Using TSP to Develop and Maintain
Mission Critical IT Systems

Alex Obradovic
9/17/2013

Disclaimer

 The views and opinions expressed in this
presentation are those of the author and do
not necessarily reflect the official policy or
position of Beckman Coulter.

 Examples and analysis within this presentation
is based on transient data from 2010-2011 in
order to illustrate Software Engineering
concepts only, and in no way represent
Beckman Coulter product or a service offering.

IT/TSP experience

e IT Experience

— Led teams that develop and support custom built
applications

— Led Global Systems Operations for a large data center
in the US

* TSP Experience
— 2010-2012 TSP Team Lead
— 2013 TSP Provisional Coach

Data Center Application Diagram
Big Data

Storage

[
28 ‘ | Proxy
SR
;‘g&“# Massive
~XFF R
M

Parallel Inputs

Data Center High
Availability/Performance topology

Storage

Request | Application
- Proxy - Node - Node

Service &

Service &

Transaction Transaction
Monitoring Monitoring

Service
Monitoring

Major architectural drivers for the data center application:
e Availability

e Performance

e Scalability

Monitoring Cluster Performance

I Release

Release

100.0% o 100%
90.0% 90%
80.0% A 80%
70.0% \ / \.\.v 70%
60.0% L 60%
50.0% 50%

40.0% /\ \ I\ I A _ 40%
30.0% Kv/ \./\/ | U / \ /L 30%

20.0% 20%
10.0% 10%
/IN\ /7 \
—— N = S g
0-0% rryrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr1rrrrrrrprr1rrrr1rrrrqrrrrrrrrrrrrrrrrrrrorT 0%
O QO O O QO S R T N R AV IR X NS S
& A A A A A A A A AL DDA DA A A S
B R S NS It
RO SRR VAT P MR N G QT o AV AV B gl Y ol DY o)

—Peak CPU% utilization (Database) ——Peak CPU% utilization (App Server)

—Peak CPU% utilization (Proxy) e o Total Online Instruments

Application performance profile changes as the application load increases.

Maintenance/Development Model

Failure and
Performance

Patch Release
Cycle Monitoring

Data System

Deployment
Process

Requirements Run Time

System

Standard
Release Cycle

Service
Requirements

The runtime monitoring system provides valuable data that feeds into the
software development cycle, and resulting software changes are released either
through patches or standard feature releases.

Non-TSP Cycle O (Apr 2010-Feb 2011)

- pr May Jun JuIy Aug

Dev Dev Dev Dev Test
Dev Dev Dev Dev/ | Dev/ | Dev/ |Test | Test
Test Test Test
Plan: Actual:
* 6 modules * 6 modules
* 6-month release cycle « 1 new app, 1 maint. release

e 11-month release cycle

The first non-tsp project that | led was late by 5 months. The team missed the
delivery date due to scope increase, performance maintenance mini releases, and
longer than expected testing cycle.

Non-TSP Cycle O Code Metrics

Base: 311,878
Deleted: 590
Modified: 490
Added: 38,622
Added & Modified: 39,112
Total: 349,910
Defects found in systems test: 386
Total non-TSP Defects per KLOC 9.9

The number of defects discovered in systems test prompted us to seek
opportunities to reduce rework and lower the cost of development.

Time allocation to fix a single defect

Activity Hours
Prep for Testing 1
Team Review/Prioritization 1
Testing 1
Logging Operational Defect 0.5
Developer Review 1
Design and Implementation 3
Redeployment of Binaries 1
Unit Testing, Integration 2
Verification Testing 1
Total time to fix a defect in hours 11.5

Due to the complexity of the environment it took on average 11.5 hours to detect,
log, and fix a defect.

Calculating Cycle 0 Cost to fix all defects

New and Modified Lines of Code (LOC) 39112
Actual Defects/KLOC - system test 9.9
Hours to find, fix, and retest a defect 11.5
Estimated Blended hourly rate $85.00
Total Defects 387
Total hours to fix issues 4451
of Testers and Developers 16
Non-Admin, Direct project Hours Per week 12.5
Weeks Needed to fix issues 22
Direct costs of fixing defects ~ $378K
Cost of the team per week ~ S54K
Total including admin costs ~S1.2M

Economics of Quality for Cycle O scenario
Baseline 2x Quality 6x Quality

Improvement Improvement

Defects Per 1.7
KLOC

Defects in 65
Systems Test

Direct Cost ~ §377K ~ $190K ~ S64K
Weeks to fix 22 11 4
(16 people)

Admin Cost ~S1,2M ~ S605K ~ S201K

The team discussed quality improvement opportunities and considered TSP for
application development.

