
Ninth International Workshop on Managing Technical Debt (MTD 2017)

Thorsten Haendler, Stefan Sobernig, and Mark Strembeck

Vienna University of Economics and Business (WU Vienna)

thorsten.haendler@wu.ac.at

Towards Triaging Code-Smell
Candidates via Runtime Scenarios and
Method-Call Dependencies

mailto:thorsten.haendler@wu.ac.at

 2

Assessment of smell candidates

Smell-detection tools produce false positives and/or miss smell candidates
(due to applied detection technique: mostly static program analysis)

In general, smells also might result from a deliberate design decision
(Arcelli Fontana et al., 2016; intentional smell)

Smell Triage
A) symptom-based identification
 and assessment
B) re-assessment of true positives

 structural and behavioral context
 design decisions
 change impact and prioritization

of potential refactorings

 → effort/time for manual re-assessment
Fig. 1: Candidate states during triage

sd : candidate states

 3

Approach: Decision support based on runtime scenarios and
method-call dependencies

 Runtime Scenarios
Scenario-based runtime tests
(e.g., BDD tests)

 → exemplary intended behavior

 Method-Call Dependencies
Multiple code smells manifest via
call dependencies e.g., FeatureEnvy, CyclicDependency, MessageChain,
Functionally similar methods (kind of DuplicateCode)

 Reverse-Engineering Design Perspectives (using runtime analysis)
● dependency structure matrices (DSMs)
● UML2 sequence diagrams

set pES [::STORM_i::TestScenario new name
pushOnEmptyStack testcase PushElement]

$pES expected_result set 1
$pES setup_script set {
 [::Stack getInstance] pop
}
$pES preconditions set {
 {expr {[[::Stack getInstance] size] == 0}}
 {expr {[[::Stack getInstance] limit get] == 4}}
}
$pES test_body set {
 [::Stack getInstance] push [::Element new name e5 value 1.9]
}
$pES postconditions set {
 {expr {[[::Stack getInstance] size] == 1}}
 {expr {[[[::Stack getInstance] top] name get] eq "e5"}}
 {expr {[[[::Stack getInstance] top] value get] == 1.9}}
}
$pES cleanup_script set {
 [::Stack getInstance] limit set 4
}

Given...
When...
Then...

 4

Scenario-driven smell assessment

1. Identification of hidden candidates

2. Assessment of given candidates

 a) Check scenario-relevance of
candidates

 b) Review scenario-scoped behavioral and
 structural candidate context
 (e.g., for identifying intentional smells
 such as applied design patterns)

Fig. 2: Example: Spotting candidates for functionally
similar methods (kind of DuplicateCode)

hidden candidates

candidates that don‘t manifest
during scenario execution

 5

Tailorable design perspectives derived from runtime scenarios

Fig. 3: Scenario & runtime perspectives on method-call dependencies for triaging smell candidates

 6

Software prototype: KaleidoScope

Tracer Component
 instruments the test framework

(e.g., TclSpec/STORM)
 creates XMI trace model

Reporter Component
 parametric transformation
 UML models created using QVTo

mappings and visualized in diagrams
using Quick Sequence Diagram Editor

 matrices visualized using R

Fig. 4: Conceptual overview of KaleidoScope (publicly
available for download at http://nm.wu.ac.at/nm/haendler)

http://nm.wu.ac.at/nm/haendler

 7

Simple example:
Assessing candidates for functionally similar methods

Overlapping set of called methods:
scenario-based inter-method matrix

Figs. 5 & 6: Process for assessing FSM candidates (above) and
exemplary auto-generated method-interaction diagrams (righthand)

further assessment criteria: order of method
calls, i/o behavior, usage context (calling
methods/classes, scenarios):
generated method-interaction diagrams

 8

Summary

Decision support for triaging smell candidates
 reflecting method-call dependencies obtained from scenario test-execution

traces
 providing different tailorable design perspectives (DSMs, UML2 sequence

diagrams)
 complementing static-analysis tools

Prototypical implementation KaleidoScope

Limitations/Next Steps
 support for other smell types
 assisting in extended triaging questions (bad vs. intentional and refactoring

planning)
 large(r) software systems
 experiments on the approach's benefits for human users

 9

Discussion 1/4

Support for other code & design smells
Abstraction, Hierarchy, Encapsulation and other Modularization smells

 → also include data and subclass dependencies
 → additional design views (e.g., UML class diagrams)

Further potential of using scenarios

Example:
MultifacedAbstraction
(and MissingAbstraction)

Y

y1

y2

y3

y4

y5

X

x1

x2

x3

x4

x5

sa

sb

sc

Fig. 7:
MultifacedAbstraction example

 10

Discussion 2/4

Bad vs. Intentional
smell false positives in terms of design patterns (Arcelli Fontana et al., 2016)

 → behavioral context for identifying such intentional smells

Example: Visitor DP

CyclicDependency

FeatureEnvy
(potential candidate)

accept(visitor)

visit(element)

Fig. 8: Exemplary auto-generated
class-interaction diagram

 11

Discussion 3/4

Change-Impact Analysis
Impact of potential refactorings on system and test suite

Example: MoveMethod

Analysis Exemplary Question Perspective

Impact on program Which calling methods depend on the
candidate method to be moved?

scenario-based
inter-method
matrix

Impact on test suite Which scenario tests cover the method to be
moved?

scenario-to-
method matrix

Move target Which existing classes are eligible owners of
the candidate method to be moved?

class-to-method
and method-to-
class matrices

 12

Discussion 4/4

Larger application examples

Fig. 9: Scenario-to-method matrix: called vs. not
called (y-axis: test scenarios, x-axis: selected methods)

Fig. 10: Scenario-to-class matrix: amount of different
methods triggering inter-class method calls (y-axis:
selected test scenarios, x-axis: selected classes).

System under analysis:
 357 test scenarios
 ~30k assertions

Thank you for your attention!

Questions & Discussion

thorsten.haendler@wu.ac.at

mailto:thorsten.haendler@wu.ac.at

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13

