
Technical Debt and
Requirements

Neil Ernst
University of British Columbia

@neilernst • neil@neilernst.net • neilernst.net

Wednesday, 6 June, 12

http://twitter.com/neilernst
http://twitter.com/neilernst
mailto:neil@neilernst.net
mailto:neil@neilernst.net
http://neilernst.net
http://neilernst.net

Overview
• Requirements represent product’s business

value and quality goals.
• “Technical debt is acquired when engineers

take shortcuts that fall short of best
practices.” -- Eric Allman, CACM 55(5)

Short-cuts in requirements phase(s)
a source of Technical Debt.

Wednesday, 6 June, 12

2008

Firefox

Wednesday, 6 June, 12

2008

2012

Firefox

Wednesday, 6 June, 12

Characteristics

Wednesday, 6 June, 12

Characteristics
• Benefit = Time saved not doing

requirements work.

Wednesday, 6 June, 12

Characteristics
• Benefit = Time saved not doing

requirements work.
• Risk = Possibility that we miss intent,

leading to “rework”.

Wednesday, 6 June, 12

Characteristics
• Benefit = Time saved not doing

requirements work.
• Risk = Possibility that we miss intent,

leading to “rework”.
• Interest = Misunderstood req in V1

might lead to further misses in V2, if
requirements build on top of one another.

Wednesday, 6 June, 12

Characteristics
• Benefit = Time saved not doing

requirements work.
• Risk = Possibility that we miss intent,

leading to “rework”.
• Interest = Misunderstood req in V1

might lead to further misses in V2, if
requirements build on top of one another.

• Repayment = Reprioritize, re-analyse,
process improvements.

Wednesday, 6 June, 12

Requirements Debt

Design Debt

Code Debt

Wednesday, 6 June, 12

Requirements Debt

Design Debt

Code Debt

Should have compiled ALL
Javascript to begin with

Wednesday, 6 June, 12

Requirements Debt

Design Debt

Code Debt

Should have compiled ALL
Javascript to begin with

Rearchitect to
support base
compilation

Wednesday, 6 June, 12

Requirements Debt

Design Debt

Code Debt

Should have compiled ALL
Javascript to begin with

Rearchitect to
support base
compilation

Implement new
code; test; deliver

Wednesday, 6 June, 12

Requirements Debt

Design Debt

Code Debt

Interest

Should have compiled ALL
Javascript to begin with

Rearchitect to
support base
compilation

Implement new
code; test; deliver

Wednesday, 6 June, 12

TD in Requirements
• Technical debt incurred when we do not

conduct “sufficient” requirements
analysis:
• we gamble that more elicitation or analysis will not

help,
• because that issue may not even be relevant!
• If it is relevant, than we go back and fix it.

• Key business decision: what is sufficient?
• Can tools help.

Wednesday, 6 June, 12

Other Examples

• “TBDs and maintenance” (MTD 10)
• Risk analysis and mitigation (JPL)
• Evolving user stories (SAP)

Wednesday, 6 June, 12

Optimizing decisions
• At start of iteration question is “what is

the best trajectory to pick”?
• What is best set of ‘work items’ to

prioritize?
• RE-KOMBINE automatically calculates

the optimal strategy for satisfying the
given set of requirements.

• Relations between requirements matter.

Wednesday, 6 June, 12

Surfacing requirements debt

• Mine repositories for requirements data
• Track usage data

Wednesday, 6 June, 12

Wednesday, 6 June, 12

Command Executions

edit.Delete 5.4 M
file.Save 4.3 M

edit.Paste 3.8 M

edit.Copy 2.4 M

ContentAssist.proposals 1.4 M

Wednesday, 6 June, 12

Command Executions

edit.Delete 5.4 M
file.Save 4.3 M

edit.Paste 3.8 M

edit.Copy 2.4 M

ContentAssist.proposals 1.4 M

Data: Eclipse UPP, 200908, eclipse.ui, 3.5.0

Command Executions

window.previousView 9
navigate.Back 69

window.showViewMenu 89

window.previousPerspective 155

window.previousEditor 166

Wednesday, 6 June, 12

Summary
• Debt is incurred when we do not do

sufficient requirements work.
• Requirements capture value, and should be

first-class citizens in software development.
• Support dev in understanding how software

is meeting business and quality goals.
• Tracking historical tendency, we can

improve our understanding of the problem
space(s).

Wednesday, 6 June, 12

Research Directions
1.What is the relationship between

process debt and requirements debt?
2.Analysis-paralysis vs. wearing

blinders
3.Transitioning from ‘agile’

requirements to up-front design.
4.How do we track requirements debt?

Neil Ernst: @neilernst • neilernst.net
Wednesday, 6 June, 12

http://twitter.com/neilernst
http://twitter.com/neilernst
http://neilernst.net
http://neilernst.net

