture™ are terribly
averloaded words. For many, the
term “sofeware acchitoct” fits per-
ectly with the smug controlling im-
age at the end of Marix Reloaded
Yet even in fiems that have the
greatest contempt for that image,
there’s a vital role for the tochnical
leadership that an architect such as Dave plays

Whal s architecture?

When 1 was freting over the tile for Par-
terns of Enterprise Application Architecture
(Addison-Wesley, 2002), everyone who re-
viewed it agreed that “architecture™ belonged
in the title. Yetwe all ele uncomforeable defin-
ing the word. Because it was my book, 1 felt
compelled to take a stab at defining i

My first move was to aveid fuzziness by
just leeting my eynicism hang righe out. In o
sense, 1 define arehitecture as a word we use
when we want to talk abour design but wane
to puff i up to make it sound imporcant. {Yes,
you can imagine 4 similar phenomenon for ar-

chitect.) However, as so ofen occurs, inside

the blighted cynicism = a pinch of trurh. Un-

derstanding came o me afrer reading a posting

from Ralph Johnson on the Extreme Program-

ming mailing lise. Its so good Il quote itall.
A previous posting said

The RUP, werking off the IEEE dlfinifin, defines
archilciure as “the highest level concept of o sys-
tem in its emvirooment. The architecture of a saft-
ware syskm lat @ given point in time] is its orga-
nizafion or siructure of significant components
inkemding through inferfoces, those compenents
being composed of svecessively smaler compo-
nents and inferfozes.”

Johnson responded:

Iwas @ reviewer on the IEEE standard that vsed
that, and | argued uselessly that his was clearly
a completely bogus definticn. There is no high-
st level concept of o system. Customers have o
different concept than developers. Customers do
not care at all about the stucturs. of significant
companents. So, perhaps an archikcture is the
highest level concept that developers have of a
system in ifs environment. Lef's forget the devel-
cpers who just understand their lie piece. Ar-
chitecture is the highest level concept of the ex-
pert developers. What makes a component
significantd It is significant bacausa the sxpert
developers say s

50, a better definifion wouk be “In mest successful
softwers project, he sxpert devalopers werking
an that project have o shared understanding of the

07407 458/03/817.00 & 200 IEEE

After talking to architects and stakeholders on dozens of projects, we
have come to equate the “important stuff” with the stuff that has most

Impact on risk and costs.
N Important €= high risk and cost

Architecture as a
Risk- and Cost Management Discipline

Managing Cost and Risks is architecture’s primary business goal
Cost and Risks are prioritizing factors determining architect’s concerns
Architect should be an expert on costing and risk mitigation

Architecture as a risk mitigation mechanism

« Reduce uncertainty in feasibility of solution
* Reduce troubled projects

Architecture as a cost control mechanism

« Better predictability of solution cost
» Less budget overrun

-
L] ®
.
bt .- & . - . .
Y I _ [] fl; . ? ‘e Poort, E. R., & van Vliet, H. (2012). RCDA: Architecting as a Risk- and Cost I
. - .‘ @ e @ Management Discipline. Journal of Systems and Software, 1995-2013.

® ~ | e, L e e

Recommended reading:

The Nature of Risk il

Thinking, Fast and Slow

Risk: something that may go wrong
* Impact usually measured in terms of cost
* other impacts exist: delivery time, client satisfaction

RiskExposure = ProbabilityOfFailure X ImpactOfFailure

Sum of RiskExposures for all failure scenarios =
(statistically) expected* total failure cost

* *Law of large numbers applies
* Common usage:

* Calculate contingency budget

* Prioritize management attention

/sites/020062/sa/Solution Architecture Process Wiki/Solution.aspx

What is Architecture Work?

Architecting Microcycle

What problems should | work on?
What are my options?
I'll pick this one

Identify &
prioritize
architectural
concerns

Research
possible
solutions

® ® e
e Architect @
..-.. . ¢ u
' 2 .
!) CaGl
. L]]
. e ©® e @

The Architecting Microcycle

ldentify &

prioritize
architectural

concerns

Research
possible
solutions

CaGi

The Architecting Workflow

Architectural

decisions
Ay
A
A
A
A
A
A
A
A
[] ®
o
... L
'.. o'c.
e ©

ldentify &
prioritize
architectural

concerns

Research
possible
solutions

Architectural concerns

(backlog)

CaGi

Technical Debt
Key Architectural Concern based on financial metaphor

* |nterest: increased
cost of maintenance
due to debt

 Principal: cost of
future work to
eliminate debt

 Technical Debt
accumulates until
Solution breaks
down

CaGi

Technical Debt

Types

Test debt

* structural debt

Architectural « introduced by choices of architect
debt « technology gaps

* known up front or emerging

* low internal quality
Implementation * code complexity

debt - code smells
» coding style violations

Code analysis tools (e.g.. SONARQube)
only find this type of technical debt!

