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Permission to use SAS JMP Screen Shots

Screen shots and other statistical tool information have been used with
permission from SAS Institute. Information about JMP® statistical discovery
software can be found at www.jmp.com.

JMP® s interactive, comprehensive, visual software from SAS. It
dynamically links statistics with graphics right on your Windows, Macintosh,
or Linux desktop, empowering you to explore data interactively and bring
understanding to your organization.

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective
companies. Copyright © 2007 SAS Institute Inc. All rights reserved.
449113.0607
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Permission to use Crystal Ball and Minitab
Screen Shots

Portions of the input and output contained in this module
manual are printed with permission of Oracle (formerly
Decisioneering). Crystal Ball 7.2.2 (Build 7.2.1333.0) Is used
to capture screenshots in this module.

The Web page for Crystal Ball is available at
http://www.crystalball.com

Portions of the input and output contained in this
presentation are printed with permission of Minitab Inc.
using version 15

Minitab company web page is http://www.minitab.com
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Purpose of this Tutorial
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Purpose
This tutorial is meant to inform practitioners of the:

« Essential Ingredients of CMMI Process Performance Models

« Examples of CMMI Process Performance Models across the
lifecycle

« Examples of methods to implement various quantitative models for
CMMI Process Performance Models
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Essential Ingredients of CMMI Process
Performance Models

Statistical, probabilistic or simulation in nature
Predict interim and/or final project outcomes

Use controllable factors tied to sub-processes to conduct the prediction

Model the variation of factors and understand the predicted range or
variation of the outcomes

Enable “what-if” analysis for project planning, dynamic re-planning and
problem resolution during project execution

Connect “upstream” activity with “downstream” activity

Enable projects to achieve mid-course corrections to ensure project
success
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All Models (Qualitative and Quantitative)

Quantitative Models (Deterministic, Statistical, Probabilistic)

Statistical or Probabilistic Models
Anecdotal

Interim outcomes predicted \ Biased
samples

. No
/Controllable x factors involved uncertainty
or variation

Only final [modeled
Process Performanc) OStgor'Q:s

Model - areoI o
With controllable x Only modele
; uncontrollable
factors tied to - factors are
nly pnases | modeled
Processes and/or or lifecycles
Sub-processes are modeled
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When and Why Do We Need Process
Performance Models?

S Y Software Coding

[

Software Unit Testing
Software

Design Systems

Testing

Integration Testing

Requirements

Management é ‘
Requirements c' 3
guirerr AL & Customer
Elicitation ¥ Acceptance
- )
Testing

Project
&3 Forecasting
= _
Project 9\ Project
Planning V38, Start \ Project
| Proposal Finish
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The Proposal
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The Proposal

Often uses higher level PPMs

» False precision when using lower
« Better understanding of the risk in a bid

Results my be used for bid/no-bid decisions along with other
criteria
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Function
Points
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Barcode
Reader

Cash
Register

Update Query Repor
Inventory Inventory Selectiont
Screen Screen Screen
A A A
System Boundary Inquiry | Inventory
Inquiry Report
Input & Output Output
Input
Sales
Output
Small Retalil Report
Store
Input System
Output
Inventory Bar Code
Database -«———Logical File — Output Label Maker
CRUD
Interface Input & Output
Input & Output Mechnical
Arm
Controller
N A 4 4
Cash
Journal Accounting
RUD System Wholesaler
FP Type # Weight Total
Inputs 5 4 20
Outputs 7 5 35
Inquiries 2 4 8
Logical Files 1 10 10
Interfaces 1 7 7
Total 80

Carnegie Mellon
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Function Point Estimate

The function point estimate based on the context diagram
results in

« 80 function points or 10,240 lines of code

However, two other context diagrams based on the proposal
iInformation resulted in estimates of

« 73 function points, or 9,344 lines of code and
* 96 function points or 12,288 lines of code
This variation in the estimates for the proposed system will

be used for the process performance model (PPM) based
predictions for the proposal and managing the project
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Composition Trade-offs and PPM Factors

Quality Functionality

Factors
Complexity
Size
Methodology
Process/Subprocess
General Experience
Domain Experience
Platform Experience
Training

Duration etc.

Effort

Robert Stoddard
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Understanding Distributions — Key to Informed Decisions

S,

1 2 3 4 5 6 7 8 9 10

—— Robert Stoddard
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Distributions Describe Variation

Populations of data are characterized as distributions in
most statistical procedures:

e expressed as an assumption for the procedure
« can be represented using an equation

The following are examples of distributions you may come

aCross.

Mormal Triangular Uniform Lognomal

A

>

A

Max Extreme Min Extreme Logistic Student's t Exponential Pareto Binomial
Poisson Hypergeometric Meg Binomial Geometric Digcrete Uniform Yes-MNo
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Why is Understanding Variation Important?

Customer wants the product in 10 weeks
Historical range is 9-11 weeks
Should the job be accepted?

Probably Should

98,520 Displayed

Probably Not

100,000 Trials Freguency View 58,505 Displayed 100,000 Trials Frequency View
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Variation, Trade-offs, and PPMs

Function Pt Est. SLOC 0
Calculated KDSI 0
0

The shaded cells are where the effects of variation are incorporated
using a Monte Carlo simulation

"/ Nominal Effort = 0.0
Effort Multiplier = 0.0
Effort (MM) = 0.0
Nominal Schedule = 0.0
Staff = #DIV/O!
Potential # Defects 0
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Evaluate Proposal Risk and Negotiate

Run “what if” exercises holding one or more values constant

See effects of trade-offs between
o Schedule

Effort

Defects

Staff

Functionality
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Varlatlon Trade-offs, and PPMS — Schedule

aﬂ@*o e - [B]x]
. 100,000 Trizls Frequency View 95,420 Displayed 100.000 Trials Freguency View 95420 Dizplayed I
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Varlatlon Trade-offs, and PPl\/lS — Effort

aa@ﬁo - [o]x]
100,000 Trials Frequency View 59,043 Displayed | 100,000 Trials Frequency View 99,043 Displayed
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Variation, Trade-offs, nd PPMs — Defects

 Forecast: Latent Defects

Edit View Forecast Preferences Help

EBX

! Forecast: Latent Defects

Edit View Forecast Preferences Help

100,000 Trials Frequency View 99,735 Displayed 100,000 Trials Frequency View 55,735 Displayed
Latent Defects Latent Defects
0.04 S 4,000 0.04 - - 4,000
N ' 3,500 ' 3,500
0.03 - n = 3,000 0.03 - |- 3,000
= M n i & i i
= 2500 @ = 2,500 ©
m | m =
2 .02 2,000 & 2 002 - 2,000 8
= 1,500 Lg‘ o 1,600 Q
0.01 - 1,000 0.01 - 1,000
500 500
D-DQ T 1 I 1 I I T 0 D.D|$ ' T ) ' T T T T 0
6.00 3.00 10.00 12.00 1400 1800 1800 2000 6.00 8.00 10.00 12.00 14.00 16.00 13.00 20.00
P [Arfinity Certainty: [5.629 % 4 |5k P [infinity Certainty: [51.128 % 4 [Em
Forecast: Latent Defects 2. Forecast: Latent Defects
) Edit View Forecast Preferences Help
Percentlle ForecaSt Values 100,000 Trials Frequency View 99,735 Displayed
O% 5 63 Latent Defects
10% 8.64
0.04 - 4,000
20% 9.69
30% 1050 o 0.03 - 3,000 .
40% 11.20 = 250 8
0 g 0.02 2,000 2
50 % 11.92 : 3
60% 12.67
0.01 - 1,000
70% 13.51 e00
80% 14.52 o.0p--1 : . . | : . 4o
900/ 15 88 6.00 8.00 10.00 1200 1400 1600 1800 20,00
0 .
B |Hrfinity Certainty: |30.705 % L i6.00
100% 21.99

