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Permission to use SAS JMP Screen Shots

Screen shots and other statistical tool information have been used with 
permission from SAS Institute. Information about JMP® statistical discovery 
software can be found at www jmp comsoftware can be found at www.jmp.com.

JMP® is interactive, comprehensive, visual software from SAS. It 
dynamically links statistics with graphics right on your Windows Macintoshdynamically links statistics with graphics right on your Windows, Macintosh, 
or Linux desktop, empowering you to explore data interactively and bring 
understanding to your organization.

SAS and all other SAS Institute Inc. product or service names are 
registered trademarks or trademarks of SAS Institute Inc. in the USA and 
other countries ® indicates USA registrationother countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective 
companies. Copyright © 2007 SAS Institute Inc. All rights reserved. 
449113.0607
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Permission to use Crystal Ball and Minitab 
Screen ShotsScreen Shots
Portions of the input and output contained in this module 
manual are printed with permission of Oracle (formerly p p ( y
Decisioneering). Crystal Ball 7.2.2 (Build 7.2.1333.0) is used 
to capture screenshots in this module.

The Web page for Crystal Ball is available at 
http://www.crystalball.com

Portions of the input and output contained in this 
presentation are printed with permission of Minitab Inc. 
using version 15using version 15
Minitab company web page is  http://www.minitab.com
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Topics

Purpose of this Tutorial
The Proposal PhaseThe Proposal Phase
Project Management Planning

• The Use of S curves
• Escaped Defect Analysis Modeling

Performance Models in 
• Requirements• Requirements
• Design
• Build
• System Test

Summary
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Purpose of this Tutorial
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Purpose

This tutorial is meant to inform practitioners of the:

• Essential Ingredients of CMMI Process Performance Models

• Examples of CMMI Process Performance Models across the 
lifecycle

• Examples of methods to implement various quantitative models for 
CMMI Process Performance Models
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Essential Ingredients of CMMI Process 
Performance ModelsPerformance Models
Statistical, probabilistic or simulation in nature

Predict interim and/or final project outcomes

Use controllable factors tied to sub-processes to conduct the prediction

Model the variation of factors and understand the predicted range or 
variation of the outcomes
Enable “what-if” analysis for project planning, dynamic re-planning and y p j p g, y p g
problem resolution during project execution

Connect “upstream” activity with “downstream” activity

Enable projects to achieve mid-course corrections to ensure project 
success
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All Models  (Qualitative and Quantitative)

Quantitative Models (Deterministic, Statistical, Probabilistic)Quantitative Models (Deterministic, Statistical, Probabilistic)

Statistical or Probabilistic Models

Interim outcomes predicted
Anecdotal
BiasedInterim outcomes predicted

Controllable x factors involved

Process Performance

Biased 
samples

No 
uncertainty 
or variation 
modeledOnly final 

QQualProcess Performance 
Model -
With controllable x 
factors tied to

y
outcomes 
are 
modeledOnly 

uncontrollable 
factors are 

OProcesses and/or 
Sub-processes

modeledOnly phases 
or lifecycles 
are modeled
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When and Why Do We Need Process 
Performance Models?Performance Models?

Software
Software Coding Software Unit Testing

Software
Design Systems

Testing

Requirements
Elicitation

Requirements
Management

Integration Testing

Customer
A t

Project
Forecasting

Elicitation Acceptance
Testing

Project
Start Project

Finish

Project
Planning

Proposal
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The Proposal
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The Proposal

Often uses higher level PPMs
• False precision when using lowerFalse precision when using lower
• Better understanding of the risk in a bid

Results my be used for bid/no-bid decisions along with other 
criteriacriteria
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Function 
Points System Boundary

