Visualising
NICTA Architectural
Dependencies

John Brondum, Liming Zhu
National ICT Australia (NICTA)

University of New South Wales
(UNSW)

Liming.Zhu@pnicta.com.au

NICTA Funding and Supporting Members and Partners
g W Australian Government
S “ Department of Broadband, Communications

Australian €]
Gz University srvsenymonons NSW [|hvestment _ BT
and the Digital Economy

Australian Research Council SBREY @m 1y Griffith ﬁ ggwm
o n ERSITY

w usmaraaret Univarsy o Tochrnsogy
nme

Motivations (e
NICTA

* Architectural dependency has TD potential

 Architectural dependency # software dependency

— New dependency concepts
» understandable by all levels of stakeholders
* not just aggregation of code-level dependency
« architectural significant

— “Implicit” dependencies & beyond code
* Indirect; other factors (context, org structure, knowledge mgt..)

— Automated analysis of code has limitations
* large-scale system of systems with black-box components
* |Issues that are undetectable by code analysis

* Visualising them in architecture views is important

2

Contributions Oe
NICTA

 New dependency relationship types
— Dimensions & degrees of dependency
— Cross views & models
— Relatedness of dependencies: implicit dependency

 Evaluated in three case studies

— Online Production Systems
 Implicit dependency = explicit design compromise > explicit debt

— Learning & Teaching Portal

« Synchronisation issues - highlighted as new dependency types
with dimension-> integration debt

— Lending Valuation Systems

« Upgrade problems - omitted dependency - design debt
Note: Analysis method and tool support (submitted to WICSA)

New Dependency Relationship Types o.

NICTA

©

e .

C commWith System

9 i S

) M

h .
\& /4

©

£ refers To

0)

b

£

Behavioural Structural

Dimensions & Degrees of Dependency

influencedBy

Properties:
: -~ *Name

Name o Has an effect R biliti
' Responsibilities esponsibilities
 Interface visibility * Interface visibility
* Implementation Info * Implementation Info

Properties: Has no effect

Dependency Dimensions: (Element Prbperties, Degree of Effect)

Case 1: Online Product System

NICTA
‘Unit’ System

commWith > 1 prodUCtU()

Accounts System

debtUPrice()
Product Portal
getBalance()
._

accounts

‘“Time’ System

Implicit dependency - explicit design compromise = explicit debt

_Y S TA
refersTo HCTA
(Authentication,
“Student™)
LT Portal
SSO limited By
(Authentication,
oreT “Student™) |
refersTo P
limitedBy refersTo
(Student) (Student, (Student,
“CRUD™) Course)
limitedBy
(Student, .
Blackboard, Course, Lectopia
Moodle “R")
1
refersTo limited By refersTo imi
limitedBy
(Student, (Student, (Course) (Course,
Course) Course “CRUD™)
“CRUD™)
V = v V v

PeopleSoft

Synchronisation issues - highlighted as new dependency types with
dimension - integration mismatch debt

Case 3: Lending Valuation Systems @ [

NI
£ TA
X
I/ N -
u \ Job Sales
- —m Requester Maigemen
Lender Portal
Tomcat Web
Container
Biz
/ JobFulfilmentWs _w| Senice
Web —- JDbAppotmentWS : B|Zpsr§;V|CE / / /
—— Proxy 1T / y
| Email
A Gatewa -
Valuer JobWorkerPortal * y
Nuke Web | SQL
Cu ? - Back Office Reporting | | |—%| Server
@ > itk Admin | Engine [
Web Zone -
N ’// Internal Zone Repository Zone
Admin

Upgrade problems - omitted dependency - design debt

DSM Annotated with Dependency Types Oe
NICTA

MJA WP PW1 eWw1 JF JA JWP |JRP BSP SM BOA RE EG |BS SSD

Mobile Job App (MJA) - C R

Web Proxy (WP) . C C | C|C| C
pdaWeb1 (PW1) - C C

endUserWeb1 (eW1) - C
JobFulfiimentWsS (JF) C
JobAppointment (JA) C
JobWorkerPortal (JWP) C -

—
'

JobRequesterPortal (JRP) -
BizServiceProxy (BSP)
SalesManagement (SM) - CR
BackOfficeAdmin (BOA) I - C C|CR
ReportingEngine (RE) - CR
EmailGateway (EG) -

Biellellode
OV

BizService (BS) - CR|
SqlServerDatastore (SSD) -

Conclusion e
NICTA

* New architecture-level dependency types

— Top-down motivation

 not just aggregation of code-level dependency
- for stakeholders at different technical levels

— For debt that not easily detectable in code
* incorporating non-code factors as dimensions

 Evaluated in real world case studies

— Retrospectively on projects by linking problems with new
dependency and design debt

— Proactively on projects by identifying new dependency
and making the debt explicit

 Future work

10