Robert Stoddard

Software Engineering Institute

Carnegie Mellon Rusy Young

© 2008 Carnegie Mell

on University



and PPMs — Staff

Varlatlon Trade-offs,

Forecast: Staff =
Percentile Forecast values
0% 2.5
10% 3.6
20% 3.8
30% 4.0
40% 4.2
50% 4.3
60% 4.4
70% 4.6
80% 4.8
90% 5.1
100% 7.2
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Proposal CAR/OID to Mitigate Risk

Seeing if there are new technologies that if employed will
reduce risk

May build/modify PPM to evaluate impact and ROI

« May involve a brief pilot

e May involve industry data

e May involve professional

e Each brings their own level of uncertainty to the prediction

Typically involves detailed project planning PPMs

* Results at micro-
« Extrapolate to macro

Robert Stoddard
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Proposal CAR/OID

New technology will increase coding productivity by 10%
e May want to verify with
— pilot
— in-depth testing
 Measured results
Adjust proposal model with results

Re-predict and evaluate resulting risks

Robert Stoddard
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Plan Project

Like proposal
 More detall
e Interim as well as end state

Compose a PDP and construct an initial PPM to ensure it
will meet our goals and aid us managing the project

Robert Stoddard
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1 _ .
Note: the greenish shaded cells on this and

1

Initial PPM succeeding slides are where variations will be
@ccounted for using a Monte Carlo simulation
\/
Phase UoM Size Effort
Proposal/Early Planning [Function Points 80 154
Elicit Requirements User Requirements 110 723
URD Review Defects 65
Analyze Requirements |Requirements 176 1809
SRS Review Defects 08
Design Components 124 2236
Design Review Defects /2
Code Components 110 2950
Code Review Defects 65
Test Test Cases 229 2633
Deliver Defects 10806

%% Software Engineering Institute

Robert Stoddard

CarnegieMellon Rrust Young

© 2008 Carnegie Mellon University



(3 Size and Effort are predicted functions:

Initial PPM

SRS, ,. = [(URD,,., method, review type. Etc.)

Effort = I(Documents,ze, method, experience, etc.)
Phase S UoM Size Effort
Proposal/Early Planning [Function Points 80 154
Elicit Requirements User Requirements 110 723
URD Review Defects 65
Analyze Requirements |Requirements 176 1809
SRS Review Defects 08
Design Components 124 2236
Design Review Defects /2
Code Components 110 2950
Code Review Defects 65
Test Test Cases 229 2633
Deliver Defects 10806
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. (3 Size and Effort are predicted functions:
Initial PPM

SRS,,. = [(URD,,., method, review type. etc.)

Effort = I(Documents,ze, method, experience, etc.)

Phase S UoM Size Effort
Proposal/Early Planning [Function Points __— 154

7

Effort = constant + multiplier * size(method+experience+training)

Experience = [(domain, customer, platform general)

A

Code Review Defects 65
Test Test Cases 229 2633
Deliver Defects 10806

Robert Stoddard
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Initial PPM

Predicted Defects
URD Defects |SRS Defects DES Defects |Code Defects |Latent Defects

223 223
89 89
85 296 381
34 118 152
32 112 158 302
13 45 63 121
12 43 60 137 252
5 17 24 55 101

1 5 7 16 30

—= Robert Stoddard

— Software Engineering Institute | Carnegie Mellon Rusty Young

© 2008 Carnegie Mellon University




Initial PPM

Rework Effort
URD SRS DES Code Latent
134 134
4 4
153 178 330
5 6 11
174 202 95 471
6 7 3 16
198 231 108 82 620
278 323 151 115 867
357 415 194 148 1115

Robert Stoddard
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PDP Risk

100,000 Trials Freguency View 55,938 Displayed
Total Effort (Initial PPM)
0.04 - 4 000D
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o 1,500 Q
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P frfey
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e Forecast: Schedule =

. Forecast: Design Companents

R Forecast: Test Cases -
T — - Forecast: Code Defect Rework ‘-_HE w
T . Forecast: Companents . Foecast DS Defect Rework .o

© . Sepen Requirements
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Fnrm:ast Function Pt Est, SLOC
F?[Eﬂﬁti Total Effort (Initial PPM)
Foracast: Effort (MM) =

. Forecast: Proposal/Early Planning Function Paints

¥ = {55~ R
|/ Control Panel |-_| |§| . Forecast: Latent Defect Rewark Estimate U‘ 0 ” X |
Run  Analyze Help -4,

Simulation complete . Forecast: DES Defect Rewark E‘@@

Forecast: SRS Defect Rework :”EHE

. Forecast: Delivered Latent Defects D@@

* Forecast Latent Code Defects
. Forecast: Latent Design Defects

\_-J\_E”_ﬁ . Forecast; Latent SRS Defects

 Forecast: Latent URD Defects - [olX

‘-_”Ew ' [ | I - Forecast: Estimated Defects B@‘E

" Forecast: Staff - |L“EH£| Edb View Forecast Preferences Help
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An Alternate Example
Process Performance
Model (PPM) to support

Escaped Defect
Analysis and
Monitoring
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The Situation during Development

Defects escaping from one development phase to the next
are very expensive to find, diagnose and fix. Some
Industrial studies suggest the increasing cost may be
exponential.

OUR NEED: A PPM used by the software project manager
and guality team to analyze escaping defect rates by type to
support more informed decisions on where to target dynamic
project corrective action, as well as, changes to
organizational processes!

—= Robert Stoddard
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Details of the Escaping Defect PPM

The outcome, Y, Is the amount of escaped defects by type
within each phase of development

The x factors used in this model will be the various injection
and detection rates by type of defect across the phases of
development

Not only will this model focus on phase containment of
Req’ts, Design, and Code phases, but on the phase
screening of defects by type within the different types of
testing

—= Robert Stoddard
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Background Information on the Data

Historical data on escaped defects, by type, across lifecycle
phases was recorded.

For each historical project, software size was recorded, as
well, to help normalize the defects injected and found,
thereby producing injection and detection rates.