Update
Inventory
Screen

Repor
Selectiont

Screen

Query
Inventory
Screen

Inquiry Inventory

Small Retail

Barcode
Reader Input

Input & Output

Inquiry
Inventory

Report

Sales
Report

Output

Output

Store
System

Inventory
Database

CRUD
Logical File

Interface Input & Output

Cash
Register Input

Bar Code
Label Maker

Output

Output

Cash

Input & Output Mechnical
Arm

Controller

Cash
Journal

RUD
Accounting

System Wholesaler

FP Type # Weight Total

Inputs 5 4 20
Outputs 7 5 35
Inquiries 2 4 8
Logical Files 1 10 10
Interfaces 1 7 7
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Function Point Estimate

The function point estimate based on the context diagram 
results in 

• 80 function points or 10,240 lines of code
However, two other context diagrams based on the proposal 
information resulted in estimates ofinformation resulted in estimates of 

• 73 function points, or 9,344 lines of code and 
• 96 function points or 12,288 lines of code

This variation in the estimates for the proposed system will 
be used for the process performance model (PPM) based 
predictions for the proposal and managing the projectpredictions for the proposal and managing the project
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Composition Trade-offs and PPM Factors

F i liQuality FunctionalityQuality
Factors

Complexity
Size

Methodology
Process/Subprocess
General Experience
Domain Experience
Platform Experience

Training
t EffortDuration etc.
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Understanding Distributions – Key to Informed Decisions

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
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Distributions Describe Variation
Populations of data are characterized as distributions in 
most statistical procedures:

• expressed as an assumption for the procedure• expressed as an assumption for the procedure
• can be represented using an equation

The following are examples of distributions you may come 
across:

Triangular
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1
A BCrystal Ball uses a 

random number1

1

1 2 2

3

3 4

random number 
generator to select 
values for A and B

1

1 2 2

3

3 4

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5493885352

1 2 3 4 5 1 2 3 4 5

A B C+ =

C Crystal Ball 

Crystal Ball then 
allows the user to 

analyze and C C ysta a
causes Excel to 
recalculate all 

cells, and then it 

analyze and 
interpret the final 
distribution of C!

saves off the 
different results 

for C!
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Why is Understanding Variation Important?

Customer wants the product in 10 weeks
Historical range is 9-11 weeks
Should the job be accepted?

Probably Not Probably Should

Should the job be accepted?
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Variation, Trade-offs, and PPMs
Function Pt Est. SLOC 0
Calculated KDSI 0Calculated KDSI 0

Enter a 2.45
Leave as is unless your have tuned 
your parameters

B - do not change 1.01
Th h d d ll h th ff t f i ti i t d

Enter c 2.66
Leave as is unless your have tuned 
your parameters

Enter Schedule 
Compression/Expansion Defaults to 100 (no compression or

The shaded cells are where the effects of variation are incorporated 
using a Monte Carlo simulation

Compression/Expansion 
Percentage 100

Defaults to 100 (no compression or 
expansion)

Nominal Effort = 0.0
Effort Multiplier = 0.0
Eff t (MM) 0 0Effort (MM) = 0.0

Nominal Schedule = 0.0

Staff = #DIV/0!

Potential  # Defects 0
Latent Defects 0 85 0 91 0 95 0 0
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Evaluate Proposal Risk and Negotiate

Run “what if” exercises holding one or more values constant
See effects of trade-offs betweenSee effects of trade offs between

• Schedule
• Effort
• Defects
• Staff
• Functionalityy
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Variation, Trade-offs, and PPMs – Schedule

Forecast: Schedule = 
Percentile Forecast values
0% 7.60% 7.6
10% 9.4
20% 9.7
30% 10.0
40% 10.2
50% 10 450% 10.4
60% 10.6
70% 10.8
80% 11.1
90% 11.5
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Variation, Trade-offs, and PPMs – Effort

Forecast: Effort (MM) = 
Percentile Forecast values
0% 18.9
10% 34.1
20% 37.4
30% 40.0
40% 42.3
50% 44 650% 44.6
60% 47.1
70% 49.8
80% 53.2
90% 58.4
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Variation, Trade-offs, and PPMs – Defects

