
Integrating Model-Driven

Engineering Techniques in the

Personal Software Process

TSP Symposium 2012
St. Petersburg, Florida, USA, September 17-20, 2012

João Pascoal Faria

Faculty of Engineering, University of Porto, Portugal

(jpf@fe.up.pt)

Index
2

 Background and motivation: PSP, UML, MDE

 A lightweight MDE approach

 Key features and benefits

 Refinements to PSP scripts

 Lessons learned from case studies

 Conclusions and future work

Background and motivation: PSP

design specification templates
3

 The PSP provides a set of specification templates for

completely and precisely recording reviewable software

designs covering 4 important design views

Dynamic Static

External

Internal Logic ST State ST

Operational ST Functional ST
Functional ST

Background and motivation: PSP & UML
4

 UML is a standard visual notation for representing OO

software designs, and is supported by many tools

 Especially when enriched with

 contract specifications (pre/post conditions and invariants) in OCL

 algorithm descriptions in a UML compliant action language

 documentation notes and properties of relevant model elements

UML diagrams provide a convenient and familiar means for

recording essentially the same info as the PSP templates

Dynamic Static

External

Internal Activity diagrams (flowcharts)

or action specifications

Statemachine

diagrams

Class diagrams

(+OCL or API doc)

Uses cases and

sequence diagrams

Background and motivation: MDE (1)
5

 Although PSP is agnostic about the usage given to design

specs/models: as documentation or compilable artifacts ...

 …UML practitioners have concluded that building detailed

design models for documentation only has several problems

 is time consuming

 the resulting models are often wrong

 lack of static analysis, compilation, execution, etc., to spot problems

 the resulting models soon become outdated and are not maintained

 Recent Model-Driven Engineering (MDE) approaches aim at

avoiding such problems by generating code from models

 If not production code (MDD), at least test code (MBT)

Background and motivation: MDE (2)
6

 In fact, with that MDE approach (code generation from models)

 the time invested in building design models can be recovered

 the quality of the models can be checked

 there are higher chances that models are kept up to date

 This is also more in line with the agile values

 (value more) Working software over comprehensive documentation

 This will also help solving problems we found when introducing

PSP training in academia, using UML as the design notation:

 Instructors time for grading and feedback is exacerbated when UML

models are required for documentation only, because students don’t

have a reliable means to check by themselves if the models are right

 Students see the cost of creating design models, but practically no short

term benefits

A lightweight MDE approach (1)
7

 Unfortunately, the level of detail of behavioral models needed

to generate complete apps is often too high or only effective for

specific domains (with domain specific languages)

 So, we propose a lightweight MDE approach:

 develop structural models, from which parts of the application can be

generated (e.g., class skeletons) (MDD)

 develop partial behavioral models, not sufficient for app generation, but

adequate for test generation (MBT)

 This is also inline with some agile practices (your tests are your

specs, or vive-versa)
Partial behavior spec = Test spec

A lightweight MDE approach (2)
8

(Partial) Behavioral Model

 (= Test Model)

Structural

Model

assert

Test Code

Production Code

Skeletons

m(){

}

Completed

Production Code

m(){

 x=1;

}

static analysis

(consistency &

completeness)

testing

Behavior modeling and testing
(at all levels: unit, integration, system)

9

Example values

for parameters

Things not yet

implemented

Things in the

system

Actor (client

app or user)

internal

interactions
external

interactions

intractions with things

not yet implemented

Exercise the

scenario for

each example

(Driver) Generate

inputs as in spec and

check responses

against spec

(Stub) Generate

the responses as

in spec

(Monitor) Trace

execution and

check against

spec

B
e
h

a
v
io

ra
l
M

o
d
e
l/

S
p
e
c

G
e
n
e
ra

te
d

T
e
st

 C
o
d

e

alt

DLD
(incl. test spec.)

DLDR
(incl. static analysis)

UT

CODE

CR

CODE

UT

 act Use Case View

ArtifactsAutomated activ itiesManual activ ities

Code

Model1. Model application

structure & behav ior

Structural

model (UML

class diag.)

Behav ioral

model (UML

seq. diag.)