Robert Stoddard
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Phase Found
Tokal
Injecti Escape Escape
on Fate by Rate by
All numbers Inteqrati System User Rate Activit Activit Activiti
per IMSLOC Reqgts ActivityDesign Activity Code Activity | on Test Test Test by L] L es X
Reqts Activity )| ao] | 0] | g0 | 5] | @] [230 | [ =30 | [ 320 | | ¥z | [ #ox | | 0= |
E Design Activity 2o00] ano] | 1zon] | goo] | o] [ #2000 | [ 200 | | 2450 | [ 36 ] [ 52 | [ 5= ]
E Code Activity Jz00) 2oo0] | 4o0] | 1] [G240 | [2540 | [ 4680 | | 54= | | 40 | B3
o —_—
£ ntegration | 5] | ] @ % | [Ws] [3= ] [B=] [ ]
il
H System Test 100] o] [0 | [0 ] [ Z5 | | 1= | | o= | | 17 |
=
O | User Test g [ 5 | o [ o | [ ox || ox | [ 0x |
Phase
Containment OF all defects escaped
Rate 500 2080 4110 3560 1300 280 11830 5125 4210 00 43% atleast one phaze
SCIEEning For defects not caught in phase originally injected, thiz i=
Rate 500 2000 2800 200 100 [ 1.8 the average number of times they escaped a phaze
Phase
Contalnment
Rate 3 B0z 462 47 i 4 83 10032
Socreening
Rate 3 B L B B3 1003 1002

A modern spreadsheet for escaped
defect analysis before being
transformed into a CMMI Process
Performance Model

Robert Stoddard
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Phase Found
ol al Escap Escap
Injecti Escape Rate by Escape Rate by
on Fate by All Rate by All
Il numbers Inteqrati System User Rate Activit Activiti Activit Activiti
per IMSLOC Reqgts ActivityDesign Activity Code Activity | on Test Test Test L] es by L es X
Reqts Activity 500 g0l | 0] | gn| | 50 | ] | #g0 || 330 | [ 330 | [ 7= ] [ #0x ] [ #0= ]
Design Activity 2000 00| | 1200 | gnnl | 100] | 2200 | | 2450 | | 36 | [ S2x | | 54x |
Code Activity 300 F | ann| | 141 [2540 | [ %680 | | 54= | | 40 | 533
—\ | Integration a00) ) | 5] [58 | [1475 | T3] [5= ] [ 25= |
il
wn
b 100] o] 275 | 1= | | o= | | 17 |
=
o jL o | [ 9 | [ o= | | ox | | ox |
F"'l\a:;e\\
Containment \ » F all defects escaped
Rate 2080 4110 1300 280 g0 5125 4210 1002 43% atleast one phase
SCIEEning For defects not caught in phase originally injected, thiz i=
Rate L1 2000 800 00 100 5 1_8 the average number of times they escaped a phaze
Phase
Containment
Rate 3 (1 465 47 1% 83 10052
: )
Screening L t | k t th
Rate 3 (1 L1 (1 Bh= 1003 100z e S O O a e

matrix showing
“Phase Injected”
\ VS “Phase Found”

—— Robert Stoddard
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All numbers per

Phase Found

Integration System

1MSLOC Regts Activity | | Design Activity | | Code Activity Test Test User Test

Reqts Activity [ ol [ e [ [_2d
D [ Design Aty [ 200 [ s0] [ 100
E Code Activity - -
»—
E Integration Test FO r exam p I e. an
m ]
/g | System Test average of 2000
r- ol design defects

were found during
the design activity

Robert Stoddard
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Phase Found
Tokal sCap
Injecti Escape Escape Rate by
on Fate by Rate by All
All numbers Integrati| |Swystem User Rate Activit Activit Activiti
per IMSLOC Reqts ActivityDesign Activity Code Activity | on Test Test Test by L] es y = (B 5
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Containment O all defects escaped
Rate 500 2080 4110 2560 1200 280 1 E12E 9210 1002 A3% atleast one phase

CTeening For defects not caught in phase originally injected, this is
Rate 500 2000 3800 1.8 the average number of times they escaped a phase
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Let’s look at the
Rate 3= [H 1} 463 473

N\, bBoreening

“Phase Containment”
& “Phase Screening”
rates y

A8 L

Robert Stoddard
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Phase Found
Integration System
Reqgts Activity Design Activity Code Activity Test Test User Test
: N
Here, 2080 Requirements
and Design defects were
Phase h d . D .
Containment Rate 500 2080 caugnt during Design e
Here, 2000 Design defects
Phase Screening |— . .
were caught during Design
Rate 500 2000| \/_m;. J oo J e g. Z 5
% of all defects entering and
Phase . . . . .
Injected in Design caught in
Containment Rate </ J D . g g
% 60% as%| |\ ==lg 0%
Phase Screening =" 0 of Design defects caught
Rate % 60% 48% . In Design %

Robert Stoddard
Rusty Young
© 2008 Carnegie Mellon University
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Phase Found
SCap
Escape Escape by
Fate by Rate by Al
All numbers Integrati System User Activit Activit Activiti
per IMSLOC b ovs ActivityDesign Activity Code Activity | on Test Test Test L es5 X
Reqts Activity i | aol | 1] | go] | 150 | | [220 | [ 230 | 330 | 7= | [ #0= | | 40 |
E Design Activity 2oo0] ano] | 1zon] | goo] | ioff [ 4200 | [ 200 | | 2450 | [ 36 ] [ 52 | [ 54= ]
E Code Activity Jz00) 2oo0] | 4o0] | w0\ [6240 | [2540 | [ 4680 | | 54= | | 40 | B3
W
£ ntegration 300} 51l | G| 385 | [ 58 | [ | 3= ] [ | [ 29= |
il
@ [Sastem Test 0] | o =% ] [=] [0 ] 175
L
O [ User Test G| | [ o= ] | ox | %
FrI'I-HEE'
Containment O all defects escaped
Rate 500 2080 4110 2560 1200 280 130 5125 2210 002 A3% atleast one phaze
creening For defects not caught in phase originally injected, this is)
Rata bl ] Z000 3300 300 100 5 1.8 the average number of times they cseaped a phase
FFI'I-HEE
Containment
Rate 3 1 4632 47 71 g3 1005
)
Let’s look at the Phase
Rate 3 (1 483 (1 853¢ 1005 1005

Injection and Escape
L rates )

—— Robert Stoddard
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/Here, 4200 Design defects were injected with\
2200 of them escaping the Design activity;
Additionally, 2450 total defects (injected
during Design or inherited from upstream

\activities) escaped past the Design activity

\\/
Total Escape
Injection Escape Rate by
All numbers per Rate by Rate by All
IMsLOC Activity Activity Activities
Reqts Activity 830 330 330
(. —
wgn Activity 4200 2200 Z45ED>
QL
afd
(&) Code Activity 6340 2540 4680
Q
Iq
E Integration Test 355 55 1475
Q
g System Test 100 0 275
i -
Q. User Test 3 0 0

=== Software Engineering Institute

Activity Escape
Injection Rate by
Rate by Escape All
Total Rate by Activities
Defects % Activity % %
7% 40% 40%
36% 52% 54%
54% 40% 53%
3% 15% 29%
1% 0% 17%
0% 0% 0%

Robert Stoddard
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(Here, 36% of all defects in a project are expected to be Design\
defects; 52% of Design defects are expected to escape past
Design; and 54% of all types of defects in the Design activity
(injected during Design or inherited from upstream activities)

\_ are escaping past the Design activity )
Activity \\/ Escape
Total Escape Injection Rate by
Injection Escape Rate by Rate by Escape All
All numbers per Rate by Rate by All Total Rate by Activities
IMsLOC Activity Activity Activities Defects % Activity % %
Reqts Activity 830 330 330 7% 40% 40%
=5 | Design Activity 4200 2200 2450 @% 52% 54%
b
[ Code Activity 6340 2540 4680 54% 40% 53%
Q
Iq
L [ Integration Test 355 55 1475 3% 15% 29%
Q
g System Test 100 0 275 1% 0% 17%
i =
=8 User Test 5 0 0 0% 0% 0%