Forecast: Latent Defects 
Percentile Forecast values
0% 5.630% 5.63
10% 8.64
20% 9.69
30% 10.50
40% 11.20
50% 11 9250% 11.92
60% 12.67
70% 13.51
80% 14.52
90% 15.88
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Variation, Trade-offs, and PPMs – Staff

Forecast: Staff = 
Percentile Forecast values
0% 2.5
10% 3.6
20% 3.8
30% 4.0
40% 4.2
50% 4 350% 4.3
60% 4.4
70% 4.6
80% 4.8
90% 5.1
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Proposal CAR/OID to Mitigate Risk

Seeing if there are new technologies that if employed will 
reduce risk
May build/modify PPM to evaluate impact and ROI

• May involve a brief pilot
M i l i d d• May involve industry data

• May involve professional
• Each brings their own level of uncertainty to the prediction

Typically involves detailed project planning PPMs
• Results at micro-

Extrapolate to macro• Extrapolate to macro

25
Robert Stoddard
Rusty Young
© 2008 Carnegie Mellon University



Proposal CAR/OID

New technology will increase coding productivity by 10%
• May want to verify withMay want to verify with

– pilot
– in-depth testing

• Measured resultsMeasured results
Adjust proposal model with results
Re-predict and evaluate resulting risks
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Plan Project

Like proposal
• More detailMore detail
• Interim as well as end state

Compose a PDP and construct an initial PPM to ensure it 
will meet our goals and aid us managing the projectwill meet our goals and aid us managing the project
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Initial PPM
Note: the greenish shaded cells on this and 
succeeding slides are where variations will be 
accounted for using a Monte Carlo simulation

Phase UoM Size Effort

g

Proposal/Early Planning Function Points 80 154
Elicit Requirements User Requirements 110 723
URD Review Defects 65
Analyze Requirements Requirements 176 1809
SRS Review Defects 98
D i C t 124 2236Design Components 124 2236
Design Review Defects 72
Code Components 110 2950
Code Review Defects 65
Test Test Cases 229 2633
Deliver Defects 10806
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Initial PPM Size and Effort are predicted functions:

SRSsize = ∫(URDsize, method, review type. Etc.)

Phase UoM Size Effort

size ∫( size, , yp )

Effort = ∫(Documentsize, method, experience, etc.) 

Proposal/Early Planning Function Points 80 154
Elicit Requirements User Requirements 110 723
URD Review Defects 65
Analyze Requirements Requirements 176 1809
SRS Review Defects 98
D i C t 124 2236Design Components 124 2236
Design Review Defects 72
Code Components 110 2950
Code Review Defects 65
Test Test Cases 229 2633
Deliver Defects 10806
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Initial PPM Size and Effort are predicted functions:

SRSsize = ∫(URDsize, method, review type. etc.)

Phase UoM Size Effort

size ∫( size, , yp )

Effort = ∫(Documentsize, method, experience, etc.) 

Proposal/Early Planning Function Points 80 154
Elicit Requirements User Requirements 110 723
URD Review Defects 65
Analyze Requirements Requirements 176 1809
SRS Review Defects 98
D i C t 124 2236

Effort = constant + multiplier * size(method+experience+training)

Experience = ∫(domain customer platform general)Design Components 124 2236
Design Review Defects 72
Code Components 110 2950

Experience = ∫(domain, customer, platform general)

Code Review Defects 65
Test Test Cases 229 2633
Deliver Defects 10806
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Initial PPM
Predicted Defects

URD Defects SRS Defects DES Defects Code Defects Latent Defects

223 223
89 89
85 296 38185 296 381
34 118 152
32 112 158 302
13 45 63 12113 45 63 121
12 43 60 137 252
5 17 24 55 101
1 5 7 16 30
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Initial PPM
Rework Effort

URD SRS DES Code Latent

134 134
4 44 4

153 178 330
5 6 11

174 202 95 471
6 7 3 16

198 231 108 82 620198 231 108 82 620
278 323 151 115 867
357 415 194 148 1115
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PDP Risk
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PDPPDP 
Risk
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An Alternate Example 
Process PerformanceProcess Performance 
Model (PPM) to support 
Escaped DefectEscaped Defect 
Analysis and 
Monitoring
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The Situation during Development

Defects escaping from one development phase to the next 
are very expensive to find, diagnose and fix.   Some y p , g
industrial studies suggest the increasing cost may be 
exponential.

