
Managing Technical Debt in Software
Development:

Report on the 2nd International Work-
shop on Managing Technical Debt,

held at ICSE 2011
Ipek Ozkaya,1 Philippe Kruchten,2 Robert L. Nord1,

and Nanette Brown1
1Software Engineering Institute, Carnegie Mellon

University, USA
ozkaya, rn, nb@sei.cmu.edu

2University of British Columbia, Canada
pbk@ece.ubc.ca

DOI: 10.1145/2020976.2020979
http://doi.acm.org/10.1145/2020976.2020979

Abstract
The technical debt metaphor is gaining significant traction in the
software development community as a way to understand and
communicate about issues of intrinsic quality, value, and cost. This
is a report on a second workshop on managing technical debt,
which took place as part of the 33rd International Conference on
Software Engineering (ICSE 2011). The goal of this second work-
shop was to discuss the management of technical debt: to assess
current practice in industry and to further refine a research agenda
for software engineering in this area.
Keywords: technical debt, software economics, software quality

Introduction
Software developers and corporate managers frequently disagree

about important decisions regarding how to invest scarce resources
in development projects, especially for internal quality aspects that
are crucial to system sustainability, but are largely invisible to
management and customers, and do not generate short-term reve-
nue. These aspects include code and design quality and documen-
tation. Engineers and developers often advocate for investments in
these areas, but executives question their value and frequently de-
cline to approve them, to the long-term detriment of software
projects. The situation is exacerbated in projects that must balance
short deadlines with long-term sustainability.

The technical debt metaphor is gaining significant traction in the
software development community, as a way to understand and
communicate issues regarding intrinsic quality, value, and cost.
Ward Cunningham first coined the metaphor in his 1992 Confe-
rence on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) experience report in defense of relentless
refactoring as a means of managing debt [3].

Technical debt is based on the idea that developers sometimes
accept compromises in a system in one dimension (e.g., modulari-
ty) to meet an urgent demand in some other dimension (e.g., a
deadline). Such compromises incur a debt on which interest must
be paid and which should be repaid at some point for the long-term
health of the project.

There is a key difference between debt that results from employ-
ing bad engineering practices and debt that is incurred through
intentional decision-making in pursuit of a strategic goal [9].
While technical debt is an appealing metaphor, theoretical founda-
tions for its identification and management are lacking. In addi-

tion, while the term was originally coined in reference to coding
practices, today the metaphor is applied more broadly across the
project life cycle and may include practices of refactoring [5], test-
driven development [6], iteration management [4][7][12], software
architecture [2][8], and software craftsmanship [10].

The concept of technical debt can provide a basis on which the
various stakeholders can reason about the best course of action for
the evolution of a software product. As reflected by the composi-
tion of our program committee that includes practitioners, consul-
tants, and researchers, this area has significant relevance to
practicing software engineers and software engineering.

A first workshop on technical debt was held at the Software En-
gineering Institute in Pittsburgh on June 2 to 4, 2010. Its outcomes
were published as a research position paper [1] summarizing the
open research questions in the area.

The goal of the second workshop was to come up with a more
in-depth understanding of technical debt, its definition(s), charac-
teristics, and various forms. One objective related to this goal was
to understand the processes that lead to technical debt and its indi-
cators, such as degrading system quality and inability to maintain
code. A second objective was to understand how to handle tech-
nical debt by examining payback strategies and investigating the
type of tooling that may be required to assist software developers
and development managers to assess its cost.

The Workshop
The workshop was structured to facilitate a dialog between two

particular groups: 1) software engineers who need to elicit, com-
municate, and manage technical debt pertaining to different facets
of their projects; and 2) researchers who examine different aspects
of technical debt, with particular interest in applying their research
in practice and collecting empirical evidence related to their re-
search as it applies to technical debt.

The workshop had four sessions, each dedicated to a specific
subject. We had 11 paper presentations and two guided discussions
[11]. Below is a summary of these sessions,1 highlighting new
insights that emerged.

Maintenance and Code Quality Aspects of Technical Debt

In this session, we had one extended presentation on industry
challenges for the research community and five shorter presenta-
tions that provided research perspectives on maintenance and code
quality.