. Robert Stoddard
CarnegieMellon Rrust Young

© 2008 Carnegie Mellon University
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Phase Found
Total
Injecti Escape Escape
on Fate by Rate by
All numbers Integrati| |Swstem User Rate Activit Activit Activiti
per IMSLOC Reqts ActivityDesign Activity Code Activity | on Test Test Test by L] es L e5 X
Reqts Activity 500 a0 | 1] | en| | 0] | 2] | &30 || 330 | | 330 | [ 7= ] [ a0 ] [ 40 ]
E Design Activity 2000} and] | 2o0] | gon| | ng [+200 | [Z200 | [ 2450 | [3ex | [ 52 | [ 5= |
E Code Activity Zz00] zooo] | qo0] | 0] | 6340 | | 2540 | | 4630 | | 54 | | 40 | | 53x= |
W —
= Integration a00) so] | 5] [265 | [ 55 | [ 1475 | [T ] [is=x | [ #9= |
il
E System Test 0] o] w0 [0 | [ ] [[i= | [ o= | [ = |
o User Test 58 | 5 || o || o | [ o= | | o= | | ox |
F’l\ase
Containment 0OF all defects escaped
Rate 500 2080 4110 3560 1300 280 11830 5125 4210 003 A3% atleast one phase
SCIEening For defects not caught in phase originally injected, this is)
Rate 500 2000 2800 200 100 [ 1.8 the average number of times they ezcaped a phase
FrI'I-HSE'
Containment ]
Now, let’s transform
Screening h . d h
Rate % 60 182 so] | ssw| [ wo0we| | 100 this spreadsnheet

model into a valid
CMMI process
performance model!
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Integration System

Mame: |D5{

Reqts Activity Design Activity Code Activity Test Test
500 ' Define Assumption: Cell D5 |._|EJE|
i Edit View Parameters Preferences Help
Y

Normal Distribution

=

E

m -

o]

e

D_ -

440 480 480 500 520 540 580
Mean [500 %,  Std Dev.[22 E™
Gallery | Correlate. .. Help
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Total

Injectic
Integration System User Rate b
Reqts Activity Design Activity Code Activity Test Test Test Activit

- B

* Define Assumption: Cell F5

Edit View Parameters Preferences Help

Name: |F5 EY N

Mormal Distribution

FProbzbility

B2

Insert

Mean %y  Std. Dev.[20 ET

oK |

Define

Cancel | Enter Gallery | Correlate. .
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All numbers per

Phase Found

Integration System

IMSLOC Reqts Activity | | Design Activity| | code Activity Test Test User Test
Reqts Activity [ s [ e [ 3sd [ oo
D [ Design Aty [ s200] [ s0o] [ od]
E Code Activity - -
= [(teraton e Each of the green
E System Test cells have received
ol ar— uncertainty

distributions based
on historical data
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Phase Found

Reqts Activity

Phase
Containment Rate

Phase Screening
Rate
il
' Home Insert Pagd
00%
Define Definel Define 60%
Assumption ~ Decisiory Forecast
Define
/|
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Define Forecast: Cell D17

Name: |ReqtsPCErate

Units: |

LsL: | % UsL

Target: | ¥

Forecast Window l Precision | Fiter | Auto Exract |

View: | Freguency

[ Splitview
Window

Iv Show automatically
& Wwhile running simulation

" when simulation stops

Fit distnibution

| Eit a enntinunns prohshility distribition to the forecast

Fit Options...

vl

I

Cancel |

Apply To... | Defaults. ..

Help

st

E

E

E
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o) i B

Home Insert Fagy
Y iy
A @ Phase Found
Define Define
Assumption = Decisio Forecast
Define
Integration System
Reqts Activity Design Activity Code Activity Test Test User Test
| | | | || <
Phase
Containment Rate 500 2080 / EaCh Of these blue B0

_L cells were identified as

Rate <00 2000 outcomes whose -

resulting distributions

Phase Screening

Phase : -
Containment Rate K Wi I l b € Stu d | ed /
% 60% 46% 47% 71% 83% 100%

Phase Screening
Rate % 60% 48% 60% 85% 100% 100%
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D) = B L3 =

Home Insert Fagy

Each of these blue cells were

"s ® identified as outcomes whose
Define Define

Assumption = Decisio Forecast

_resulting distributions will be studied

Define
~— Activity \’ Escape
Total Escape Injection Rate by
Injection Escape Rate by Rate by Escape All
All numbers per Rate by Rate by All Total Rate by Activities
IMsLOC Activity Activity Activities Defects % Activity % %
Reqts Activity 830 330 330 7% 40% 40%
=55 | Design Activity 4200 2200 2450 36% 52% 54%
Q
.E Code Activity 6340 2540 4680 54% 40% 53%
-
E Integration Test 355 55 1475 3% 15% 29%
Q
(5 | System Test 100 0 275 1% 0% 17%
i
Q. User Test 5 0 0 0% 0% 0%

. Robert Stoddard
CarnegieMellon Rrust Young
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Data Review View Add-Ins Crystal Ball

; Hp “* Tools = i iﬂ @) Help
TABREET i ' . i Resources =

Start
(™ sbout

Help
J K
Run Preferences
Trials ] Sampling ] Speed ] Options ] Statistics ]
Mumber of trials to run: 100000
I+ Stop on calculation errors }
gration Sys
| ﬂc‘tih‘it‘f |+ Stop when precision control limits are reached fFest Te
Confidence level: |55 %
500 60
1200
oK Cancel |  Defaults.. |  Help
2000l |
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! Control Panel

Run Analyze Help
: : A
Simulation complete d
llllllllllllIIIIIIIIIIIIIIIII
Total trials: 100,000 100,000 / \
Standard
By | b B simulation
summary
Statistics
1 results
Run statistics: j
Total running time (seconds) h.57
Trials/second (average) 17,962
Random numbers generated/second 377 206
Crystal Ball data:
Assumptions 21
Correlations 0
Correlation groups 0
Decision vanables 0
Forecasts 61
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100,000 Trnals Freguency View 59,500 Displayed

DesignTotallnjectionRaie
0.06 - 5,000
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0.05 -
confident that no
0.04 -
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£ Design defects
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100,000 Trnals Freguency View 99,455 Displayed
DesigninjectionRaite%
0.06 - 6 D00
0,05 / We are 95%\
confident that no
20 more than 39%
B 003 of all types of
o defects will be
e ]
0.02 - Design defectS/
0.01 - D00
0.0 ® | | | - 0
J0% 32% 34% Jo% 35% 4%
P |-Ir|fir|'rt§,.r Certainty: |5'4.5'E-2 o "i |35-3';
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100,000 Tnals Freguency View 59,456 Displayed

DesignEscapeRaie
0.06 - 5,000

We are 95%\
confident that no
more than 2,351

Design defects
will escape the
Design activity/
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=
]

0.01 -

0.00p

I I I I I
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100,000 Tnals Freguency \View 99,173 Displayed
DesignEscapeRaie%

0.06 - ~
[

We are 95% \

confident that no

more than 61% of
Design defects will
escape the Design

Frobability

0.02 - activity /
0.01 - A .
0.00p . . )
40 50% B0
D |'|"'ﬁ""ft!v’ Certainty: |E|-E-.DI}E- % 4 |513-:
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' Forecast: DesignAllTypekscapeRate

—_——

We are 95%

Edit View Forecast Preferences Help
100,000 Trials Frequency View confident that no
DesignAllTypeEscapeRate more than 2’607
0.06 - defects (injected
during Design or
o inherited from
5, 0.04 - upstream activities
= of Design) will
g 0% escape the Design
" o02- activity /
0.01 -
0.ocp= : : | : ,
2200 2300 2400 2500 2600 2700
b |-Ir|fi|'|'rt5,.r Certainty: W % 4 |m
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We are 95%
100,000 Trals Frequency View Confldent that no
more than 62% of
the total defects
(injected during
Design or inherited
from upstream
activities of Design)
will escape the