Architectural Debt
Examples

Business critical solution runs on AS400 platform no longer supported
(technology gap)

principal: cost of migration

Interest. expensive maintenance, additional cost of changes
risk exposure: increased probability + impact of failure

Bypass ESB to obtain data directly from other system (architectural debt)
no time to expose data through ESB
miss delivery deadline <-> violate enterprise architecture
principal? interest?

2 « © e« o 14

CaGi

Structural Technical Debt example

=| = =

Architectural decision: Take on technical debt: Repay technical debt:
Apps communicate A contacts B directly refactor A& B
over ESB
)
=
T
@®©
&)
a)
>
Interest T
2
& O
. £
«? o N0 _? o
e e e .
< .. : ® 15 CGI
B e, . . .0

Technical Debt Control
Quantify in Business Terms

Determine cost

* Principal: one-time cost of removing debt
* migration, refactoring,...

* Interest: recurring increased maintenance cost
* less efficient modifications, more testing, more expensive h/w,...
* interest stops when principal repaid

Determine risk
* higher probability of failure (not fulfilling requirements, esp. NFRSs)
* higher impact of failure (more expensive to fix)

S0 AT W CGl

A Simple Business Case for Debt Reduction

ltem

Benefits

Reduced recurrent maintenance cost
Reduced risk exposure R/yr

Total benefits per year
Cost
Principal: effort of migration/refactoring/...

Cost of delay of feature delivery

Total cost

TOTAL RETURN ON INVESTMENT (1 YEAR) (M+R) — (P+F)

0
.

A Simple Business Case for Debt Reduction

Over time, risk exposure typically dominates

Reduced risk
exposure

Cost of delayed
features

Reduced recurrent

maintenance cost | Principal

(refactoring)

Benefits Cost

.. ..'.'. . h : B 18 CGI

Why Architectural Debt Ambushes Us

Over time, technical debt risk tends to grow:

* Probability of failure increases due to e.g. overlooking old shortcuts,
aging technology

* Impact of failure increases due to growing system size & complexity
If probability and impact grow linearly, risk exposure grows parabolically

Oops...
P*|

° 19 CGI

Architecting the Time Dimension
Just Enough Anticipation

Flow of architectural decisions ahead of development
Metaphor: Runway extended while in operation
* Just long enough to accomodate anticipated airplanes

Key tools to determine right amount of anticipation:
* Dependency analysis
* Technical debt control

* Economic trade-off: Net Present Value, Real Options Analysis

Brown, N., Nord, R. L., & Ozkaya, I. (2010, November/December).
Enabling Agility Through Architecture. CrossTalk.

' S Ce CaGli

Balance your backlog
Architecture, Tech Debt and...

Visible Invisible

" NEWAREEI G Architectural,
Positive Py

Structural
Value EMEIELREYAN features
Negative Technical

Debt

Value

| o. ...:. * e ‘e | o Ph|||ppe Kruchten CGI

SCRUM and the Architecture Microcycle

Solution Backlog

Architectural decisions

Sprint
Backlog

22

Daily

Sprint

Architectural concerns

Solution
Increment

CaGi

SCRUM and the Architecture Microcycle

I Architectural Architectural
decisions concerns

Technical
Debt

Architecture
Microcycle

Stakeholders Solution Backlog Sprint

Backlog
ml - -
[]
— "
[]
Il

Solution
Increment

Tt CGl

Architecting the Time dimension

* Limited usefulness of architecture documents
* perpetually “almost finished”
* already obsolete when they're issued

* Risk of development based on revoked architectural decisions
 Difficulty planning ahead

Architecting the Time dimension

All architecture documentation methods use views
* |ISO 42010, TOGAF, Archimate, 4 + 1, "Views and Beyond’

* Viewpoints address concerns per stakeholder (group)

What if we added a viewpoint for timing concerns?

—

[

(W
| | R |
m

Architecting the Time dimension
Evolution Viewpoint

Step 1: Identify events with architectural impact

Event When Impact type | Impact

expected
Competitor releases next Q4/2017 Business Our own product will be harder to sell if we do not match their new
generation product value + Risk features, which would cause us to lose revenue.
Microsoft Windows XP 4/2014 Risk Vulnerabilities no longer patched; implies security risk, e.g. risk of
support discontinued intrusion and data leaks.
Corilla license contract 5/2017 Cost Opportunity for cost reduction by switching to open source
expires alternative.
New version of IBM 11/2015 Cost Opportunity for maintenance cost reduction by using new features
WebSphere announced for next version.
Project to build System Y Q1 2017 Business System Y (which is interdependent with ours) will require interface
finishes value + Risk features that are currently not supported by our solution. We need to

build these features or our solution will lose its business value.

