

Investigating the Impact of Code Smells
Debt on Quality Code Evaluation

Francesca Arcelli Fontana, Vincenzo Ferme, Stefano Spinelli

University of Milano Bicocca, Italy

Managing Technical Debt Workshop
ICSE 2012, Zurich

June 5, 2012

Evolution of Software Systems and Reverse Engineering

• Design Defects: Code Smells,.....
 - symptoms of possible problems.
 - may have a negative impact on software evolution.
 - source of design debt that have to be managed in
 some way.
• eliminate codes smell debt through refactoring
• refactoring could sometimes be too expensive
• identify critical smells whose refactoring cost will be repaid in
terms of ease of maintenance and improvement of system
quality
• consider code smells and metrics values relationships

Research Focus

1. What is the impact of removing a particular kind of
smell on different software quality metrics? And hence
which smells are more critical and should be removed
first? In other words, is there a smell which could
represent an indicator of design debt more than other
smells?

2. Is it possible that a smell detected in a system could not

be considered a smell in a system of another domain?
Are there some kinds of of domain-dependent smells?

Two Questions

Data Class – classes that have fields, getting and setting
methods for the fields, and nothing else. Such classes are dumb
data holders and are almost certainly being manipulated in far
too much detail by other classes.

God Class – performs too much work on its own, delegating
only minor details to a set of trivial classes and using the data
from other classes. This has a negative impact on the reusability
and the understandability of this part of the system.

Duplicate Code – is the most pervasive and pungent smell in
software. It tends to be either explicit or subtle. Explicit
duplication exists in identical code, while subtle duplication exists
in structures or processing steps that are outwardly different, yet
essentially the same.

Code Smells

Systems and Domains

Systems Application Domains
Number of

Class /
LOC

Columba 1.0 Application Software 1303/71680
Drawswf 1.2.9 Application Software 302/27008
Galleon 2.3.0 Application Software 556/52653
C_jdbc 2.0.2 Client-Server Software 778/81306
Heritrix 1.8.0 Client-Server Software 649/39272
Struts 2.2.1 Client-Server Software 1608/74670
Ganttproject 2.0.9 Diagram generator/Data visualization 801/47051
Jhotdraw 7.5.1 Diagram generator/Data visualization 749/75958
Velocity 1.6.4 Diagram generator/Data visualization 429/26854
Antlr 3.2 Software Development 330/25243
Drjava 20100913-r5387 Software Development 920/62380
Pmd 4.2.5 Software Development 885/60875

Metrics Granularity Tools
Abstracteness (Abstr) System Google CodePro

Analytics Distance from Main Sequence (DMS) System

CC – Changing Classes Method
iPlasma

FANOUT – Number of Called Classes System

Average Line of Code per Method
(ALCM) System Google CodePro

Analytics

CYCLO – McCabe’s Cyclomatic Number Method

iPlasma

WMC – Weighted Method Count Class

AMW – Average Method Weight Class

ATFD – Access to Foreign Data Class, Method

LAA – Locality of Attribute Accesses Method

TCC – Tight Class Cohesion Class

LCOM – Lack of Cohesion in Method Method Eclipse Metrics

Metrics and Tools

Metrics Classification:

Coupling

Size

Complexity

Data Abstraction

Cohesion

Experimental Plan

1. Compute the metric values on the systems

2. Detect the Code Smells in the systems

3. Apply refactoring techniques

4. Re-compute metric values

5. Evaluate the differences

6. Verify the removal of Code Smells and the introduction

of new ones

Code Smells Detection

Systems God Class Data Class
Duplicate

Code
(LOC)

Columb 14 42 4209

Drawswf 5 35 1376

Galleon 30 41 11556
C_jdbc 30 47 6972
Heritrix 33 18 1529
Struts 36 176 6192

Ganttproject 22 56 1064

Jhotdraw 17 14 9171
Velocity 3 18 1550
Antlr 27 28 3243

Drjava 22 25 5240

Pmd 17 26 2924

Order God Class Data Class Duplicate Code
1 Extract Class Encapsulate Field Extract Method