John Heintz, owner of Gist Labs, discussed his industry expe-
riences with technical debt in presenting the paper “Investigating
from Assessment to Reduction: Reining in Millions” he coau-
thored with Israel Gat. He made the following points on industry
challenges for the research community.
� Current practice: Commercial context is typically a business

already struggling. Too much code is checked by hand; best
practice is to build automation-assisted analysis in continuous
integration and static analysis. Automation-assisted analysis
applies to different kinds of technical debt: complexity, code
coverage, rules violations, duplicate code, and documentation
of APIs.

� When performing analysis it is more important to focus on
trends than on absolute numbers (e.g., total technical debt ex-

1 For the complete set of papers see ICSE proceedings at the ACM Digital
Library.

ACM SIGSOFT Software Engineering Notes Page 33 September 2011 Volume 36 Number 5

ceeds x dollar amount). Trending is more useful as it shows
whether improvement is taking place.

� Reducing debt requires more than focusing on code and refac-
toring; it also involves training, unit test, design principles,
and changing work habits.

� In recent efforts a Technical Debt Agile SWAT team was es-
tablished to focus on enabling Agile to shorten product feature
cycles. Duplication and complexity provided low-hanging
fruit for reduction. System changes included build script fixes,
unit testing infrastructure, version control, and modularizing
the system.

� Hard work to come includes scaling to include more teams in
learning Agile. Additional study is needed to provide insights
into comparing cost and benefits of alternatives, and knowing
when to pay back or retire the system.

The following presentations provided a research perspective on
maintenance and code quality.
� N. Zazworka, C. Seaman, F. Shull. “Prioritizing Design Debt

Investment Opportunities” presented by Nico Zazworka—
Fraunhofer Center, USA

� N. Zazworka, M. A. Shaw1, F. Shull, C. Seaman. “Investigat-
ing the Impact of Design Debt on Software Quality” presented
by Nico Zazworka—Fraunhofer Center, USA

� J. Bohnet, J. Döllner. “Monitoring Code Quality and Devel-
opment Activity by Software Maps” presented by Johannes
Bohnet—Hass-Plattner-Institute at the University of Potsdam,
Germany

� R. Gomes, C. Siebra, G. Tonin, A. Cavalcanti, F. Q. B. da
Silva, A. L. M. Santos, R. Marques. “An Extraction Method to
Collect Data on Defects and Effort Evolution in a Constantly
Modified System” presented by Fabio Q. B. da Silva—
CIn/Samsung Laboratory of Research and Development –
UFPE, Brazil)

� W. Nichols. “A Cost Model and Tool to Support Quality Eco-
nomic Trade-off Decisions” presented by William Nichols—
Software Engineering Institute, USA

The presenters made the following points.
� Design debt: What is design debt – any debt that is related to

the design of the system, to the ideal design of the system?
Can we find evidence that design debt slows down develop-
ment? This can be very relevant in acquisition environments.
One way to eliminate design debt is to refactor (pay it off). Do
god classes (i.e., large classes as defined by Martin Fowler)
have an effect on the maintainability of the system? Can we
provide guidance on which design debt to pay off first?

� Visualization techniques: The goal of engaging these tech-
niques is to make internal quality more visible to the manag-
ers. The visualization technique in the form of a software map
is structured according to the modularity of the system. Com-
plex files (as indicated by their McCabe complexity measure)
are highlighted in 3D and by color on the map. Some chal-
lenges in visualization techniques are integrating time and
making the technique fully interactive. The ultimate goal is to
provide early warnings to detect costs and risks (e.g., “watch
out for this class, it might be growing too big”).

� Social and human aspects of software engineering: the goal is
to understand how business and organizational decisions
create technical debt.

� Cost models: The best strategy is to not incur technical debt.
We know 80% of the costs are caused by 20% of the defects.

Discussion on Industry Challenges
In this session, participants discussed the presentations from the
previous session and formulated industry problems and challenges
based on experiences and limitations in the state of the art.
� The real technical debt lies not in the lines of code. The analy-

sis that can be done based on profiling the code does not show
the real insights.

� There is always technical debt, whether in an agile context or
not.

