
© CGI Group Inc.

Selling the Business Case for

Architectural Debt Reduction

Eltjo Poort
Ninth International Workshop on Managing Technical Debt – XP 2017

Eltjo Poort

CGI Architecture Practice lead

• Reviewing Bids & Projects

• Standardizing & Improving Architecture Practices

Researcher

• With Universities (VU, Twente, Groningen, Eindhoven)

• Member of IFIP WG 2.10 Software Architecture

http://eltjopoort.nl

Architect your time dimension

A business case for architectural debt reduction

An architect’s view on technical debt

Three golden rules

Architecture roadmapping

1

2

3

4

5

An Architect’s Responsibilities

Architect

Stakeholders

Solution

Establish & maintain

conceptual integrity

Architectural

Concerns

Architectural

Decisions

Address
Identify

Decide

Document

Solution

Blueprint

Document

Describe

Design

Costing

(overseeing)

Fulfillment

(overseeing)

Elicit architectural

requirements

Promote

acceptance

An Architect’s View on Technical Debt

Architect

Solution

Architectural

Concerns

Architectural

Decisions

Address
Identify

Decide

Document

Solution

Blueprint

Document

Describe

Design

Technical Debt is a type of

Architectural Concern

Taking on Technical Debt can be an

an Architectural Decision

What is architecture about?

“Fundamental concepts or properties of a

system in its environment embodied in its

elements, relationships, and in the principles

of its design and evolution”.

[ISO/IEEE]

“Architecture is about the important stuff.

Whatever that is.”

[Fowler]

After talking to architects and stakeholders on dozens of projects, we

have come to equate the “important stuff” with the stuff that has most

impact on risk and costs.

Important  high risk and cost

Architecture as a

Risk- and Cost Management Discipline

Managing Cost and Risks is architecture’s primary business goal

Cost and Risks are prioritizing factors determining architect’s concerns

Architect should be an expert on costing and risk mitigation

Architecture as a risk mitigation mechanism

• Reduce uncertainty in feasibility of solution

• Reduce troubled projects

Architecture as a cost control mechanism

• Better predictability of solution cost

• Less budget overrun

Poort, E. R., & van Vliet, H. (2012). RCDA: Architecting as a Risk- and Cost

Management Discipline. Journal of Systems and Software, 1995-2013.

The Nature of Risk

Risk: something that may go wrong

• Impact usually measured in terms of cost

• other impacts exist: delivery time, client satisfaction

RiskExposure = ProbabilityOfFailure X ImpactOfFailure

Sum of RiskExposures for all failure scenarios =

(statistically) expected* total failure cost

• *Law of large numbers applies

• Common usage:

• Calculate contingency budget

• Prioritize management attention

Recommended reading:

Daniel Kahneman

Thinking, Fast and Slow

/sites/020062/sa/Solution Architecture Process Wiki/Solution.aspx

What is Architecture Work?

Architect

Architecting Microcycle

Identify &
prioritize

architectural
concerns

Research
possible
solutions

Decide best
fitting

solution

• What problems should I work on?

• What are my options?

• I’ll pick this one

The Architecting Microcycle

Identify &
prioritize

architectural
concerns

Research
possible
solutions

Decide best
fitting

solution

Identify &
prioritize

architectural
concerns

Research
possible
solutions

Decide best
fitting

solution

The Architecting Workflow

Architectural concerns

(backlog)
Architectural

decisions

Technical Debt
Key Architectural Concern based on financial metaphor

Cost

• Interest: increased
cost of maintenance
due to debt

• Principal: cost of
future work to
eliminate debt

Risk
• Technical Debt

accumulates until
Solution breaks
down

12

Technical Debt

Types
Test debt

Architectural
debt

• structural debt

• introduced by choices of architect

• technology gaps

• known up front or emerging

Implementation
debt

• low internal quality

• code complexity

• code smells

• coding style violations

Documentation
debt

13

Code analysis tools (e.g.. SONARQube)

only find this type of technical debt!

http://www.sonarqube.org/

Architectural Debt

Examples

Business critical solution runs on AS400 platform no longer supported

(technology gap)

• principal: cost of migration

• interest: expensive maintenance, additional cost of changes

• risk exposure: increased probability + impact of failure

14

Bypass ESB to obtain data directly from other system (architectural debt)

• no time to expose data through ESB

• miss delivery deadline  violate enterprise architecture

• principal? interest?

