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Motivations (e
NICTA

* Architectural dependency has TD potential

 Architectural dependency # software dependency

— New dependency concepts
» understandable by all levels of stakeholders
* not just aggregation of code-level dependency
« architectural significant

— “Implicit” dependencies & beyond code
* Indirect; other factors (context, org structure, knowledge mgt..)

— Automated analysis of code has limitations
* large-scale system of systems with black-box components
* |Issues that are undetectable by code analysis

* Visualising them in architecture views is important
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Contributions Oe
NICTA

 New dependency relationship types
— Dimensions & degrees of dependency
— Cross views & models
— Relatedness of dependencies: implicit dependency

 Evaluated in three case studies

— Online Production Systems
 Implicit dependency = explicit design compromise > explicit debt

— Learning & Teaching Portal

« Synchronisation issues - highlighted as new dependency types
with dimension-> integration debt

— Lending Valuation Systems

« Upgrade problems - omitted dependency - design debt
Note: Analysis method and tool support (submitted to WICSA)



New Dependency Relationship Types o.
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Dimensions & Degrees of Dependency

influencedBy

Properties:
: -~ *Name

Name o Has an effect R biliti
' Responsibilities esponsibilities
 Interface visibility * Interface visibility
* Implementation Info * Implementation Info

Properties: Has no effect

Dependency Dimensions: (Element Prbperties, Degree of Effect)



Case 1: Online Product System
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Implicit dependency - explicit design compromise = explicit debt
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Synchronisation issues - highlighted as new dependency types with
dimension - integration mismatch debt



Case 3: Lending Valuation Systems @ [
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Upgrade problems - omitted dependency - design debt



DSM Annotated with Dependency Types Oe
NICTA
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Conclusion e
NICTA

* New architecture-level dependency types

— Top-down motivation

 not just aggregation of code-level dependency
- for stakeholders at different technical levels

— For debt that not easily detectable in code
* incorporating non-code factors as dimensions

 Evaluated in real world case studies

— Retrospectively on projects by linking problems with new
dependency and design debt

— Proactively on projects by identifying new dependency
and making the debt explicit

 Future work
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