OUR NEED:  A PPM used by the software project manager 
and quality team to analyze escaping defect rates by type to 
support more informed decisions on where to target dynamic 
project corrective action, as well as, changes to 
organizational processes!g p
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Details of the Escaping Defect PPM

The outcome, Y, is the amount of escaped defects by type 
within each phase of developmentp p

The x factors used in this model will be the various injection 
d d t ti t b t f d f t th h fand detection rates by type of defect across the phases of 

development

Not only will this model focus on phase containment of 
Req’ts, Design, and Code phases, but on the phase 

i f d f t b t ithi th diff t t fscreening of defects by type within the different types of 
testing
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Background Information on the Data

Historical data on escaped defects, by type, across lifecycle 
phases was recorded.p

For each historical project, software size was recorded, as 
ll t h l li th d f t i j t d d f dwell, to help normalize the defects injected and found, 

thereby producing injection and detection rates.
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A modern spreadsheet for escapedA modern spreadsheet for escaped 
defect analysis before being 

transformed into a CMMI Process 
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Let’s look at the 
matrix showing 

“Phase Injected” 
vs “Phase Found”
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For example, an 
average of 2000 g
design defects 

were found during 
the design activity
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Let’s look at the 
“Phase Containment” 
& “Phase Screening” 

rates
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Here, 2080 Requirements 
and Design defects were 

caught during Design 
Here, 2000 Design defects 
were caught during Design g g g

% of all defects entering and 
injected in Design caught in 

DesignDesign

% of Design defects caught 
in Design
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Let’s look at the Phase 
Injection and Escape 

rates
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Here, 4200 Design defects were injected with 
2200 of them escaping the Design activity;  

Additionally, 2450 total defects (injected 
during Design or inherited from upstream 

activities) escaped past the Design activity
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Here, 36% of all defects in a project are expected to be Design 
defects;  52% of Design defects are expected to escape past 
Design;  and 54% of all types of defects in the Design activity 
(i j t d d i D i i h it d f t ti iti )(injected during Design or inherited from upstream activities) 

are escaping past the Design activity
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Now, let’s transform 
this spreadsheetthis spreadsheet 
model into a valid 

CMMI process 
performance model!
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Each of the green 
cells have received 

uncertainty 
distributions based 
on historical data
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Each of these blue 
cells were identified as 

outcomes whoseoutcomes whose 
resulting distributions 

will be studied
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Each of these blue cells were 
identified as outcomes whoseidentified as outcomes whose 

resulting distributions will be studied
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StandardStandard 
simulation 
summary 

resultsresults
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W 95%We are 95% 
confident that no 

more than 
approx. 4,786 

Design defects 
will be injectedwill be injected 

by a project
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We are 95%We are 95% 
confident that no 
more than 39% 
of all types of 
defects will be 
Design defectsDesign defects
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We are 95% 
confident that no 
more than 2 351more than 2,351 
Design defects 
will escape the 
Design activity
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W 95%We are 95% 
confident that no 
more than 61% of 

Design defects will 
escape the Design 

activityactivity
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We are 95% 
confident that no 
more than 2,607 
defects (injected ( j
during Design or 

inherited from 
upstream activitiesupstream activities 

of Design) will 
escape the Design 

i iactivity
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We are 95% 
confident that noconfident that no 
more than 62% of 
the total defects 
(injected during 

Design or inherited 
from upstreamfrom upstream 

activities of Design) 
will escape the 
Design activityDesign activity
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W 9 % fidWe are 95% confident 
that no less than 1,499 
total defects (injected ( j

during Design or 
inherited from 

upstream activities ofupstream activities of 
Design) will be found 

during the Design 
ti itactivity
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We are 95% confident 
that no less than 38% 

of total defectsof total defects 
(injected during Design 

or inherited from 
upstream activities ofupstream activities of 
Design) will be found 

during the Design 
activity
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We are 95% confident 
that no less than 47that no less than 47 