."_.. :':. -), S 26 CGI

Architecting the Time dimension

Step 2: Identify backlog items for solution roadmap

project backlog

user stories solution blueprint
use cases arcniteciural concerns
functional requirements architectural decisions
feature wish-list part list
acceptance criteria Visible Invisible
change request log Postive ?{fl‘iiiiii“"
Value I (S GHENSA features
Negative Technical
Value Debt
defect database architectural concerns
v ’ risk list
@ *e e
®ete ° 3 # ‘e
A . '. ‘e . 27 CGI

Architecting the Time dimension

Step 3: Dependency Analysis

uci
ucz
UCs
uce
ucr x
ucs x
ucs
AT3
ATA
ATH
ATE X
ATT X
ATE

® ® AT9

Logo

n GPS

IF-A Session

X
X

Cache Pub/Sub DataPers

RuleEng

28

CaGi

Architecting the Time dimension

Step 4: Visual Timeline
Rel 1.3 Rel 2.0 Rel 2.1 Rel 2.2 Rel 2.3
Q1 2017 Q2 2017 Q3 2017 Q4 2017 Q1 2018
: N C tit
Pl Reporting Releases.
Regulations NextGen
7

<

mE

\'

o

m -

- User feature

Architectural improvement

"o Dependency} B Defect removal [l Technical debt reduction
.'?' 8 - :
. L]
o : ° 29 CGI

Architecture Roadmapping

Release strategy 1: value-first
1.0 Rel

Start Rel

cost

1.1 Rel

/

1.2 Rel

/

2.0

In line with Agile philosophy
May increase TCO (more refactoring)
Too “greedy” algorithm may run project into wall (complete rebuild)

. * Good in volatile environments

30

CaGi

Architecture Roadmapping

Release strategy 2. architecture-first
Start Rel 0.1 Rel 0.2 Rel 1.0 Rel 1.1

cost

In line with plan-driven philosophy
Late delivery of value - risk of cancellation

Risk of building wrong architecture (if context changes)
. * Good for complex solutions

.. .'.'. . h '.' . 31 CGI

Architecture Roadmapping

Typically found architecturally significant events:

Project or process milestones, such as delivery and approval
deadlines; also deadlines in dependent projects

Product version/infrastructure upgrades

Business changes

* Changing agreements (KPIs, SLAS), mergers/take-overs, legislative/policy
Changes in availability of resources, e.g. availability of expertise

L]
=
.
B
X
L]
i

Architecture Roadmapping

* Anticipation documents often informal
* “roadmap”

* ‘“decision support”
* ‘“strategy document”

* Need stakeholders to identify significant future events!

Architecture Roadmapping

* Improved (more realistic) stakeholder
expectations

* Better prioritization of required
architectural improvements

* Helps architects articulate business
Impact of roadmapping scenarios

* Helps architects discuss timing of
architectural improvements

* based on business impact rather than
generic (dogmatic) “rules” like YAGNI

E— N

1. Build your business case on risk exposure
2. Architect your time dimension
3. Manage stakeholder expectations from the start

Questions or Comments?

e ©
.
o - °
° * o e ® o o
® ™
® o
¢ . o
L
= .
far
L

Spare slides follow 36

CaGi

Experience the commitment®

Definition of Solution

Solution: a coherent set of changes delivered to address a defined set of
stakeholder needs

* agile or traditional

* value stream, program or project

e contractual or otherwise

Defined: depends on governance model:
Epic / set of (user) stories

Program / project definition

Contract
Change request

Changes: solution elements are created, modified or removed
Delivered: coordination depends on governance model:

37

CaGi

RCDA Practices

Core Practices Supporting Practices Lifecycles

Requirements Analysis

Solution Shaping

Architecture Validation

Architecture Fulfillment

References

Abrahamsson, P., Babar, M. A., & Kruchten, P. (2010, March/April). Agility and
Architecture: Can They Coexist? IEEE Software.

Boehm, B. (2010). Architecting: How Much and When? In A. Oram, & G. Wilson,
Making Software: What Really Works, and Why We Believe It . O'Reilly Media.

Brown, N., Nord, R. L., & Ozkaya, I. (2010, November/December). Enabling Agility
Through Architecture. CrossTalk.

Fowler, M. (2003, July/August). Who Needs an Architect? IEEE Software, pp. 2-4.

Jansen, A., & Bosch, J. (2005). Software Architecture as a Set of Architectural Design
Decisions. Working IEEE/IFIP Conference on Software Architecture.

Malan, R., & Bredemeyer, D. (2002, september/oktober). Less is More with Minimalist
Architecture. IT Pro, pp. 46-48.

Poort, E. R. (2016, Nov/Dec). Just Enough Anticipation: Architect Your Time
Dimension. IEEE Software

Poort, E. R. (2014, Sept/Oct). Driving Agile Architecting with Cost and Risk. IEEE
Software.

Slot, R. (2010). A method for valuing architecture-based business transformation and
measuring the value of solutions architecture. Amsterdam.

e "

S5 I CGl

