

Copyright © Altran Praxis

Delivering Agility and Discipline:
Experiences with High-Assurance
Software Engineering

Rod Chapman

TSP Symposium 2012

Copyright © Altran Praxis

Contents

• High-Assurance Systems?

• Formal Methods – Why Bother?

• Combining TSP with Formal Approaches

• Other Sources of Inspiration

• A Future?

“High-Assurance” Systems?

4

• Military and Civil Aircraft – “fly by wire”
systems

• High-Grade Secure Systems

• Jet Engine control and monitoring

• Air-Traffic Management

“High-Assurance” Systems?

5

• Compliance with industry and international
standards.

• Often impose a lifecycle model, or objectives
for particular forms of verification.

• Most are old – up to twenty years.

• Examples: DO-178B (aviation), CENELEC
50128 (Rail), Common Criteria (Secure
Systems).

“High-Assurance” Systems?

6

• Regulation –
need to satisfy
some third-party
that systems are
fit for purpose.

• Significant pain
is not managed
well.

“High-Assurance” Systems?

• Most are embedded, real-time, novel, possibly
fault-tolerant…
– About as hard as it gets!

• Significant potential for loss in case of failure,

and pain in case of late defect and rework.

• Therefore, even more incentive for aggressive
quality control during early lifecycle phases.

7

Correctness by Construction

• Since the early 1990s, we have
developed an approach that became
known as “Correctness by Construction”

•Main characteristics:
– Strong process and “zero defect tolerance” culture.
– Evidence-based assurance.
– Static Verification (not just “test it lots…”)

•Use of “Formal Methods”

8

What’s “Formal” Anyway?
Here’s a boring definition…

• The recently published DO-333 (Formal Methods
Supplement of DO-178C) para FM.1.6.1 (“Formal
Models”) says…

“…to be formal, a model should have an unambiguous,
mathematically defined syntax and semantics.”

• And FM.1.6.2 (“Formal Analysis”) goes on to say

“…an analysis method can only be regarded as formal analysis if
its determination of property is sound. Sound analysis means
that the method never asserts a property to be true when it is
not true.”

9

In “PSP English…”

•Maths

•Tools that yield 100% for well-
defined defect classes

10

Copyright © Altran Praxis

Every software project
uses Formal Methods…

Professor Martyn Thomas CBE

Copyright © Altran Praxis

Here’s a formal language that
you all use…

 0: 55

 1: 89 e5

 3: 56

 4: 53

 5: 8b 75 08

 8: b9 05 b5 00 00

 d: b8 00 00 00 00

 12: 8d 50 01

 15: 39 d1

 17: 74 1c

Copyright © Altran Praxis

Here it is again…can you spot
the bug?

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 56 push %esi

 4: 53 push %ebx

 5: 8b 75 08 mov 0x8(%ebp),%esi

 8: b9 05 b5 00 00 mov $0xb505,%ecx

 d: b8 00 00 00 00 mov $0x0,%eax

 12: 8d 50 01 lea 0x1(%eax),%edx

 15: 39 d1 cmp %edx,%ecx

 17: 74 1c je 35

Copyright © Altran Praxis

The big question is not if
to use formal methods,

but when to start…

So why bother with FM?

15

• Production of “a big pile of paper (with funny-
looking math notation)” is not the point.

So why bother with FM?

16

• The main point:

• FM forces you to think really hard…

• Availability of precise (and sound)

analytical tools.

Thinking and tooling exposes…

17

Ambiguity…

Thinking and tooling exposes…

18

Contradiction…

Thinking and tooling exposes…

19

Incompleteness…

Thinking and tooling…

20

#include “customer conversation”;

21

Thinking and tooling…

•Why use tools? Why not just peer-review
really really hard?

• Some problems are just too hard for the
human brain, no matter how talented or
numerous.
– Example: concurrent software running on

multi-core machines.

• Let’s complement not replace humans.

22

Our story with TSP so far…

•How we got started…

•What we did (and didn’t) do next…

•Where we are now…

• Some thoughts about the future…

23

How we got started…

24

How we got started…

• SEI and Praxis train each other…

•RCC uses SPARK and strong static
verification in PSP training.
– No surprise – it works!

•RCC becomes PSP Instructor…

25

Strong Static Verification? Eh?

• Also known as “static analysis” (of
designs, code, whatever…)

• Such tools have a bad reputation. Why?
– False Positives – “warning – your program

might have a defect…”
– False Negatives or unsound behaviour. Defects

escape…
– Slow

26

On Soundness…

• Sound tool says: “Your program definitely
has no defects (of category X)…”

•Unsound tool says: “I’ve done my best,
and I can’t find any more defects (of
category X)…”

• Soundness gives you the confidence to
deploy a tool early in your process…

27

On Soundness…

•BUT…soundness is very hard to achieve.

•We need unambiguous notations early in
the lifecycle to analyse. These are very
rare…
– Almost all contemporary imperative high-

level programming languages fail this
test spectacularly..

28

Quiz Time!

• In C, what does this mean?
int i;

int a[10];

…

i = a[i++];

•Now imagine you’re designing an

automatic verification tool – what would
you do?

29

Deploying static verification in PSP

• If you know a tool is
– sound for a defect class, and
– so fast that defect removal falls below

your “shall I bother to log it” threshold.
then…
•Deploy that tool as early and as often as

possible.
• Adjust later process steps and checklists

to ignore that defect class completely.