Design defects will be 
found during the 
Design activityDesign activity
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We are 95% confident 
that no less than 39% ofthat no less than 39% of 
Design defects will be 

found during the Design 
ti itactivity
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We are 95% confident 
that no more than 46% of 
all defects will escape atall defects will escape at 

least one phase
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We are 95% confident 
that escaping defects 

will not escape, on 
average more than 1 8average, more than 1.8 

phases
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Using Sensitivity 
Analysis, we can 
learn more aboutlearn more about 
which factors in 
our model are 

t t ib timost contributing 
to our outcome.
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What Have We Accomplished?

We transformed a model that used only historical averages 
and substituted uncertainty distributions for each of the y
injection and found rates

B d i thi t bli h fid t l i b tBy doing this, we can establish confident conclusions about 
our outcomes using their resulting distributions:

• Defect Injection rates by Phasej y
• Phase Containment and Screening Effectiveness

W l d iti it l i t d id hi h f t tWe also used sensitivity analysis to decide which factors to 
tackle first to improve each outcome
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Planning the 
Requirements BuildupRequirements Buildup
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Generate Plan

Generate schedule based on higher level PPMs which help 
determine milestones and variation base slack
Generate detailed PPMs to predict performance during this 
phase

Note:  these steps will be repeated periodically (such as at 
phase or other selected milestones) and on an as neededphase or other selected milestones) and on an as needed 
basis
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Elicitation – Requirements Buildup – Predicted
120

Generalized Logistic (or Richard's)
100

120

• x = time
80

• x = time.   
• A controls the lower asymptote,   
• C controls the upper asymptote,  

M t l th ti f i

60

• M controls the time of maximum 
growth,   

• B controls the growth rate, and  
20

40

• T controls where maximum growth 
occurs - nearer the lower or upper 
asymptote 0

20

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
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Elicitation – Requirements Buildup – Predicted
120

Generalized Logistic (or Richard's)
100

120

• x = time
80 These typically would be 

functions with controllable factors • x = time.   
• A controls the lower asymptote,   
• C controls the upper asymptote,  

M t l th ti f i

60

functions with controllable factors 
such as elicitation method (JAD, 
prototyping, reengineering, etc.), 

team experience, domain 
• M controls the time of maximum 

growth,   
• B controls the growth rate, and  

20

40

p ,
experience, # staff, etc.

• T controls where maximum growth 
occurs - nearer the lower or upper 
asymptote 0

20

1 2 3 4 5 6 7 8 9 1011 121314151617 181920212223 242526
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Elicitation – Requirements Buildup – Predicted
120

Generalized Logistic (or Richard's)
100

120

• x = time
80

• x = time.   
• A controls the lower asymptote,   
• C controls the upper asymptote,  

M t l th ti f i

60

Calibration of this model for 
different domains, customers, etc. 
and the effects of the controllable 

factors is critical • M controls the time of maximum 
growth,   

• B controls the growth rate, and  
20

40
factors is critical

• T controls where maximum growth 
occurs - nearer the lower or upper 
asymptote 0

20

1 2 3 4 5 6 7 8 9 1011 121314151617 181920212223 242526
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Risk in Plan

Use PPMs to judge overall risk in the plan
May use Monte Carlo simulation in the schedule to betterMay use Monte Carlo simulation in the schedule to better 
understand

• Schedule based sources of risk
Eff f i k h h d l• Effects of risks on the schedule
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Elicitation – Requirements Buildup – Monitor
120

• Monitor the buildup
• Flattening means you are 100

120

reaching the point of diminishing 
returns for elicitation

• Significant difference between 
80

predicted and actual upper 
asymptote indicate a potential 
misunderstanding of the system 
to be built