� Measurement is important but not most critical. Engineers are
concerned with getting the job done and ensuring the system
will work. They need an upfront framework before they start
building to conduct a what-if analysis. For example, what if
we shrink the timeline of a five year project to four years to
reduce cost. Can we still be assured the project is on target
and will produce the right answer?

� Metrics are desirable for determining where to focus (given
limited time and resources).

� Business people need to communicate actual needs, develop-
ers need to understand them. Developers understand the tech-
nical aspect of risk; business knows the business value. The
product owner needs to consolidate multiple viewpoints.

� Many models are incorrect; they are linear. They must be
adapted to show more development life-cycle phases.

� The key to success is acknowledging technical debt to support
business goals.

Other Forms of Technical Debt
In this session, we had one extended presentation on architecture

and four shorter presentations that provided perspectives on defini-
tional framework and other forms of technical debt.

Peri Tarr, from IBM Watson Research, discussed the results of
interviewing four technical architects in presenting the paper “An
Enterprise Perspective on Technical Debt,” she coauthored with
Tim Klinger, Patrick Wagstrom, and Clay Williams. She made the
following points.
� Financial risk and value are managed in the aggregate and are

always the first thing people think of. Whether technical debt
can be used as leverage or not is an open question.

� The situational nature of technical debt is the most worrisome.
Technical debt is relative to goals, requirements, stakeholders,
and ecosystem. In the architects’ experience, the decisions
were managed ad hoc and were not recorded. They were
propagated by tribal memory and nobody went back to eva-
luate them. The financial costs were obvious and revisited but
the cost of technical debt was not clear at all. Stakeholders
lacked effective ways to communicate and reason about debt.

� Quality issues were a small subset of the issues. The architects
looked at the quality metrics but did not worry about them; is-
sues such as architectural debt were more critical for them.
Debt was really important when it was active debt causing
critical situations. However it is hard to know whether some
problems will become active. Reasoning based on uncertainty
is essential to any realistic approach to debt.

� Architects did not reason about the debt in terms of absolute
quantifiable measures, but they can do relative measurement
like “this one is better or worse than the other one.”

ACM SIGSOFT Software Engineering Notes Page 34 September 2011 Volume 36 Number 5

The following presentations provided a perspective on a defini-
tional framework and other forms of technical debt.
� N. Brown, R. Nord, I. Ozkaya, P. Kruchten. “Quantifying the

Value of Architecting within Agile Software Development via
Technical Debt Analysis” presented by Ipek Ozkaya—
Software Engineering Institute, USA

� T. Theodoropoulos, M. Hofberg, D. Kern. “Technical Debt
from the Stakeholder Perspective” presented by Ted Theodo-
ropoulos, USA

� A. Nugroho, J. Visser, T. Kuipers. “An Empirical Model of
Technical Debt and Interest” presented by Ariadi Nugroho—
Software Improvement Group, Netherlands

� Y. Guo, C. Seaman. “A Portfolio Approach to Technical Debt
Management” presented by Yuepu Guo—University of Mary-
land Baltimore County, USA

The presenters made the following points.
� Analysis of architectural dependencies provides an empirical

basis for making decisions regarding technical debt.
� Technical debt is any gap between the technical framework

and the required quality of the system.
� Technical debt is a software risk. Reduce investment risk

through diversification.
� Technical debt is an asset to be managed as part of the portfo-

lio.

Discussion on Research Challenges
In this session, participants discussed the presentations from the
previous session and formulated research challenge problems.
� Technical debt is not a crisp technical reality. Technical debt

needs a mission statement describing what it does and what it
needs to do.

� Technical debt is commonly considered a bad thing. But there
exist forms that can be strategic. Technical investment has a
more appealing twist to it.

� Technical debt has been around for a while; this is a multi-
faceted reality that is related to the following topics: Mainten-
ance, Evolution, Erosion, Aging, Value-Based Software Engi-
neering.

� Different disciplines might need different measurements of
technical debt.

� Anything you cannot quantify you discard. Nobody really gets
architectural risk as nobody knows how to quantify it.

� Perspective is very important. It’s necessary to get a handle on
indicators (e.g., god classes).

� Indicators for where to spend money would be useful, such as
when it is no longer efficient to carry technical debt and it is
time to be repaid.

