
6/15/2012

1

Assessing and Avoiding
Technical Debt

Barry Boehm, USC-CSSE
Managing Technical Debt Workshop

June 5, 2012

6/5/2012 1©USC-CSSE

University of Southern California
Center for Systems & Software Engineering

Summary

• Assessing amount of technical debt as necessary rework
– Shortfalls in architecture and risk resolution
– Conspiracies of optimism
– Neglecting change and its effects

• Fixed-price, build-to-spec contracting
• Incremental Development Productivity Decline

• Avoiding technical debt
– Evidence-based decision making
– Continuous verification and validation
– Value-based time/cost boxing

6/5/2012 ©USC-CSSE 2

University of Southern California
Center for Systems & Software Engineering

6/15/2012

2

3

Rework Due to Weak Architecting
Calibration of COCOMO II Architecture and Risk Resolution factor to

161 project data points

6/5/2012 ©USC-CSSE

University of Southern California
Center for Systems & Software Engineering

Effect of Size on Best Level of Architecting

46/5/2012 ©USC-CSSE

University of Southern California
Center for Systems & Software Engineering

6/15/2012

3

5©USC-CSSE6/5/2012

University of Southern California
Center for Systems & Software Engineering

The Conspiracy of Optimism
Take the lower branch of the Cone of Uncertainty

Summary

• Assessing amount of technical debt as necessary rework
– Shortfalls in architecture and risk resolution
– Conspiracies of optimism
– Neglecting change and its effects

• Fixed-price, build-to-spec contracting
• Incremental Development Productivity Decline

• Avoiding technical debt
– Evidence-based decision making
– Continuous verification and validation
– Value-based time/cost boxing

6/5/2012 ©USC-CSSE 6

University of Southern California
Center for Systems & Software Engineering

6/15/2012

4

7

Adaptation Challenges: A Dual Cone of Uncertainty
– Need early systems engineering, evolutionary development

Uncertainties in competition,
technology, organizations,
mission priorities

Uncertainties in
scope, COTS, reuse,
services

6/5/2012 ©USC-CSSE

University of Southern California
Center for Systems & Software Engineering

6/5/2012 8

Technical Characteristics (2)
Cost of Change: Beck, Li

Beck

LiLi

©USC-CSSE

6/15/2012

5

Effects of Incremental Development Productivity Decline

• Model relating productivity decline to
number of builds needed to reach 320K SLOC
Full Operational Capability

• Assumes Build 1 production of 80K SLOC @
400 SLOC/PM
– 200 PM/ 12 mo. = 17 developers
– Constant staff size for all builds

• Analysis varies the productivity decline per
build
– Extremely important to determine the

incremental development productivity
decline (IDPD) factor per build

80K

320K

SLOC

9©USC-CSSE6/5/2012

University of Southern California
Center for Systems & Software Engineering

Summary

• Assessing amount of technical debt as necessary rework
– Shortfalls in architecture and risk resolution
– Conspiracies of optimism
– Neglecting change and its effects

• Fixed-price, build-to-spec contracting
• Incremental Development Productivity Decline

• Avoiding technical debt
– Evidence-based decision making
– Continuous verification and validation
– Value-based cost/time boxing

6/5/2012 ©USC-CSSE 10

University of Southern California
Center for Systems & Software Engineering

6/15/2012

6

Types of Milestone Reviews
• Schedule-based reviews (contract-driven)

– We’ll hold the PDR on April 1 whether we have a design or not
– High probability of proceeding into a Death March

• Event-based reviews (artifact-driven)
– The design will be done by June 1, so we’ll have the review then
– Large “Death by PowerPoint and UML” event

• Hard to avoid proceeding with many unresolved risks and interfaces

• Evidence-based commitment reviews (risk-driven)
– Evidence provided in Feasibility Evidence Description (FED)

• A first-class deliverable
– Shortfalls in evidence are uncertainties and risks
– Should be covered by risk mitigation plans
– Stakeholders decide to commit based on risks of going forward

6/5/2012 ©USC-CSSE 11

University of Southern California
Center for Systems & Software Engineering

12©USC-CSSE6/5/2012

University of Southern California
Center for Systems & Software Engineering

Examples of Evidence Utility:
Pareto 80-20 Technical Debt Distribution
Contracts: Nominal-case requirements; 90 days to PDR

6/15/2012

7

13©USC-CSSE6/5/2012

University of Southern California
Center for Systems & Software Engineering

C4ISR Project C: Architecting for Change
USAF/ESC-TRW CCPDS-R Project*

When investments made in architecture, average time for change order becomes relatively
stable over time…

* Walker Royce, Software Project Management: A Unified Framework. Addison-Wesley, 1998.

25 August 200914

Some Risk and Technical Debt is Inevitable
Use low-priority features as risk reserve

1. Stakeholder value-based feature prioritization

2. Cost/Schedule range estimation and core-capability
determination
- Top-priority features achievable within cost/schedule with 90% confidence

3. Architecting for ease of adding or dropping borderline-
priority features
- And for accommodating post-IOC directions of growth

4. Incremental development
- Core capability as increment 1

5. Change and progress monitoring and control
- Add or drop borderline-priority features to meet cost/schedule

University of Southern California
Center for Systems & Software Engineering

6/15/2012

8

Backup Charts

6/5/2012 ©USC-CSSE 15

Magnitude of Software Failures Problem:
Standish Surveys of Commercial Projects

Year 2000 2002 2004 2006 2008

Within budget and schedule 28 34 29 35 32

Prematurely cancelled 23 15 18 19 24

Budget or schedule overrun 49 51 53 46 44

6/5/2012 ©USC-CSSE 16

6/15/2012

9

6/5/2012
17

Why Software Projects Fail

©USC-CSSE

18©USC-CSSE6/5/2012

University of Southern California
Center for Systems & Software Engineering

Example: Agility Underestimating Complexity:
Thoughtworks Lease Management

• XP replaced ineffective traditional development
• Problems when project moved beyond XP assumptions