60

to be built
• If actuals show significant 

variation from predicted, re fit 
curve for new prediction20

40

curve for new prediction
– Calculate an appropriate 

Prediction Interval (PI) to aid in 
detection of anomalous conditions 0

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
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Elicitation – Requirements Buildup – Example 1
120

100

60

80

40

60

20

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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Elicitation – Requirements Buildup – Example 2a
120

100

The Process is not 

60

80
performing at its’ historical 
Levels. Investigate and 
calibrate PPM

40

60

20

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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Elicitation – Requirements Buildup – Example 2b
140

100

120

80

100

60 The refit curve has 
extended the predicted 

20

40 buildup time by 
approximately 20% (31 
vs 25)

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Elicitation – Requirements Buildup – Notes

Requires a strong consistent requirements elicitation 
processp

• Different standard curves for different elicitation processes such as 
JAD, prototyping, etc.

• Curve shape parameters can be influenced by context -- re-Curve shape parameters can be influenced by context re
engineering vs green field, well understood vs non-well understood 
domain, experience, etc.

Consider a measurement systems error analysis – perhapsConsider a measurement systems error analysis perhaps 
using Gage R&R to ensure consistent buildup counts
Requires a good prediction of size
Can be beneficial with good size prediction and then fitting 
the curve as you gather data

• It will take time before variation in the buildup time minimizes
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Another Example 
Process PerformanceProcess Performance 
Model (PPM) in the 
Requirements PhaseRequirements Phase

© 2008 Carnegie Mellon University



The Situation in the Requirements Phase

Our products are comprised of 40-60 features

We assign each feature a small development team to 
develop the feature “cradle to grave”

These feature teams operate in overlapping lifecycles within 
an overall product incremental waterfall lifecycle model (thusan overall product incremental waterfall lifecycle model (thus, 
different features will be added in each new increment)

OUR NEED:  A PPM that will let each feature team predict 
the number of requirements defects to be experienced 
throughout the lifecycle of the feature development
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Details of the Requirements Phase PPM

The outcome, Y, is the predicted number of Requirements 
defects for a given feature teamg

The x factors used to predict the Requirements defects are:
x1:  Req’ts Volatility (continuous data)
x2:  Risk of Incomplete Req’ts (nominal data)
3 Ri k f A bi R ’t ( i l d t )x3:  Risk of Ambiguous Req’ts (nominal data)

x4:  Risk of Non-Testable Req’ts (nominal data)
x5: Risk of Late Req’ts (nominal data)x5:  Risk of Late Req ts (nominal data)
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Background Information on the Data

We collected historical data (of the Y and the x’s) for a large 
volume of feature teams

For the x2 thru x5 factors, the feature team leader would 
hi t i ll h k ff “ ” “ ” d di h thhistorically check off as “yes” or “no” depending on whether 
they felt that the specific risk significantly impacted the 
feature team cost, schedule or quality

Operational definitions and training were conducted to 
i t d t bilit th f tensure consistency and repeatability among the feature 

team leads
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Development of the Req’ts Phase PPM - 1

X1: Volatility
All of the risks are rated

The Y outcomeX1: Volatility

shown in

decimal form

either 0 or 1, with 0 being

the absence of the risk

and 1 being the presence

The Y outcome

Is the Number

Of Reqtsdecimal form and 1 being the presence

of the risk

Of Reqts

Defects
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Development of the Req’ts Phase PPM - 2
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Development of the Req’ts Phase PPM - 3

Thi ill li hThis will accomplish

Dummy Variable

Regression to handleRegression to handle

X factors that are

Continuous andContinuous and 

Discrete

87
Robert Stoddard
Rusty Young
© 2008 Carnegie Mellon University



Development of the Req’ts Phase PPM - 4

88
Robert Stoddard
Rusty Young
© 2008 Carnegie Mellon University



Development of the Req’ts Phase PPM - 5
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Development of the Req’ts Phase PPM - 6

90
Robert Stoddard
Rusty Young
© 2008 Carnegie Mellon University



Intended Use of this Req’ts PPM

Once we decide on the final form of the PPM, we will use it 
in two primary ways:p y y

1) At the beginning of each feature team kickoff, the team 
ill ti i t th l f th f t ( 1 5)will anticipate the values for the x factors (x1 … x5).  