Structural Technical Debt example

15

ESB

App A

App B

App…

ESB

App A

App B

App…

ESB

App A

App B

App…

Architectural decision:

Apps communicate

over ESB

Take on technical debt:

A contacts B directly

Repay technical debt:

refactor A & B

D
e

a
d

lin
e

P
ri

n
c
ip

a
l Interest

Technical Debt Control

Quantify in Business Terms

Determine cost

• Principal: one-time cost of removing debt

• migration, refactoring,…

• Interest: recurring increased maintenance cost

• less efficient modifications, more testing, more expensive h/w,…

• interest stops when principal repaid

Determine risk

• higher probability of failure (not fulfilling requirements, esp. NFRs)

• higher impact of failure (more expensive to fix)

16

A Simple Business Case for Debt Reduction

Item Total

Benefits

Reduced recurrent maintenance cost M/yr

Reduced risk exposure R/yr

Total benefits per year M+R M+R

Cost

Principal: effort of migration/refactoring/… P

Cost of delay of feature delivery F

Total cost P+F P+F

TOTAL RETURN ON INVESTMENT (1 YEAR) (M+R) – (P+F)

17

A Simple Business Case for Debt Reduction

Benefits Cost

18

Reduced recurrent

maintenance cost

Reduced risk

exposure

Cost of delayed

features

Principal

(refactoring)

Over time, risk exposure typically dominates

Why Architectural Debt Ambushes Us

Over time, technical debt risk tends to grow:

• Probability of failure increases due to e.g. overlooking old shortcuts,

aging technology

• Impact of failure increases due to growing system size & complexity

If probability and impact grow linearly, risk exposure grows parabolically

19

P

I
P*I

Oops…

Architecting the Time Dimension

Just Enough Anticipation

Flow of architectural decisions ahead of development

Metaphor: Runway extended while in operation

• Just long enough to accomodate anticipated airplanes

Key tools to determine right amount of anticipation:

• Dependency analysis

• Technical debt control

• Economic trade-off: Net Present Value, Real Options Analysis

09 27

Brown, N., Nord, R. L., & Ozkaya, I. (2010, November/December).

Enabling Agility Through Architecture. CrossTalk.

Balance your backlog

Architecture, Tech Debt and…

21

New features

Added

functionality

Architectural,

Structural

features

Defects Technical

Debt

Visible Invisible

Positive

Value

Negative

Value

Philippe Kruchten

SCRUM and the Architecture Microcycle

22

Sprint

Daily

Solution

Increment

Solution Backlog Sprint

Backlog

Architectural concerns Architectural decisions

SCRUM and the Architecture Microcycle

23

Sprint

Daily

Solution

Increment

Solution Backlog Sprint

Backlog

Architectural

concerns

Architectural

decisions

Architecture

Microcycle

Architecture

Runway

Technical

Debt

User

Features

Defects

Stakeholders

Architecting the Time dimension

Issues with time-agnostic architectures

• Limited usefulness of architecture documents

• perpetually “almost finished”

• already obsolete when they’re issued

• Risk of development based on revoked architectural decisions

• Difficulty planning ahead

24

Architecting the Time dimension

Evolution Viewpoint

All architecture documentation methods use views

• ISO 42010, TOGAF, Archimate, 4 + 1, ‘Views and Beyond’

• Viewpoints address concerns per stakeholder (group)

What if we added a viewpoint for timing concerns?

25

Architecting the Time dimension

Evolution Viewpoint

Step 1: Identify events with architectural impact

26

Event When

expected

Impact type Impact

Competitor releases next

generation product

Q4/2017 Business

value + Risk

Our own product will be harder to sell if we do not match their new

features, which would cause us to lose revenue.

Microsoft Windows XP

support discontinued

4/2014 Risk Vulnerabilities no longer patched; implies security risk, e.g. risk of

intrusion and data leaks.

Corilla license contract

expires

5/2017 Cost Opportunity for cost reduction by switching to open source

alternative.

New version of IBM

WebSphere

11/2015 Cost Opportunity for maintenance cost reduction by using new features

announced for next version.

Project to build System Y

finishes

Q1 2017 Business

value + Risk

System Y (which is interdependent with ours) will require interface

features that are currently not supported by our solution. We need to

build these features or our solution will lose its business value.