- The effort to develop or modify a story really does not increase with time
and story number
- Trusting people to get everything done on time is compatible with fixed
schedules and diseconomies of scale
- Simple design and YAGNI scale up easily to large projects

• Disciplined practices enabled XP to scale up
- High-level architectural plans to provide essential big-picture information
- More careful definition of milestone completion criteria to avoid
“finishing” but not finishing
- Use of design patterns and architectural solutions rather than simple
design to handle foreseeable change

6/15/2012

10

19©USC-CSSE6/5/2012

University of Southern California
Center for Systems & Software Engineering

Example: Human Desire to Please
Be careful what you ask for. You may get it.

Weinberg Programmer Objectives Experiment
Resulting Rank of

Performanceb

Team objective:
Optimize

Effort to
Complete

Number of
Statements

Memory
Required

Program
Clarity

Output
Clarity

Effort to complete 1 4 4 5 3

Number of statements 2-3 1 2 3 5

Memory required 5 2 1 4 4

Program clarity 4 3 3 2 2

Output clarity 2-3 5 5 1 1

Integration Matrix

Integration
styles vs.
Properties

Topology Linkage Connector

Point-to-
Point

Hub and
Spoke

Shared
Bus

Peer-to-
Peer

Shared
Data

Messaging Explicit
invocation

Data
Streaming

Adapter Translator Arbitrator Distributor

In
te

ra
ct

io
n

Distributed o + + + o + + + o o + +
Local o - + - + o + + o o o -
Secure + - o +/- - o o o o o + -
Data intensive + - - + + - o + o - + +
Data formats
incompatible

o + o - - + o o o + o o

Data consistency o + o - + o o - o o + o
Interaction
protocols
incompatible

o + o - + o - o + o o o

Reliable + - + + - + + o o o + o
Real time + - +/- - + - + + o o + o
One-to-many - + + + +/- + - + o o + +
Many-to-one - + o +/- o + - o o o + +
Always available + - o + - + o o o o + o
Periodically
scheduled

+ o o - o o o o o o + o

Sy
st

em

Loose coupling - + + +/- - + - - + + + +
Robustness - - + + - + +/- - o o + +
Dynamically
reconfigurable

- o + + o + + o + + + o

Scalable - - + + - + o o o o + +
Caching - + + o + o - - o - + +
Distributed
transactions

- + + +/- + + + o o o + +

Obvious
advantages and
disadvantages

Hub becomes a
bottleneck
Shared data

repositories are
difficult to scale

P2P architectures
effective at quickly
disseminating data

6/5/2012 20©USC-CSSE

6/15/2012

11

21©USC-CSSE6/5/2012

University of Southern California
Center for Systems & Software Engineering

Rework Sources Analysis: Projects A and B
- Change processing over 1 person-month = 152 person-hours

22©USC-CSSE6/5/2012

University of Southern California
Center for Systems & Software Engineering

Relative* Total Ownership Cost (TOC)
For single system life cycle (TOC-SS)

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Project A Project B Project C

~5% architecture investment

~5% architecture investment

~25% architecture investment

* Cumulative architecting and rework effort relative to initial development effort

6/15/2012

12

6/5/2012

Evidence- and risk-based decision making
• Evidence provided by developer and validated by independent

experts that:
If the system is built to the specified architecture, it will
– Satisfy the requirements: capability, interfaces, level of service, and evolution
– Support the operational concept
– Be buildable within the budgets and schedules in the plan
– Generate a viable return on investment
– Generate satisfactory outcomes for all of the success-critical stakeholders

• All major risks resolved or covered by risk management plans
(shortfalls in evidence are uncertainties and risks)

• Serves as basis for stakeholders’ commitment to proceed

Can be used to strengthen current schedule- or event-based reviews

23©USC-CSSE

EvDev Budgeting and Scheduling Concerns:
Incremental Development Productivity Decline (IDPD)

• Example: Site Defense BMD Software
– 5 builds, 7 years, $100M; operational and support

software
– Build 1 productivity over 200 LOC/person month
– Build 5 productivity under 100 LOC/PM

• Including Build 1-4 breakage, integration, rework
• 318% change in requirements across all builds
• IDPD factor = 20% productivity decrease per build

– Similar trends in later unprecedented systems
– Not unique to DoD: key source of Windows Vista delays

• Maintenance of full non-COTS SLOC, not ESLOC
– Build 1: 200 KSLOC new; 200K reused@20% = 240K ESLOC
– Build 2: 400 KSLOC of Build 1 software to maintain, integrate

24©USC-CSSE6/5/2012

6/15/2012

13

IDPD Cost Drivers:
Conservative 4-Increment Example

• Some savings: more experienced personnel (5-20%)

• Depending on personnel turnover rates

• Some increases: code base growth, diseconomies of
scale, requirements volatility, user requests

• Breakage, maintenance of full code base (20-40%)

• Diseconomies of scale in development, integration
(10-25%)

• Requirements volatility; user requests (10-25%)

• Best case: 20% more effort (IDPD=6%)

• Worst case: 85% (IDPD=23%)

25©USC-CSSE6/5/2012