30

Deploying static verification

• The catch….

•Deploying such languages and tools
requires enormous discipline and
determination – e.g. in choice of
language subset and training.

•But...this ought to be a no-brainer for a
mature organisation, right?!?!

31

What happened next…

• A BIG project called “iFACTS” comes
along…

•Ramps up from 0 to >100 engineers in a
short time.

• PSP rollout with one instructor? Ah well…

32

In the mean time…

• Start teaching Intro to Personal Process
to all staff, including
– HR
– Finance team
– Project managers
– our SEPG…

– anyone that will come!

33

Some unexpected results:

•We have “PP-erized” some business
functions:
– Parking management (I kid you not…)
– HR Grade/Performance/Salary process

• Coming next…
– Project Managers’ “month end scorecard”

submission process.

• All have painful failure modes and cost of
rework – just like software…

34

My knight in shining armour

• In the mean time, iFACTS has matured
and re-launched, and has a new
development team leader:

• James reads the PSP book
•Designs measures and

begins to track effort
against size of dev team
work packages.

• Essentially – PROBE

35

Back to Formal Methods

• iFACTS uses the Z language for formal
functional specification.

•Best correlation with implementation
effort was found by measuring the
change of size of formal spec.
– Aha! Formal languages are automatically

countable…

36

Back to Formal Methods

• Team data shows

£ = β0 + β1 *

•Note “lines of code” does not appear.

• is a measure of the input to the
software development process, not the
size of the resulting product.

37

Back to Formal Methods

•We’re all used to “Regression Test”,
right?

•What about “Regression Proof”?

38

Back to Formal Methods

• The iFACTS software is subject to
theorem-proving for “type safety” every
night.
– Changes are analysed in isolation before

check-in.
– Developers are not allowed to check in a

code change that “breaks the proof”
• “Type Safety” = no exceptions, crashes,

buffer overflow, etc. etc. for any input
data.

39

Back to Formal Methods

• The analysis re-generates and proves
about 136000 theorems from 226k
logical sloc of SPARK code every day.

• Any failure is notified to all developers by
email.

• The entire analysis can be reproduced in
about 30 minutes on a modest
workstation.

40

Back to Formal Methods
• Discipline eventually becomes habitual.

• For example: in PSP training assignment 4,

there’s a rather obvious division by zero…
– I knew the darn tool would catch me out on

this, so I spotted it, designed for it, wrote a test
case… etc. etc.

• Side effect: my programming style in every
other language is equally pedantic…

41

Back to the plot…

• At long last, I train 6 engineers through
PSP Fundamentals and Advanced.

•We also train up one more PSP
Instructor…

• Then…corporate (parent company)
requirement to gain CMMI ML3.

42

Back to the plot…

• This offers the opportunity to “inject” PSP
thinking into many company process
assets
– Review process and forms
– Measurement standards and planning
– Project reporting standards
– Estimating process, and so on…

• “PSP by Stealth…”

43

Pilot project…
• We are now running a pilot project with PSP.

– Note – no full-blown TSP roll-out yet, since we
don’t have a TSP Coach.

– We have to prove PSP works first…

44

Pilot project…
• Project is in its second iteration of software

development.
– Iteration 1 successful and yielded useful data

for both individuals and the team.
– Iteration 2 is on-going with a bigger team. More

focus on team data and measurement goals
this time.

– Process combines PSP with test-driven design
ideas. Test case design really is part of design.

45

Other sources of inspiration…

• “Extreme Programming” by Kent Beck.

• Read this in about 2002.

• Biggest surprise: how much XP stuff we
were already doing…

46

Other sources of inspiration…

• “Lean Software Strategies” by Sutton and
Middleton.
• Significant and early work on

application of Lean in Software
Engineering.

• Excellent data and story of how Lean
and Formal Methods were applied to
the production of the C130J Mission
Systems.

47

Other sources of inspiration…

• “Kanban” book by David J Anderson.

• Full of great ideas about work-flow
management for software and services
teams.

48

Other sources of inspiration…

• “The Checklist Manifesto” by Atul Gawande

• Absolutely wonderful stories of effort to
bring “checklist culture” into hospital
surgical practice.

• Is this “TSP-for-medicine”???

49

A future? What happens if…

?

Lean

TSP

Agile

Formal
Methods

50

Homework…
• Try out a Formal Method

– I suggest ALLOY from alloy.mit.edu
– Good tutorials and example material

• Read the “Checklist Manifesto” book. Then

give it to your boss. Repeat!

	Slide Number 1
	Delivering Agility and Discipline: Experiences with High-Assurance�Software Engineering
	Contents
	“High-Assurance” Systems?
	“High-Assurance” Systems?
	“High-Assurance” Systems?
	“High-Assurance” Systems?
	Correctness by Construction
	What’s “Formal” Anyway?�Here’s a boring definition…
	In “PSP English…”
	Slide Number 11
	Here’s a formal language that�you all use…
	Here it is again…can you spot�the bug?
	Slide Number 14
	So why bother with FM?
	So why bother with FM?
	Thinking and tooling exposes…
	Thinking and tooling exposes…
	Thinking and tooling exposes…
	Thinking and tooling…
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50

