
Generating Precise Dependencies for Large Software

Generating Precise Dependencies for Large
Software

Pei Wang, Jinqiu Yang, Lin Tan
University of Waterloo

Robert Kroeger, David Morgenthaler
Google Inc.

P. Wang (UWaterloo) 1 / 13

Generating Precise Dependencies for Large Software

Code Base Size is Growing

Mozilla Firefox Code Base Size (2010-2013)†

Chromium (Google Chrome) Code Base Size (2010-2013)†

† Data from Ohlohr

P. Wang (UWaterloo) 2 / 13

Generating Precise Dependencies for Large Software

Software Complexity is Increasing

webkit

v8_base

glue

net

base

ui

content_common

ipc

renderer

Dependencies between Some Key
Components of Chromium

By December 2012,
Chromium (svn-171054)
has 238 modules.

P. Wang (UWaterloo) 3 / 13

Generating Precise Dependencies for Large Software

Technical Debt Caused by Increasing Structural
Complexity

Technical Debt in Software Development

Compromises made for short term benefits (meeting product release
deadline, etc.) but hurting long term maintainability of the software

Two Kinds of Bad Dependencies

Inconsistent Dependency: dependencies violating software design

Underutilized Dependency: only a small portion of a target module is
utilized by a client module

Bad Dependencies Tell Us About

Modularity Violation

Loosely Coupled Components & Useless Code

Refactoring Cost

P. Wang (UWaterloo) 4 / 13

Generating Precise Dependencies for Large Software

Light-Weight Dependency Analysis is Not Enough

Light-Weight Analysis Techniques

Pattern Matching

Abstract Syntax Tree Based Analysis

Challenges in Large-Scale C++ Dependency Analysis

Function/Operator overloading and default parameters

Non-standard language syntax

Implicit call sites

Templates

P. Wang (UWaterloo) 5 / 13

Generating Precise Dependencies for Large Software

Tool Design Overview

LLVM
Compiler

configuration

source

code

IR
Analyzer

LLVM IR Post
Processor

grouping strategy

symbol-level

dependencies

module-level

dependencies

Workflow

1 Compile C/C++ source into LLVM Intermediate Representation (IR).

2 Extract symbol-level dependencies from LLVM IR instructions.

3 Group symbol-level dependencies to get module-level dependencies.

P. Wang (UWaterloo) 6 / 13

Generating Precise Dependencies for Large Software

Step 2: Symbol-Level Dependency Extraction

Obtain symbol references by traversing LLVM IR instruction.

Resolve symbol linkage through a mock linking process.

Example: Non-Standard Syntax Support

chromium/src/content/zygote/zygote main linux.cc:182:

struct tm* localtime override(const time t* timep)

asm ("localtime");

C++ Code

obj.target/content browser/content/zygote/zygote main linux.o:

define %struct.tm* localtime(i64* %timep) nounwind uwtable

LLVM IR

P. Wang (UWaterloo) 7 / 13

Generating Precise Dependencies for Large Software

Step 3: Module-Level Dependency Analysis

Group symbols into modules:

The grouping strategy can simply be the build configuration of the
software and allows user customization.

Target-Module-Util =
of symbols in client’s dependency

of symbols defined in the target

Utilization-related metrics:

Pairwise Utilization
Overall Utilization

P. Wang (UWaterloo) 8 / 13

Generating Precise Dependencies for Large Software

Performance Evaluation

Analysis Scale (Chromium svn-171054)

Lines of C/C++ Code 6 Million

of Symbols 470,797

of Symbol References 13,912,651

of Modules 238

Analysis time: ∼ 123 minutes (3.1GHz Core i5)

∼ 88 minutes’ compilation time
∼ 35 minutes’ analysis time

Peak memory usage: 5.6GB

P. Wang (UWaterloo) 9 / 13

Generating Precise Dependencies for Large Software

Preliminary Findings

Partial List of Underutilized Modules in Chromium

Module # of Symbols Overall Util†

notifier 181 4.4∼17.1%

ppapi cpp objects 1195 17.5∼17.6%

dbus 334 18.9∼18.9%

ppapi ipc 3228 19.4∼19.4%

remoting jingle glue 97 12.4∼19.6%

†The range shows the impact of virtual function calls.

A Potential Inconsistent Dependency

The module base , which is not supposed to depend on any other
modules, is using a third-party Base64 en-decryption library.

P. Wang (UWaterloo) 10 / 13

Generating Precise Dependencies for Large Software

Conclusion

Scalable and precise structural dependency extraction and analysis

Scales to millions of lines of code

Full C++ Support

Can analyze most salient C++ features
Support some non-standard syntax

Detected potential bad dependencies in Chromium

P. Wang (UWaterloo) 11 / 13

Generating Precise Dependencies for Large Software

Future Work

More Advanced Analysis Based on Precise Dependency Data

Modularity Violation Detection

Invalid Dependency Injection Diagnosis

Large-scale Refactoring Assistance

P. Wang (UWaterloo) 12 / 13