2 Extract Subclass Remove Setting
Method -

3 - Hide Method -

Refactoring Steps

Metrics Evaluation:
Data Class

Systems ALCM CYCLO WMC AMW Abstr DMS CC FANOUT ATFD LAA TCC LCOM

Columb =
0%

=
0%

+
0,85%

-
0,36%

=
0%

=
0%

=
0%

=
0%

=
0%

-
0,07%

+
1,04%

=
0%

Drawswf -
1,16%

-
1,10%

+
1,17%

-
2,65%

=
0%

=
0%

=
0%

=
0%

=
0%

-
0,02%

+
3,43%

+
5,59%

Galleon -
0,45%

-
0,41%

+
0,27%

-
0,05%

=
0%

=
0%

=
0%

=
0%

=
0%

-
0,08%

-
0,01%

+
0,50%

C_jdbc -
1,47%

-
0,93%

+
0,87%

-
0,35%

=
0%

=
0%

=
0%

=
0%

-
0,34%

-
0,09%

+
0,76%

+
1,19%

Heritrix -
0,42%

-
0,51%

+
0,26%

-
0,38%

=
0%

=
0%

=
0%

=
0%

=
0%

-
0,04%

+
0,48%

+
1,33%

Struts -
0,25%

=
0%

-
0,01%

-
0,04%

=
0%

=
0%

-
0,67%

-
0,83%

+
5,00%

-
0,13%

+
9,68%

+
0,77%

Ganttproject -
0,40%

-
0,65%

+
0,41%

-
0,09%

=
0%

=
0%

=
0%

=
0%

=
0%

-
0,04%

+
0,63%

+
0,87%

Jhotdraw -
0,41%

-
0,52%

+
0,30%

-
0,05%

=
0%

=
0%

+
0,08%

=
0%

=
0%

-
0,01%

+
0,44%

+
6,10%

Velocity =
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

Antlr -
0,66%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

+
4,80%

Drjava -
0,12%

=
0%

+
0,18%

-
0,10%

=
0%

=
0%

=
0%

=
0%

+
4,44%

-
0,02%

+
0,34%

+
0,96%

Pmd -
0,84%

-
0,88%

+
0,62%

-
0,33%

=
0%

=
0%

=
0%

=
0%

=
0%

-
0,10%

-
0,14%

+
1,53%

Metrics Evaluation:
Data Class

Systems ALCM CYCLO WMC AMW LAA TCC LCOM

Columb =
0%

=
0%

+
0,85%

-
0,36%

-
0,07%

+
1,04%

=
0%

Drawswf -
1,16%

-
1,10%

+
1,17%

-
2,65%

-
0,02%

+
3,43%

+
5,59%

Galleon -
0,45%

-
0,41%

+
0,27%

-
0,05%

-
0,08%

-
0,01%

+
0,50%

C_jdbc -
1,47%

-
0,93%

+
0,87%

-
0,35%

-
0,09%

+
0,76%

+
1,19%

Heritrix -
0,42%

-
0,51%

+
0,26%

-
0,38%

-
0,04%

+
0,48%

+
1,33%

Struts -
0,25%

=
0%

-
0,01%

-
0,04%

-
0,13%

+
9,68%

+
0,77%

Ganttproject -
0,40%

-
0,65%

+
0,41%

-
0,09%

-
0,04%

+
0,63%

+
0,87%

Jhotdraw -
0,41%

-
0,52%

+
0,30%

-
0,05%

-
0,01%

+
0,44%

+
6,10%

Velocity =
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

Antlr -
0,66%

=
0%

=
0%

=
0%

=
0%

=
0%

+
4,80%

Drjava -
0,12%

=
0%

+
0,18%

-
0,10%

-
0,02%

+
0,34%

+
0,96%

Pmd -
0,84%

-
0,88%

+
0,62%

-
0,33%

-
0,10%

-
0,14%

+
1,53%

 Improvement of systems
cohesion (TCC and LCOM)

 Improvement of WMC due
to Encapsulate Field
refactoring that has often
led to the introduction of
methods of low complexity

 Decrement of ALCM due to

the Encapsulate Field, which
involves the introduction of
new methods with few lines
of code