Design activity /

DesignAllTypesEscapeRal

Frobability

1 1
50% 60%

Certainty: |55.1 64 %

4 |22
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! Forecast: Design PCE Rate

@re 95% confident

that no less than 1,499 Design PCE Rate
total defects (injected
during Design or
Inherited from
upstream activities of
Design) will be found
during the Design

\ activity

Preferences  Help

Freguency View 99,502 Displayed

4 000

3,000

Aouenbal

2 000

1 1 1 1 1
1800 2100 2400 2700 3000

Certainty: |55.ME %

1 1
1200 1500

d |nfinity
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! Forecast: Design PCE%

Preferences  Help —
K/\/e are 95% Confiderh Freguency View 59,219 Displayed

that no less than 38% Design PCE%
of total defects
(injected during Design
or inherited from
upstream activities of
Design) will be found
during the Design

\ activity

1 1
40%0 50%

Certainty: |54,5'E~D A

{ |irfinity
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100,000 Tnals Freguency View 99 504 Displayed

Design PSE Rate

0.06 6 D00

/VVe are 95% confident\ ,000

that no less than 47 4000
Design defects will be 3
found during the 200 5
\_ Design activity 2 000 2

D.01 - 1,000

0.00 , : , , 4 o
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b 7 Certainty: [95.050 % § |rfinity

Robert Stoddard

=== Software Engineering Institute | CarnegieMellon Rusty Young

© 2008 Carnegie Mellon University




! Forecast: Design PSE%

Edit View Forecast Preferences Help

100,000 Trials

Freguency View 99,173 Displayed

Design PSE%

/We are 95% confident\

that no less than 39% of 1000 T
Design defects will be ;g
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2 000
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1
20%

Certainty: |5'E-.I}I]ui i

1
40%
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100,000 Trials Freguency View 99,454 Displayed
PercentDefectsEscaping
d We are 95% confidenﬁ
004 - that no more than 46% of
> all defects will escape at
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[
£ 002- 2 000 5
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|
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Certainty: |En'-1.545

4 [46%

Robert Stoddard

=== Software Engineering Institute | CarnegieMellon Rusty Young

© 2008 Carnegie Mellon University




100,000 Tnals Freguency View 99, 467 Displayed
AvgPhasesEscaped '
/We are 95% confident\
_— that escaping defects
will not escape, on
2003 average, more than 1.8
® phases )
2 0.02 - TO00 =
0 / &
1,500
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00
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) Sensitivity: DesignAllTypeEscapeRate
Edit View Sensitivity Preferences Help

100,000 Trials Contribution to Variance View
Sensitivity - DesignAllTypeEscapeRate

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0%
1 1 1 1 ] ] ] 1

DesignDefectsFoundintegrati..

DesignDefectsFoundCode 10.9% |
DesignDefectsFoundSystemTest 9.8% |
ReqtsDefectsFoundSystemTest 4.3%
ReqgtsDefectsFoundintegratia.. _
- o \/ ' Sensitivity: DesignAllTypebscapeRate
|

/ ™~ Edit View Sensitivity Preferences Help
Using Sensitivity 100,000 Trials

Analysis, we can

learn more about | |

Wh|Ch faCtOI’S |n DesignDefectsFoundlntegrat... _
our model are DesignDefectsFoundCode .

most contributing DesignDefectsFoundSystemTest a.5% |

\'[O our OUtCOme/( ReqgtsDefectsFoundSystemTest 4.3%

RegtsDefectsFoundIntegrafio...
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What Have We Accomplished?

We transformed a model that used only historical averages
and substituted uncertainty distributions for each of the
Injection and found rates

By doing this, we can establish confident conclusions about
our outcomes using their resulting distributions:

« Defect Injection rates by Phase
 Phase Containment and Screening Effectiveness

We also used sensitivity analysis to decide which factors to
tackle first to improve each outcome

Robert Stoddard
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Planning the
Requirements Buildup
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Generate Plan

Generate schedule based on higher level PPMs which help
determine milestones and variation base slack

Generate detailed PPMs to predict performance during this
phase

Note: these steps will be repeated periodically (such as at
phase or other selected milestones) and on an as needed
basis

—= Robert Stoddard
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0

Elicitation — Requirements Buildup — Predicted

Generalized Logistic (or Richard's)

o
+ (jr_l_TE—E(;c—MJ)HT

¥ =4

X = time.
A controls the lower asymptote,
C controls the upper asymptote,

M controls the time of maximum
growth,

B controls the growth rate, and

T controls where maximum growth
occurs - nearer the lower or upper
asymptote

12345678 91011121314151617181920212223242526
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Elicitation — Requirements Buildup — Predicted

120

Generalized Logistic (or Richard's)

o
+ (jr_l_TE—E(;c—MJ)HT

100

¥ =4

[ These typically would be
functions with controllable factors
such as elicitation method (JAD,
prototyping, reengineering, etc.),

team experience, domain
k experience, # staff, etc.

X = time.
A controls the lower asymptote,
C controls the upper asymptote,

M controls the time of maximum
growth,

B controls the growth rate, and

T controls where maximum growth
occurs - nearer the lower or upper
0 __ asymptote

12345678 91011121314151617181920212223242526

20
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Elicitation — Requirements Buildup — Predicted

120

Generalized Logistic (or Richard's)

o
+ (jr_l_TE—E(;c—MJ)HT

100

¥ =4

80

X = time.
A controls the lower asymptote,
C controls the upper asymptote,

M controls the time of maximum
growth,

B controls the growth rate, and

T controls where maximum growth
occurs - nearer the lower or upper
0 __ asymptote

12345678 91011121314151617181920212223242526

- Calibration of this model for
different domains, customers, etc.
and the effects of the controllable
\ factors is critical

20

—= Robert Stoddard
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Risk Iin Plan

Use PPMs to judge overall risk in the plan
May use Monte Carlo simulation in the schedule to better

understand

* Schedule based sources of risk

» Effects of risks on the schedule

=== Software Engineering Institute

100,000 Trials Frequency View 100,000 Displayed
User Requirements

0.04 - 4,000

3,500
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Elicitation — Requirements Buildup — Monitor

120

Monitor the buildup

100 - Flattening means you are
reaching the point of diminishing
returns for elicitation

Significant difference between
predicted and actual upper

60 asymptote indicate a potential
misunderstanding of the system
to be built

If actuals show significant
variation from predicted, re fit
20 curve for new prediction

— Calculate an appropriate
Prediction Interval (PI) to aid in

0 detection of anomalous conditions
123 456 7 8 91011121314151617181920212223242526

80

40

Robert Stoddard
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Elicitation — Requirements Buildup — Example 1

120

100

 —— Robert Stoddard
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Elicitation — Requirements Buildup — Example 2a

120

100 -

The Process is not ’)\ ///
0 | performing at its’ historical
Levels. Investigate and
calibrate PPM W

60 -

) - . . . Robert Stoddard
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Elicitation — Requirements Buildup — Example 2b

140

120

o ///The refit curve has

extended the predicted
buildup time by —
approximately 20% (31
Vs 25) )

40

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Elicitation — Requirements Buildup — Notes

Requires a strong consistent requirements elicitation
process

 Different standard curves for different elicitation processes such as
JAD, prototyping, etc.