Summary
The main future directions that were discussed are
� What should the research agenda look like? It should include

models to show where technical debt slows development and
where it speeds it up and where the breaking point exists such
that it is no longer efficient to carry technical debt.

� A collection of examples of technical debt—having a catalog
of examples from various stakeholder points of view could
help us develop a better taxonomy.

� Creation of a web portal on technical debt, to collect pointers
to papers, books, blog entries, discussion, and tools related to
the subject, and to foster discussion and collaboration.

� While technical debt has a strong negative connotation, it can
also be seen in a more positive light as a tactical investment in
a project, something to gain a temporary advantage to later be
repaid or not.

Acknowledgments
We extend our thanks to all those who have participated in the
organization of this workshop, particularly to the program commit-
tee members:
� Eric Bouwers, Technical University Delft, Netherlands
� Yuangfang Cal, Drexel University, USA
� Rafael Capilla, Universidad Rey Juan Carlos, Spain
� Jeromy Carriere, eBay, USA
� Ward Cunningham, AboutUs, USA
� Hakan Erdogmus, Kalemun Research, Canada
� David Garlan, Carnegie Mellon University, USA
� Israel Gat, Cutter Consortium, USA
� Jim Highsmith, ThoughtWorks, USA
� Rick Kazman, University of Hawaii and the Software Engineering Institute,

USA
� Tobias Kuipers, Software Improvement Group, Netherlands
� Erin Lim, University of British Columbia, Canada
� Alan MacCormack, MIT, USA
� Steve McConnell, Construx, USA
� Don O'Connell, Boeing, USA
� Raghu Sangwan, Penn State University, USA
� Carolyn Seaman, University of Maryland Baltimore County, USA
� Kevin Sullivan, University of Virginia, USA

Disclaimer
The views and conclusions contained in this document are solely those of
the individual creator(s) and should not be interpreted as representing
official policies, either expressed or implied, of the Software Engineering
Institute, Carnegie Mellon University, the U.S. Air Force, the U.S. De-
partment of Defense, or the U.S. Government.

References
[1] Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P.,

Lim, E., MacCormack, A., Nord, R., Ozkaya, I., Sangwan, R., Sea-
man, C., Sullivan, K., Zazworka, N., 2010. Managing Technical Debt
in Software-Reliant Systems, 2010 FSE/SDP Workshop on the Fu-
ture of Software Engineering Research.

[2] Brown, N., Nord, R., Ozkaya, I. 2010. Enabling Agility through Ar-
chitecture, Crosstalk, Nov/Dec 2010.

[3] Cunningham, W. 1992. The WyCash Portfolio Management System.
OOPSLA’ 92 Experience Report.

[4] Cohn, M. 2006. Agile Estimation and Planning, Prentice Hall.
[5] Fowler, M. 1999. Refactoring: Improving the Design of Existing

Code. Addison-Wesley Professional.
[6] Erdogmus, H., Morisio, M., and Torchiano, M. 2005. On the Effec-

tiveness of the Test-First Approach to Programming. IEEE Trans.
Softw. Eng. 31, 3 (Mar. 2005), 226-237.

[7] Highsmith, J. 2009. Agile Project Management 2nd ed. Addison
Wesley.

[8] InfoQ: What Color is your Backlog? Interview with Philippe Kruch-
ten, May 02, 2010. Available from:
http://www.infoq.com/news/2010/05/what-color-backlog

[9] McConnell, S. 2007. Technical Debt. 10x Software Development
[cited 2010 September 17];
http://blogs.construx.com/blogs/stevemcc/archive/2007/11/01/techni
cal-debt-2.aspx

[10] Martin, Robert C. 2008. Clean Code: A Handbook of Agile Software
Craftsmanship. Addison Wesley.

[11] Second International Workshop on Managing Technical Debt
http://www.sei.cmu.edu/community/td2011/

[12] Sutherland, J. 2005. Future of Scrum: Parallel Pipelining of Sprints
in Complex Projects. Proceedings of the Agile 2005 Conference, pp.
90-102.

ACM SIGSOFT Software Engineering Notes Page 35 September 2011 Volume 36 Number 5