Architecting the Time dimension

Evolution Viewpoint

Step 2: Identify backlog items for solution roadmap

27

project backlog

user stories

use cases

functional requirements

feature wish-list

acceptance criteria

change request log

defect database

architectural concerns

risk list

solution blueprint

architectural concerns

architectural decisions

part list

Architecting the Time dimension

Evolution Viewpoint

Step 3: Dependency Analysis

28

Architecting the Time dimension

Evolution Viewpoint

Step 4: Visual Timeline

29

Rel 1.3

Q1 2017

Rel 2.0

Q2 2017

Rel 2.1

Q3 2017

Rel 2.2

Q4 2017

Rel 2.3

Q1 2018

Project W

finishes

New

Reporting

Regulations

Competitor

Releases

NextGen

A

F

T

Technical debt reduction

Architectural improvement User feature

Defect removal Dependency

Legend

Architecture Roadmapping

Release strategy 1: value-first

• In line with Agile philosophy

• May increase TCO (more refactoring)

• Too “greedy” algorithm may run project into wall (complete rebuild)

• Good in volatile environments

30

Start Rel 1.0 Rel 1.1 Rel 1.2 Rel 2.0

Architecture Roadmapping

Release strategy 2: architecture-first

• In line with plan-driven philosophy

• Late delivery of value  risk of cancellation

• Risk of building wrong architecture (if context changes)

• Good for complex solutions

31

Start Rel 0.1 Rel 0.2 Rel 1.0 Rel 1.1

Architecture Roadmapping

Real-life experiences (1/3)

Typically found architecturally significant events:

• Project or process milestones, such as delivery and approval

deadlines; also deadlines in dependent projects

• Product version/infrastructure upgrades

• Business changes

• Changing agreements (KPIs, SLAs), mergers/take-overs, legislative/policy

• Changes in availability of resources, e.g. availability of expertise

Architecture Roadmapping

Real-life experiences (2/3)

Lessons learned

• Anticipation documents often informal

• “roadmap”

• “decision support”

• “strategy document”

• Need stakeholders to identify significant future events!

Architecture Roadmapping

Real-life experiences (3/3)

Significant benefits observed

• Improved (more realistic) stakeholder

expectations

• Better prioritization of required

architectural improvements

• Helps architects articulate business

impact of roadmapping scenarios

• Helps architects discuss timing of

architectural improvements

• based on business impact rather than

generic (dogmatic) “rules” like YAGNI

© CGI Group Inc.

1. Build your business case on risk exposure

2. Architect your time dimension

3. Manage stakeholder expectations from the start

Questions or Comments?

36 Spare slides follow

Definition of Solution

Solution: a coherent set of changes delivered to address a defined set of

stakeholder needs

• Changes: solution elements are created, modified or removed

• Delivered: coordination depends on governance model:

• agile or traditional

• value stream, program or project

• contractual or otherwise

• Defined: depends on governance model:

• Epic / set of (user) stories

• Program / project definition

• Contract

• Change request

• …

37

Requirements Analysis

Solution Shaping

Architecture Validation

Architecture Fulfillment

RCDA Practices

Core Practices Supporting Practices Lifecycles
RCDA Core Process

Bid

RUP Software Development

Blended Delivery

Enterprise to Solution

Agile Development

Waterfall Project
Architectural Requirements Prioritization

Solution Selection

Architecture Evaluation

Stakeholder Workshop

Dealing with NFRs

Cost-Benefit Analysis

Documenting Architectural Decisions

Architectural Prototyping

Supplier Evaluation

Requirements Convergence Plan

Architecture Implementation

Solution Shaping Workshop

Solution Costing

Architecture Documentation

Applying Architectural Strategies

Independent Architecture Assessment

Architecture Roadmapping

Architecture Maintenance Technical Debt Control

References

Abrahamsson, P., Babar, M. A., & Kruchten, P. (2010, March/April). Agility and
Architecture: Can They Coexist? IEEE Software.

Boehm, B. (2010). Architecting: How Much and When? In A. Oram, & G. Wilson,
Making Software: What Really Works, and Why We Believe It . O'Reilly Media.

Brown, N., Nord, R. L., & Ozkaya, I. (2010, November/December). Enabling Agility
Through Architecture. CrossTalk.

Fowler, M. (2003, July/August). Who Needs an Architect? IEEE Software, pp. 2-4.

Jansen, A., & Bosch, J. (2005). Software Architecture as a Set of Architectural Design
Decisions. Working IEEE/IFIP Conference on Software Architecture.

Malan, R., & Bredemeyer, D. (2002, september/oktober). Less is More with Minimalist
Architecture. IT Pro, pp. 46-48.

Poort, E. R. (2016, Nov/Dec). Just Enough Anticipation: Architect Your Time
Dimension. IEEE Software

Poort, E. R. (2014, Sept/Oct). Driving Agile Architecting with Cost and Risk. IEEE
Software.

Slot, R. (2010). A method for valuing architecture-based business transformation and
measuring the value of solutions architecture. Amsterdam.

39