« Curve shape parameters can be influenced by context -- re-
engineering vs green field, well understood vs non-well understood
domain, experience, etc.

Consider a measurement systems error analysis — perhaps
using Gage R&R to ensure consistent buildup counts
Requires a good prediction of size

Can be beneficial with good size prediction and then fitting
the curve as you gather data

It will take time before variation in the buildup time minimizes

Robert Stoddard
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Another Example
Process Performance
Model (PPM) in the

Requirements Phase
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The Situation in the Requirements Phase

Our products are comprised of 40-60 features

We assign each feature a small development team to
develop the feature “cradle to grave”

These feature teams operate in overlapping lifecycles within
an overall product incremental waterfall lifecycle model (thus,
different features will be added in each new increment)

OUR NEED: A PPM that will let each feature team predict
the number of requirements defects to be experienced
throughout the lifecycle of the feature development

Robert Stoddard
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Details of the Requirements Phase PPM

The outcome, Y, Is the predicted number of Requirements
defects for a given feature team

The x factors used to predict the Requirements defects are:
x1: Reqg’ts Volatility (continuous data)
x2: Risk of Incomplete Reqg’'ts (hnominal data)
X3: Risk of Ambiguous Req’'ts (nominal data)
x4: Risk of Non-Testable Req’'ts (hominal data)
x5: Risk of Late Reqg’'ts (nominal data)

—= Robert Stoddard
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Background Information on the Data

We collected historical data (of the Y and the x’s) for a large
volume of feature teams

For the x2 thru x5 factors, the feature team leader would
historically check off as “yes” or “no” depending on whether
they felt that the specific risk significantly impacted the
feature team cost, schedule or quality

Operational definitions and training were conducted to
ensure consistency and repeatability among the feature
team leads

Robert Stoddard
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Development of the Reqg’ts Phase PPM - 1

Volatility Rizkoflncompleteness RizkofAmbiguity RizkofNonTestability

0.12 |1 1 0

'x/ A /
All of the risks are rated\

X1: Volatility either 0 or 1, with 0 being Krhe Y outcor@
‘ shown in the absence of the risk Is the Number
Qemmal fory and 1 being the presence Of Reqts

- Defects
K of the risk j \/ -
P ~N

RizkofLateReqts RiskofUnsafeReqts | NumberOfReqgtsDefects
0 0 12
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Development of the Reqg’'ts Phase PPM - 2

= JMP - [DummyVariableRegressionExample]
Iﬁ File Edit Tables Rows Cols DOE JEy=UrM Graph Tools View Windo

ERRE-AEE == B Distribution )

ki . : =
Fit ' by X
Windows = ™ i) Dumemy I—:{ M 1:|:|‘|FI:|F' :
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#| IMP Starter ity
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E - —
lﬁ DummyVariableReqg Modeling b1
Multivariate Methods poole
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) w1z
6 0.1
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Development of the Req’'ts Phase PPM - 3

T Model Specification

Select Columns Pick Role Variables Perzonality:

A voatiity pr Huml:ernfﬂsqtsns}mph
W, Rizkofincompleteness /i';is will accomplish

il RizkofAmbiguity

ik Risko fNonTestability — Dummy Variable
II. RizkofLateReqts » | Weight | [E y
ik, RizkofUnsafeReqts Freq [E Regression to handle
— =
4l NumberQ fRegtsDefec X factors that are
By

Continuous and

add /| Volatiity Discrete j
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\— |RizkofLateReqgts
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Mest
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Development of the Req’ts Phase PPM - 4

¥ Summary of Fit
R=quare

0.

040697

RSquare Adj

Co .9353@&?
U. Zoco

Hoot Mean Square Error

Mean of Hesponze 13.83784
Ob=ervations (or Sum Wgtz) 74
¥ Analysis of Variance
sSum of
Source DF squares Mean Square F Ratio
Model 6 48.476347 14 7461 177.1312
Error LT o.af o7 0.0832/”Prob>F
C. Total 73 94054054 <. 0001*
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Development of the Reqg’'ts Phase PPM -5

¥ Sorted Parameter Estimates

Term Estimate Sid Error 1t Ratio Prob>|t|
Y olatility 32.860031 29702 11.06 = 0001*
Rizkofincompletenes=[0] -0.240651 0.0383552  -2.72 0.0024*
RizkofLateReqt=z[0] -0.107577 0.0532802  -2.00 0.0456*
RizkofUn=afeReqtz{0] 0.1647047 0.095776 1.72 0.0801
RizkofAmbiguity[0] -0.031284 0.078746  -0.40 [ 0.6924
RizkofNonTeztability]0] 0.0017565  0.058641 0.03 0.9756

—= Robert Stoddard
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Development of the Req’'ts Phase PPM - 6

¥ Prediction Expression
7.59374308072846
+32.8600303113136*Volatility

—r1ﬂt|:h[F‘.l%}nflncnmpl=t=n EE]

+ Match [ Risko fambiguity

0" = 0.00179594498247
—r.1at|:h[F‘.iaknfﬂnn‘satatil'rty] 1" = -0.0017969445825
lze=
-0.107577311748
0.10757731174804

in
I

0
1

L!-L!-

+Match [ Risko fLateRegts |

u

el

[r]

0" = 0.16470472563596
+Match|RiskofUnsafeRegts || 1" =>-0.164704725535

—— Robert Stoddard
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Intended Use of this Req’'ts PPM

Once we decide on the final form of the PPM, we will use it
In two primary ways:

1) At the beginning of each feature team kickoff, the team
will anticipate the values for the x factors (x1 ... x5).
They will evaluate the PPM at these values to predict the
number of Req’ts defects. |If this prediction is
unacceptable, they will take Immediate action to address
one or more of the x factors.

2) During the development, the feature team will
periodically re-assess the anticipated values of the X
factors and repeat the actions of step 1 above.

Robert Stoddard
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Updating this Reqg’ts PPM

As more feature teams develop features, they will continue
to record the data for the x factors and the resulting Y
outcome of number of Req’ts Defects

When a group of feature teams have finished the lifecycle
and have recorded their data, the organization may choose
to add their data to the existing data set and then repeat the
exercise of developing the dummy variable regression
equation.

Ultimately, the organization may want to segment the
feature teams by type and conduct this analysis for each
segment.

—= Robert Stoddard
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An Example Process
Performance Model
(PPM) during the

Design Phase
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The Situation in Design

The Design team is faced with modifying legacy software In
addition to developing new software.

A major issue that can have disastrous effects on projects is
the idea of “brittleness” of software. In a nutshell, software
becomes more “brittle” over time as it is changed and
experiences a drifting usage model.

OUR NEED: A PPM used by each feature team during
design to predict how “brittle” software Is, and subsequently
to make the correct design decisions regarding degree of
modification vs rewrite from scratch.

Robert Stoddard
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Detalls of the Software Brittleness PPM

The outcome, Y, Is the measure of software brittleness,
measured on an arbitrary scale of O (low) to 100 (high),
which will be treated as continuous data

The x factors used in this prediction example are the
following:

o Unit path complexity

e Unit data complexity

 Number of times the unit code files have been changed

 Number of unit code changes not represented in Design document
updates

Robert Stoddard
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Background Information on the Data

We collected historical data from feature teams on their
code units. The data, related to the first four x factors, are
maintained by the CM system using automated tools
tracking this data each time new code file versions are
checked In.

o Unit path complexity

e Unit data complexity

 Number of times the unit code files have been changed
We also have access to problem reporting and inspection
databases which provide us with a number of issues
reported against individual code units. Finally, we have

“Brittleness” values for each unit of code that were assigned
by a different empirical exercise with domain experts.

