o U NI VER S I TY

Exploring Software Supply Chains
from a Technical Debt Perspective

J. Yates Monteith
John D. McGregor

Strategic Software Engineering Research Group

Problem: Quality in the Software
Supply Chain
Due diligence requires that deliveries from

suppliers be checked for acceptable quality.

Software products are often subjected to
acceptance test but these are superficial.

One approach is to establish the reputation of
the vendor.

Another is to sample at
high value targets.

Technical debt

 Many sources besides code
 We used SONAR in a standard configuration
* Need measures for non-code artifacts

Betweenness Centrality (BC)

e Ratio between the number of shortest paths a
node lies in to the total number of shortest
paths.

— The node on the most shortest paths has the
highest betweenness centrality.

e Graph theorists use this to identify nodes that
are important to graph connectivity and
information flow.

BC(V) _ Z Ot (V)

S#v#L Gst

Experiments

e Sampled three versions of the Java
Development Tools (JDT): 3.4, 3.5 and 3.6.

— Maintenance builds.

 Experiment 1: Correlation test between
technical debt and betweenness centrality.

 Experiment 2: Longitudinal Hotspot
Evaluation.

BC-TD Correlation

* Measured betweenness centrality of each file
in JDT 3.4, 3.5 and 3.6 using Cytoscape.

* Measured technical debt using Sonar
Technical Debt plugin.

e Performed Pearson Correlation Coefficient

test.
3.4 0.42765676 < 0.0001
3.5 0.42565911 < 0.0001

3.6 0.43607052 <0.0001

Analysis

e Results were moderate, but significant
correlation.

 There exists a positive relationship between
technical debt and betweenness centrality.

* As one grows, the other grows, though not at
the same rate.

Longitudinal Evaluation

e Utilized same three maintenance versions of
JDT: 3.4, 3.5 and 3.6.

 Generated dependency graphs for code
structures using Cytoscape.

e Measured betweenness centrality.

— i.e. Nodes that depended or were dependent on
the four principle files.

Longitudinal Evaluation

e |solated four principle files via high technical
debt: ClassFile, Parser, CodeStream and
CompletionEngine.

 Reduced graph to four principle nodes and
first neighbor nodes

 Performed the Force-Directed Spring-
Embedded layout with weighting on
betweenness centrality.

— Nodes act as repulsive elements (think electrons).
— Edge length determine by betweenness centrality.

Eclipse —JDT 3.4

Technical debt (§) £000.00

10

Eclipse —JDT 3.5

=
7 IDT35-8

- <oV pT3s-a
] 'B"%‘\ J

. [
_— Technical debt (%) ©000.00

11

Eclipse —JDT 3.6

Technical debt (%)

12

iolations

ing standard v

Cod

-+ ¢ o
[n T - T A Lo S o T o 5
[= =
[T o T o |
288 s R8s
=1
)
=
o
T
=]
s
T
=]
rﬂ
8z
(']
;5
=
B g
[=]
g 2
=
o
T_
=]
(g}
iy
=
i)
T T T m
=1
=] =] =] =] [] [] (=1
i a A] A 2
o4 & = — I
EUOTIE[OT A TOULAJ-LIO j apory Jo s8]
= o - oo
o 0o
B B R R R A
H H B H B B
=1
)
=
o
T
=]
s
T
=]
rﬂ
8z
" 3
=
m@
[=]
uN
=
o
T_
=]
(g}
iy
=
i)
=]

4500

T
=
=

Y+ 11 ""1T/ 1T /"1 ! ot
[R e I = D = | [R e D e B e
[I s N o I s s e N s |
S 2832882828 °” S £ 228 5 g E 2
= 6 & M~ oM H (== T = N S T Y = = T o I

SUOT B[Ol @) 192 [eatuaa],

IDT-1IDT-2IDT-3IDT4IDT-3IDT-6IDT-7TIDT-8IDT-2
Mode Cluster

IDT-1IDT-2IDT-3IDT4AIDT-53IDT-6IDT-7IDT-3 JDT-2
MNode Cluster

Analysis

e Examination of node clusters showed cluster 7 was
an outlier: excessive technical debt, minor violations,
non-minor violations and code size.

— However, not the largest cluster in terms of lines of code.

* Analysis across versions showed significant
refactoring of code, resulting in significantly reduced
lines of code, violations and technical debt.

 Our technique consistently identified places where
the professional staff spent time modifying design
and code.

Conclusion

 Betweenness centrality has a positive
relationship with technical debt.

e Using whichever of the two is easiest to
compute we can identify regions of code that
need renovation.

 \We can also identify the vendors in an
ecosystem that are best to use from a
technical debt perspective.

	Exploring Software Supply Chains from a Technical Debt Perspective
	Problem: Quality in the Software Supply Chain
	Technical debt
	Betweenness Centrality (BC)
	Experiments
	BC-TD Correlation
	Analysis
	Longitudinal Evaluation
	Longitudinal Evaluation
	Eclipse – JDT 3.4
	Eclipse – JDT 3.5
	Eclipse – JDT 3.6
	Coding standard violations
	Analysis
	Conclusion

