

Exploring Software Supply Chains
from a Technical Debt Perspective

J. Yates Monteith
John D. McGregor

Strategic Software Engineering Research Group

1

Problem: Quality in the Software
Supply Chain

• Due diligence requires that deliveries from
suppliers be checked for acceptable quality.

• Software products are often subjected to
acceptance test but these are superficial.

• One approach is to establish the reputation of
the vendor.

• Another is to sample at
 high value targets.

2

Technical debt

• Many sources besides code
• We used SONAR in a standard configuration
• Need measures for non-code artifacts

3

Betweenness Centrality (BC)

• Ratio between the number of shortest paths a
node lies in to the total number of shortest
paths.
– The node on the most shortest paths has the

highest betweenness centrality.

• Graph theorists use this to identify nodes that
are important to graph connectivity and
information flow.
 ∑

≠≠

=
ts st

stBC
ν σ

νσν)()(
4

Experiments

• Sampled three versions of the Java
Development Tools (JDT): 3.4, 3.5 and 3.6.
– Maintenance builds.

• Experiment 1: Correlation test between
technical debt and betweenness centrality.

• Experiment 2: Longitudinal Hotspot
Evaluation.

5

BC-TD Correlation

• Measured betweenness centrality of each file
in JDT 3.4, 3.5 and 3.6 using Cytoscape.

• Measured technical debt using Sonar
Technical Debt plugin.

• Performed Pearson Correlation Coefficient
test.

6

Version Correlation Coefficient One-tailed P Value

3.4 0.42765676 < 0.0001

3.5 0.42565911 < 0.0001

3.6 0.43607052 < 0.0001

Analysis

• Results were moderate, but significant
correlation.

• There exists a positive relationship between
technical debt and betweenness centrality.

• As one grows, the other grows, though not at
the same rate.

7

Longitudinal Evaluation

• Utilized same three maintenance versions of
JDT: 3.4, 3.5 and 3.6.

• Generated dependency graphs for code
structures using Cytoscape.

• Measured betweenness centrality.
– i.e. Nodes that depended or were dependent on

the four principle files.

8

Longitudinal Evaluation

• Isolated four principle files via high technical
debt: ClassFile, Parser, CodeStream and
CompletionEngine.

• Reduced graph to four principle nodes and
first neighbor nodes

• Performed the Force-Directed Spring-
Embedded layout with weighting on
betweenness centrality.
– Nodes act as repulsive elements (think electrons).
– Edge length determine by betweenness centrality. 9

Eclipse – JDT 3.4

10

Eclipse – JDT 3.5

11

Eclipse – JDT 3.6

12

Coding standard violations

13

Analysis

• Examination of node clusters showed cluster 7 was
an outlier: excessive technical debt, minor violations,
non-minor violations and code size.
– However, not the largest cluster in terms of lines of code.

• Analysis across versions showed significant
refactoring of code, resulting in significantly reduced
lines of code, violations and technical debt.

• Our technique consistently identified places where
the professional staff spent time modifying design
and code.

14

Conclusion

• Betweenness centrality has a positive
relationship with technical debt.

• Using whichever of the two is easiest to
compute we can identify regions of code that
need renovation.

• We can also identify the vendors in an
ecosystem that are best to use from a
technical debt perspective.

15

	Exploring Software Supply Chains from a Technical Debt Perspective
	Problem: Quality in the Software Supply Chain
	Technical debt
	Betweenness Centrality (BC)
	Experiments
	BC-TD Correlation
	Analysis
	Longitudinal Evaluation
	Longitudinal Evaluation
	Eclipse – JDT 3.4
	Eclipse – JDT 3.5
	Eclipse – JDT 3.6
	Coding standard violations
	Analysis
	Conclusion