Robert Stoddard
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Development of the Brittleness PPM - 1

C1 Cc2 C3 Cc4 C5
Brittleness DataComplexity NumChangesNotDocumented NumOfFileChanges PathComplexity
69 62| 45 63 8.13 10.29 19.98
GE 98.09 5.95 11.67 2288
64 59 37.02 6.12 16.18 22 52
62.95 36.57 712 10.68 20.55
60.58 24 28 6.32 12.08 2098
67 44 7253 7.08 8.68 19.75
73.75 87 82 7.68 10.90 19.52
67.00 33.06 6.77 8.97 21.46
63.06 32 84 5.70 12.81 19.06
6415 38.08 6.92 12.90 2095
7427 164 .08 6.46 13.85 19.72
7770 110.71 7.81 9.33 2220
63.63 31.07 6.25 11.05 2043
61.71 2543 6.89 11.84 19.76
73.46 2892 8.38 12.59 2318
73.54 143.56 6.70 9.80 25 91
61.58 ga8.74 6.99 5.29 19.38
6622 16.32 716 11.78 19.75
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Development of the Brittleness PPM - 2

d - [DESIGNPPM.MTW ***]

Calc | stat Graph Editor Tools Window Help

2n ) Basic Statistics lr| f::] 7 -3{? Fi % @ {El <
: ANOVA » Stepwise...
—  DOE ¥ iy BestSubsets...
Control Charts b M Fitted Line Plot...
Quality Tools ' EE;E Partial Least Squares...
latalC Reliability /Survival b es Path
Multivariate b ﬁ Binary Logistic Regression... hg
Time Series " i Ordinal Logistic Regression... 7
Tables . ﬁ Mominal Logistic Regression... 18
Monparametrics 3 712 10.68
EDA b 6.32 12.08
Power and Sample Size # 7.08 0.6
ol o 7.ba 10.90

—— Robert Stoddard
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Development of the Brittleness PPM - 3

Regression

Britteness F.esponse:
DataComplefity _
MumChangeNXdot Predictors:
MurmnOfFileChan

PathComplexity-MumChangesMotD
ocumented

PathComplexity
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Development of the Brittleness PPM - 4

Residual Plots for Brittleness
Normal Probability Plot Versus Fits
99.99 e ? .
99
E 90 T;
9 50 E
g 1ol &
1_
0.01- |
-10 0 10 20 50 60 70 80 a0
Residual Fitted Value
Histogram Versus Order
600 1 20+
3 4504 ] i =
o =
S 300 5
§' -
£ 150 &
0 35 00 35 7.0 105 140 17.5 TN e © © '
- : : : : : : "@‘@@@@@@@@
Residual SRR S S U @Q
Observation Order
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Development of the Brittleness PPM -5

uﬂegressiun Analysis: Brittleness versus PathComplexi, NumOfFileCha, ...

T gression equation is
Brittleness = €.62 + 0.7%3 PathComplexity + 0.743 HumeFiLeCEEEEEE)

+ 5.04 NumChangesNotDocumented

Predictor Coef SE Coef
Constant 6.6168 0.4152 15.
PathComplexity 0.79281 0.01173 &7 .
MmO fFi1 leChanges 0n.74298 0.077197 e
NumChangesNotDocumented 5.04283 0.04320 116.75

S = 2.99598 R-Sg = 69.0% @q(adjj = 69.@
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Development of the Brittleness PPM - 6

Enalysis of Variance

Source DF S5 MS F
Eegression 3 200594 ©oeoBeos T7425.50
Fesidual Error 99%6 89563 S

Total 9595 250557

Source DF Seq S5
PathComplexity 1 41056
NumOfFileChanges 1 36875
NumChangesNotDocumented 1 122663

—= Robert Stoddard

%% Software Engineering Institute | CarnegieMellon Rusty Young

© 2008 Carnegie Mellon University




Intended Use of this Brittleness PPM - 1

Once we decide on the final form of the PPM, we will use it
In two primary ways:

1) As each feature team begins software design, the team
will collect the x factor information for the software units
to be worked on, and then evaluate the PPM at these
values to predict the brittleness of the individual software
units. If the brittleness prediction is too high, they will
decide whether they should continue with modifying
legacy code units or rewrite them from scratch.

Robert Stoddard
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Intended Use of this Brittleness PPM - 2

Once we decide on the final form of the PPM, we will use it
In two primary ways:

2) Ideally, management would have access to this PPM
during proposal and planning activities so that predictions of
high vs low brittleness may appropriately influence the early
estimates.

—= Robert Stoddard
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Updating this Brittleness PPM

As more code units are inspected and tested with
corresponding x factor information recorded, the
organization will periodically add this new data to the
original data set and re-run the regression analysis.

Over time, an analysis relating predicted brittleness of code
units to the actual experienced ripple effects of changes to
the same code units would be warranted, to ensure the
PPM is accurate.

Robert Stoddard
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Continuing into the
Build Phase
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Updating PPM — Post Design PPM

Update PPM with actual values

Rerun predictions
Reevaluate risks and take appropriate actions

Freguency View

100,000 Displayed

« Mitigation plans

. 100,000 Trials
 Contingency plans —
« CAR/OID actions 004 -

Frobability

0.00p P — (R ——
99 102 105 108 111 114 117 120 123 126 128 132
Code Components

Certainty: [100.000 % 4 |\nfinity

Robert Stoddard

Carnegie Mellon Rusy Young
] © 2008 Carnegie Mellon University

P |Hinfinity
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Build PPM

Updates PPM with most recent actuals

Adjusts for changes in

o Staff

* Process definitions

« PDP

o Scope/requirements/design

Produce detailed phase PPMs for detailed monitoring during
build phase

—= Robert Stoddard
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Monitoring the Build

Multi-mode monitoring (not just PPMSs)
« SPC — Micro level performance
« PPM — Macro level performance
« EVMS - Cost/Schedule implications
o Schedule — Critical path/Dependency effects
Each monitors different aspects of the product build (similar

strategy/tactics can be used during any phase or for
maintenance

—= Robert Stoddard
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Build — Component Buildup — Predicted
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Sigmoid Curve
Y = L+((U-L)/(1+exp[-1*((x-M)/\W)])

X time

L = lower asymptote

U = upper asymptote

M = Middle point of growth

W = width from leaves bottom and
gets to top
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Build — Component Buildup — Predicted

120

Sigmoid Curve
=

?r These typically would be Y = L+((U-L)/(1+exp[-1*((x—M)/W)])
functions with controllable factors
such as elicitation method (JAD,
prototyping, reengineering, etc.),

team experience, domain
\ experience, # staff, etc.