Timeline of 3 TSP Cycles in 2011

2011

Jan Feb Mar Apr May June July Aug Sep Oct Nov

TSP Executive
Overview TSP Cycle 1 Dev
PSP TSP Cycle 1 Test

Fundamentals TSP Cycle 2 Dev
& Member
Tt TSP Cycle 2 Test

TSP Lead TSP Cycle 3 Dev & Test
Training /

PSP Design
Training

Replan

PSP Tool
Training

The team was trained in January/February of 2011 and proceeded with 3 TSP Cycles

2011 TSP Metrics

Cycles 2&3

Effort in task hours Not known 683 904

Lines of Code 39,112 5,091 8,900
Defects per KLOC 9.9 6.9 1.8
Total Defects 386 35 16
Plan Growth (Scope Not known 47% 79

change)
Effort Overestimation Not known 13% 11%
Schedule Net Effect 83% over 34% over -4% (delivered earlier)

After introducing TSP it was evident that the team has the ability to better control
defect rates and schedule scope.

Team Goals

Goal Cycle 1 Cycles 2&3
System test defect density <2

defects/KLOC 1.8
Automated Unit Tests and Static
analysis

Met

(80% code coverage, O major
exceptions)

100% Official Inspection Coverage
Met

Zero defects in system testing
Not met Not met

+/-10% schedule accuracy +34%

The TSP framework enabled the team to set and meet their own quality and
schedule goals.

Sources of Defects

60%

Implemented with
Checklist + Auto
Build Strategy

50%

40% -

30% -

20% -

10% -

0% -

Requirements VQ Issues Config/Deployment Code Issues

m Cycle 1
B Cycles2 &3

Introduced Checklists
and Inspections

Expected vs. Actual Defects

Number of Defects

The team became confident that they could Bl Expected Defects
remove a large number of defects before system B Actual Defects

test.

Addressing Configuration/Deployment
Issues

Version
Repository

Auto Build
Environment

- ‘ Test

L

Environment
Dev Workstation SN
~— | Exception

~| Reports

Checklists and automation of the build system virtually eliminated configuration and
deployment issues.

Automated Unit Test Code Coverage

100 -—
|| /5 SESEER—
] SR ——————————————— S Y

e [
1 S method

®10
7
#18
19
#®20
#21
#22
®23
#24
w25
#26

Coverage Summary

line

94.6% 247/261

name class | method bleck

com.bci.rms.instrument.sms.ea.parser.db | 100.0% ‘ 90.2% 37/41 ‘ 95.3% 1409/1479

Coverage Breakdown by Source File

name class method block line
ActivitySM35Startup.java 100.0% 11 83.3% 5/6 99.8% 99.0%
DBColumn.jsva 100.0% 1/1 83.3% 5/6 80.0% 91.4%
SMSEventlookup.iava 100.0% 1/1 100.0% 5/5 89.3% 93.1%
SMSEventlookupRecord.igva 100.0% 1/1 92.3% 93.3% 94.7%
SMSEventQueryGenerator.java 100.0% 1/1 100.0% 86.9% 92.6%
SMSInstrumentDataQueryGenerator.iava | 100.0% 11 88.9% 8/9 91.2% 90.0%

The team used static analysis, automated unit test, and code coverage tools as
additional controls to sustain code quality.

Trend of datacenter runtime incidents

TSP Introduced

Only 1 issuein
2012

2011 2012

Number of data center issues was reduced from 47 in 2011 to 1 in 2012.

* There is no correlation between recorded incidents and service availability due to

the high-availability data center design.
20

Quality cost comparison for Cycles 2&3

Lines of code 8900 8900
Actual Defects/KLOC - system test 9.9 1.8
Hours to find, fix, and retest a defect 11.5 11.5
Blended hourly rate $85.00 $85.00
Total Defects 88 16
Total hours to fix issues 1013 184
of Testers and Developers 8 8
Direct project hours per week 12.5 12.5
Weeks Needed to fix issues 10 2
Direct costs of fixing defects ~ S86K ~ S16K
Cost per week ~ S27K ~ S27K
Total including admin costs ~ §272K ~ S54K

Lessons Learned

Task hours hovered around 12.5 hours per
person per week

TSP Process can be customized to match the
environment: Deployment Process,

Production Incident Process, Static Analysis,
etc.

Checklists: Configuration, Deployment

New design goals (UML tools to provide
Internal/External/Dynamic/Static designs)

TSP adoption

Local

Local testing

Local

Skillsets development - development | Offshore team
team, track 1 team, track 2
Members 4 3 1 3
TSP data
collection High High Medium
effectiveness
TSP Effective Yes Yes Mo {iNie: EmeLiE

team members)

TSP was most effective for local teams that had 3 or more team members.

Final Thoughts

TSP can be very effective in IT environments

TSP metrics can be used to calculate cost of fixing
defects

Availability of internal organizational support was
a key factor for sustaining TSP

TSP Review and Inspections were key in reducing
defects and improving maintainability of code

Splitting feature development and maintenance
teams may be necessary for dynamic IT
environments

Challenges

Team member changes may impact team and TSP
effectiveness.

Maintaining TSP project focus may be difficult if the
team members work on multiple non-TSP projects.

TSP adoption is difficult for single or two-person teams
or virtual offshore teams

Resource allocations/Cost constraints
May be difficult to establish TSP momentum initially
Transitioning from a team lead to a TSP Coach

Thanks

Team

Coaches, Instructors, Mentor Coach
IT and R&D

Beckman Coulter

Questions?

Email: aobradovic@beckman.com