Metrics Evaluation:
God Class

Systems ALCM CYCLO WMC AMW Abstr DMS CC FANOUT ATFD LAA TCC LCOM

Columb +
0,60%

=
0%

+
0,85%

-
0,36%

=
0%

=
0%

=
0%

=
0%

=
0%

-
0,07%

+
1,04%

+
0,65%

Drawswf =
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

Galleon -
0,22%

-
0,41%

+
0,49%

-
0,15%

=
0%

=
0%

+
0,18%

+
0,97%

+
1,28%

-
0,19%

-
3,03%

+
0,53%

C_jdbc -
0,81%

-
0,46%

+
1,26%

-
0,70%

=
0%

=
0%

-
0,53%

-
0,21%

-
0,45%

-
0,08%

+
1,45%

+
1,18%

Heritrix =
0%

-
0,51%

+
0,62%

-
2,07%

=
0%

=
0%

-
0,14%

-
0,17%

-
0,36%

-
0,06%

+
0,04%

+
1,29%

Struts =
0%

=
0%

-
0,01%

-
0,04%

=
0%

=
0%

-
0,67%

-
0,83%

+
5,00%

-
0,13%

+
9,68%

+
1,15%

Ganttproject +
0,40%

=
0%

+
0,45%

-
0,23%

=
0%

=
0%

-
0,46%

-
0,58%

-
1,33%

=
0%

+
1,07%

+
0,70%

Jhotdraw =
0%

-
0,52%

+
0,41%

-
0,05%

=
0%

=
0%

-
0,02%

+
2,39%

+
7,28%

+
0,26%

-
10,62%

+
5,86%

Velocity =
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

=
0%

Antlr =
0%

+
1,06%

-
6,47%

-
3,72%

=
0%

=
0%

-
4,25%

-
5,35%

-
4,11%

-
3,05%

+
1,53%

+
4,68%

Drjava +
0,71%

=
0%

+
0,23%

-
0,37%

-
1,41%

=
0%

-
0,59%

-
1,41%

-
6,49%

-
0,01%

+
0,61%

+
0,88%

Pmd -
0,36%

-
0,88%

+
0,74%

-
0,94%

=
0%

=
0%

-
1,10%

-
1,16%

-
1,64%

-
0,09%

-
0,08%

+
1,51%

 Improvement of systems cohesion (TCC and LCOM) independently from
the application domain of the analyzed systems

 Decrement of AMW due to the introduction of new classes and the
movement of some methods and attributes of the refactored classes in
these new classes

 When we apply the refactoring steps for the God Class, it would be

useful to immediately know the impact on some metrics values: the
wrong choice could lead to the deterioration of other metrics values, as
those related to coupling.

Metrics Evaluation:
God Class

Systems ALCM CYCLO WMC AMW Abstr DMS CC FANOUT ATFD LAA TCC LCOM

Columb =
0%

=
0%

+
0,5%

-
0,2%

=
0%

=
0%

-
0,6%

-
3,4%

=
0%

-
0,4%

+
3,3%

-
0,9%

Drawswf =
0%

+
1,5%

+
0,6%

=
0%

=
0%

=
0%

-
1,3%

-
0,3%

=
0%

=
0%

+
1,5%

-
1,6%

Galleon =
0%

+
1,2%

+
1,2%

=
0%

=
0%

=
0%

-
0,3%

-
2,7%

=
0%

=
0%

+
2,2%

-
2,1%

 Deterioration of CC and FANOUT because often to remove the duplicate code between
two different classes we have to create a method in a class and invoke it from the other
one

 LCOM values decrease in all systems since respect to the initial state of the system, there
are more methods that access the same attributes of the refactored class

 TCC metric improve in all the systems, indicating an improvement of the overall cohesion

 WMC and CYCLO value improve because the Extract Method improves the code
complexity decreasing the number of linearly indipendent paths

Metrics Evaluation:
Duplicate Code

Domain dependent Smells

DATA CLASS

 Data Structures used by Parser;

 Application State Classes;

 Test Classes;

 Use of Libraries (AWT, SWING);

 Java Bean;

 Data Structures used by Logging, Debugging

Classes.

Domain dependent Smells

GOD CLASS

 Parser;
 Crawler;
 Visitors;
 Interpreter;
 Writer Classes;
 Profiler Classes;
 Errors Handler;
 Test Classes;
 Use of Libraries (AWT, SWING);
 Debugging Classes;
 Classes that Manage Database Interactions.

Conclusions

• We have identified smells related to the improvement/deterioraton of some
metrics.

• We can manage the smell debt by condidering:
• The most critical smells
• If our interest is to mantain or improve a particular metric value

• Remove the smell that allows to improve this metric:
 - i.e. improve cohesion (LCOM, TCC): remove God and Data Class

• Remove the smells whose refactoring is easier:
 It was easier to remove Data Class respect to God Class
 Removing Duplicate Code it depends on the required refactoring steps
• We observed that some smells detected by the tools are not real smells

Future Developments

• Extend our experiment with other smells and systems
• Refine the set of the considered metrics
• Check the metric value when different refactoring can be applied
• Provide a kind of prioritization of the smells to be removed
• Study the effect of refactoring on the average time to fix a defect, reduction in

bugs,....
• Choice of the best tools for Metrics, CS Detection and Refactoring
• Suggestions to improve CS Detection tools:

• Domain-dependent smells and design-dependent smells (smell filter)
• Context-based thersholds setting
• Correlations among smells, smells and anti-patterns (by removing a smell, I

could remove/reduce another kind of smell)
• Automated refactoring

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