2. Check model consistency &

completeness (UMLChecker)

3. Generate code

3b. Generate test code

from behav ioral model

(Test Generator)

Production

code (OOP)

Test code

(xUnit)

4. Execute tests & see

them fail

5. Complete production

code (method bodies)

6. Execute tests & see

them pass

3a. Generate production

code skeletons from

structural model

Reusable Libraries

Standard

libraries

Tracing

library (AOP)

«trace»

[done]

[done]

[done]

«trace»

[not

done]

[not

done]

[not

done]

New*

New*

New*

Process

& tools

* J. Faria, A. Paiva, Z. Yang, Test Generation from UML Sequence Diagrams, Proc. of the 8th Int. Conf.

on the Quality of Information and Communication Technologies (QUATIC 2012), IEEE CPS, 2012

Key features and benefits (1)

 Support the modeling

& automatic testing of

 External interactions

with users (UI)

 External interactions

with client

applications (API)

 Internal interactions

among objects in the

program

 Covers the 4 design views

(w/ structural model)

 Assures higher

conformance with spec

 Improves fault localization

 Accelerates test phase

11

Dynamic Static

Ext.

Int.

Class diagrams
(public/external

interfaces)

Sequence
diagrams
(external

interactions)

Sequence
diagrams
(internal

interactions)

Class diagrams
(private/internal

interfaces)

Feature Benefits

Key features and benefits (2)

 Parameterization

 Combined fragments
(alt, opt, loop, par)

 Keep behavioral specs
as generic as desired

12

Feature Benefits

 Loose conformance checking
 additional or intermediate calls

are allowed in implementation

 Keep behavioral specs as

simple as desired
(focus on relevant interactions)

 Automatic checking of model

consistency & completeness

 Verifiable completeness

criteria

 Higher quality assurance

 “Stubs” inject the specified

response messages for things

marked as not yet

implemented

 Iterative implemention &

testing

 Independence of external

components

Refinements to PSP scripts (1/2)
13

Step Activities Description

1 Design Review the requirements and produce an external specification

to meet them.

 Complete Functional and Operational Specification templates

to record this specification.

 Develop a design model to describe externally visible

system structure and behavior. (*)

 Produce a design to meet this specification.

 Record the design in Functional, Operational, State, and Logic

Specification templates.

 Refine the design model to describe internal system structure

and behavior. (*)

 (…)

PSP2.1 Development Script

Purpose To guide the development of small programs

Entry Criteria …

(*) Guidelines about diagrams, templates, completeness criteria, etc., in Design standard

Refinements to PSP scripts (2/2)
14

Step Activities Description

2 Design

Review

 Follow the Design Review script and checklist and review the

design.

 Check the design model with a static analysis tool.

 ….

3 Code Generate initial production code from the design model.

 …

4 Code

Review

5 Compile

6 Test Generate initial test code from the design model.

 …

PSP2.1 Development Script (cont.)

Exit Criteria A thoroughly tested program that conforms to the Coding

standard

 Completed Design templates

 Completed design model consistent with the code

 …

Lessons learned from case studies
15

 We validated the approach viability on a set of case studies

 Size metrics and savings are promising, as in a typical example:

 We also found some manageable issues

 Compilable models still need some doc. notes for human readbility

 More details fixed in design than usual

 Very small iterations are problematic (same as for metrics collection)

Item Size unit Manual Generated

Structural model model

elements

42 0

Behavioral model 56 0

Subtotal 98 0

Production code

LOC

174 81

Test code 0 82

Subtotal 174 163

Conclusions
16

 Presented a lightweight MDE approach

 Based on lightweight behavioral and structural models

 (Partial) production code and (full) test code generation from models

 That is “PSP friendly”

 Covers the 4 design views (in a sense of “internal”)

 Promotes complete (in a sense), precise and reviewable designs

 Implies minimal changes to design scripts

 Embeds test specification in the design phase (as behavior specs)

 Is designed to bring short term productivity and quality benefits

 And “agile friendly”

 Compilable models are not mere documentation

 TDD/BDD [create a test = create an (external + internal) behavior spec]

Future work
17

 Conduct more extensive experiments, using the PSP

measurement framework, to quantify the productivity & quality

gains and better understand the contexts of applicability

 Devise a simplified way to specify exceptional behavior

 Extend the approach and tools to broaden its applicability

 other target languages (now only Java)

 other modeling tools (now only Enterprise Architect)

 GUI testing (now, only command line interface testing), particularly for

system testing

 testing of time constrained, concurrent and distributed systems,

particularly for integration testing

Thank You!

Questions?

Suggestions?