X time
L = lower asymptote
U = upper asymptote
. M= Middle point of growth

- . W = width from leaves bottom and
__ Qetstotop

40

20

0
123456 7 8 910111213141516171819202122232425
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Build — Component Buildup — Predicted

120

/ Sigmoid Curve
Y = L+((U-L)/(1+exp[-1*((x—-M)/W
C Calibration of this model for ( N PI=L*(( WD
different domains, customers, etc. . X time
and the effects qf thg.controllable . L = lower asymptote
factors is critical _
™ U = upper asymptote

. M= Middle point of growth

W = width from leaves bottom and
__ getstotop

40

20

0
123456 7 8 910111213141516171819202122232425
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Build — Component Buildup — Example

140 a 3
120 Component
buildup can be —
100 monitored =
similarly to the
80 requirements
buildup
o ~ ™
@ R Component Build consists of
40 Create
Peer Review
“ Unit Test
\ y

O —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

-20
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Monitor Component Build — SPC

Components designed to be homogeneous or segment into
homogeneous subsets (note, may result in an S curve for
each sub-group)

Stabilize the build process

o Control chart
— Size
— Complexity
— Effort
— Duration

« May also chose to stabilize
— Unit test
— Build peer review

May also perform CAR/OID activies to optimize process

« May cause a modification to the PPM

Robert Stoddard
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Monitor Component Build — EVMS

EVMS, PPMs, and SPC are not incompatible
« Each manages different aspects
 Although there is some overlap
|s value earned at
* End of Build
 End of Unit test
 End of Peer review
 Or a percent at each step
When using EVMS, may want to emphasize monitoring
e Cost variance
« CPI
To monitor quality aspects, PPMs can supplement EVMS

Robert Stoddard
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Monitor Component Build — Schedule

Don’t forget the critical path

The models and EVMS may indicate no problem

« But the slippage of a single small task on the critical path can be a
source of project trouble

o Sometimes the issue will be picked up as a special cause on a
control chart, but the CPM implications are unseen and ignored,
thus not detecting that the project may be in trouble

Robert Stoddard
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The Model — 2 Partitions, lterative Build

Product

Iteration 1 Ilteration 2

Components 1-110 Components 111-220

There is support for iterative forms of development such as
iterative builds and agile methods

. Use sets of linked sigmoid curves
. Refactoring models

Points to the use of multiple linked models
. Don’t have to stick to a single equation

Robert Stoddard
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Iterative Build — Component Buildup — Example

250

Ilteration 2

200
150
lteration 1

100

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

-50
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An Example Process
Performance Model

(PPM) as an input to
System Testing
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The Situation in Systems Testing

The System Test team receives baselines from various
feature teams during the series of system test baselines
within each of the product incremental baselines

The Systems Test team does not have the schedule nor the
resources to conduct 100% coverage of all possible test
cases

OUR NEED: A PPM used by each feature team during the
handoff of a feature baseline to System Test, whereby the
feature team will predict the relative likelihood of a list of
defect types. This will enable prioritized, efficient testing!

Robert Stoddard
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Details of the System Testing PPM

The outcome, Y, is the relative likelihood of occurrence of
the different standard defect types (e.g. nominal categories
such as: logical, data, and algorithmic)

The x factor used in this prediction example is a measure of
staff turnover of the feature development team prior to
System Test (e.g. continuous data as a percentage)

This x factor was chosen because it historically surfaced as
a significant factor in explaining types of defects found in
System Test.

—= Robert Stoddard

% Software Engineering Institute | CarnegieMellon Rusty Young

© 2008 Carnegie Mellon University




Background Information on the Data

We collected historical data (of the defect type and the staff
turnover of the responsible feature team) for a large volume
of defects found in System Test

Operational definitions and training were conducted to
ensure consistency and repeatability of defect types found
In System Test, as well as, the staff turnover rates for
feature teams reaching System Test

Robert Stoddard
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Development of the System Test PPM -1

4 -

— Defects-Test | Turnover
1 | Logical 19
2 | Logical 23
2 | Data 11
2 [ Data 16
o | Algorithmic 5
& | Data 18
7 | Data 11
& | Data 14
9 | Logical 28
10 | Data O
11 | Data 11

—— Robert Stoddard
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Development of the System Test PPM - 2
= JMP - [LogisticRegressionExample]
\ﬁ File Edit Tables Rows Cols DOE BENEWFN Graph Tools View Window

D D = % .;Ii'ilzu E BF Distribution ) -+

¥ . .
Windows v X |iw LogisticR |—H Fit ¥ by X |

ﬁ LogisticRegressionExan - Matched Pairs lefec
mmﬂ
Madeling p DI

. Jata
Multivariate Methods b r

ata
Survival and Reliability P —
—algorit

6 |Data

7 |Data

i o PN P i L 2| Mata
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Development of the System Test PPM - 3

'™ Model Specification

Select Columnz Pick Role Variables

il. Defects-Test q il Dsfscts-‘s@

4l Turnover

/ Weight

This will accomplish

Perzonal

Remove

[Femove

Freq
Nominal Logistic

By
Regression to handle| ——

ayY factor that is Construct Model Effects

Discrete | Add @
k / [ Cross ]

Robert Stoddard

_ Software Engineering Institute | CarnegieMellon Rusty Young

© 2008 Carnegie Mellon University




Development of the System Test PPM -4

¥ Whole Model Test
Prob=ChiSq
00001 *

Model -LogLikelihood DF ChiSquare

Difference 5925626 2 178512
Full 56245396
Reduced F5 171

FSguare (L)

converged by Gradient
¥ Lack Of Fit

Source DF -LogLikelihood ChiSquare
Lack Of Fit 34 18169720 J6.33944
Saturated 36 38073676 Prob>ChiSq
Fitted 2 o6 245396 03602

¥ Parameter Estimates

Term Estimate Std Error ChiSquare /Prob>ChiSq
Irtercept 4 49519702 15437487 g.45 0.0036*
Turnowver -0.3296347 01064655 9.5 0.0020*
Irtercept 368084593  1.239601 8.82 0.00:30*
Turnover 0218423 DO/ET1E2 .22 o.aogq =
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Development of the System Test PPM -5
Diata Table=DPPSS
¥ T Nominal Logistic Fit for Defects-Test

¥ Logistic Plot
1.00—8

0.72 -

Crata

Defect=s-Test
1
M
1
|

023 -

0.0o

Turnowver
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Intended Use of this System Test PPM -1

Once we decide on the final form of the PPM, we will use it
In two primary ways:

1) As each feature team proceeds through development,
the team will anticipate the final staff turnover rate at the
point of System Test based on turnover to-date, and
then evaluate the PPM at these updated values to
predict the likelihood of the types of defects. If this
prediction is unacceptable, they will take immediate
action to address the staff turnover rate while still
possible.

—= Robert Stoddard
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Intended Use of this System Test PPM - 2

Once we decide on the final form of the PPM, we will use it
In two primary ways:

2)System Test will use the prediction to decide if the feature
IS suitable to enter System Test. If not, the feature team
may have to take risk reduction actions.

—= Robert Stoddard
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Updating this System Test PPM

As more features are tested and defects are found, they will
continue to record the type of defects found and the
corresponding information of the staff turnover of the
responsible feature team

When a group of defects from System Test have been
recorded, the organization may choose to add this
additional data to the existing data set and then repeat the
exercise of developing the nominal logistic regression.

Ultimately, the organization may pursue inclusion of
additional x factors that are believed to explain the defect
types surfacing in System Test.

Robert Stoddard
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Tutorial Summary

We have shown practical examples of process performance
models used in a variety of ways across the lifecycle

The methods depicted are not rocket science and may be
performed by practitioners, without becoming statisticians

The greatest challenge in implementing process performance
models is not the quantitative or statistical science, but
rather...

It is the domalin expertise to decide what are the business-
Important outcomes worthy of prediction, and what are the
controllable, sub-process factors likely to prove significant in
predicting that outcome
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