They will evaluate the PPM at these values to predict the 
number of Req’ts defects.   If this prediction is 
unacceptable, they will take immediate action to address 
one or more of the x factors.

2) During the development, the feature team will 
periodically re-assess the anticipated values of the x 
factors and repeat the actions of step 1 above.
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Updating this Req’ts PPM

As more feature teams develop features, they will continue 
to record the data for the x factors and the resulting Y g
outcome of number of Req’ts Defects

When a group of feature teams have finished the lifecycle 
and have recorded their data, the organization may choose 
to add their data to the existing data set and then repeat the 
exercise of developing the dummy variable regression p g y g
equation.

Ultimately, the organization may want to segment the 
feature teams by type and conduct this analysis for each 
segment.
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An Example Process 
Performance ModelPerformance Model 
(PPM) during the 
Design PhaseDesign Phase
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The Situation in Design

The Design team is faced with modifying legacy software in 
addition to developing new software.p g

A major issue that can have disastrous effects on projects is 
th id f “b ittl ” f ft I t h ll ftthe idea of “brittleness” of software.   In a nutshell, software 
becomes more “brittle” over time as it is changed and 
experiences a drifting usage model.

OUR NEED:  A PPM used by each feature team during 
d i t di t h “b ittl ” ft i d b tldesign to predict how “brittle” software is, and subsequently 
to make the correct design decisions regarding degree of 
modification vs rewrite from scratch.
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Details of the Software Brittleness PPM

The outcome, Y, is the measure of software brittleness, 
measured on an arbitrary scale of 0 (low) to 100 (high), y ( ) ( g ),
which will be treated as continuous data

Th f t d i thi di ti l thThe x factors used in this prediction example are the 
following:  

• Unit path complexityp p y
• Unit data complexity
• Number of times the unit code files have been changed
• Number of unit code changes not represented in Design document• Number of unit code changes not represented in Design document 

updates

95
Robert Stoddard
Rusty Young
© 2008 Carnegie Mellon University



Background Information on the Data

We collected historical data from feature teams on their 
code units.   The data, related to the first four x factors, are , ,
maintained by the CM system using automated tools 
tracking this data each time new code file versions are 
checked in.checked in.

• Unit path complexity
• Unit data complexity

N b f ti th it d fil h b h d• Number of times the unit code files have been changed
We also have access to problem reporting and inspection 
databases which provide us with a number of issues p
reported against individual code units.  Finally, we have 
“Brittleness” values for each unit of code that were assigned 
by a different empirical exercise with domain experts.
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Development of the Brittleness PPM - 1
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Development of the Brittleness PPM - 2
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Development of the Brittleness PPM - 3
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Development of the Brittleness PPM - 4
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Development of the Brittleness PPM - 5
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Development of the Brittleness PPM - 6
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Intended Use of this Brittleness PPM - 1

Once we decide on the final form of the PPM, we will use it 
in two primary ways:p y y

1) As each feature team begins software design, the team 
will collect the x factor information for the software units 
to be worked on, and then evaluate the PPM at these 
values to predict the brittleness of the individual software 
units.   If the brittleness prediction is too high, they will p g , y
decide whether they should continue with modifying 
legacy code units or rewrite them from scratch.
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Intended Use of this Brittleness PPM - 2

Once we decide on the final form of the PPM, we will use it 
in two primary ways:p y y

2) Ideally, management would have access to this PPM 
during proposal and planning activities so that predictions of 
high vs low brittleness may appropriately influence the early 
estimates.
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Updating this Brittleness PPM

As more code units are inspected and tested with 
corresponding x factor information recorded, the 
organization will periodically add this new data to the 
original data set and re-run the regression analysis.

Over time, an analysis relating predicted brittleness of code 
units to the actual experienced ripple effects of changes to 
th d it ld b t d t ththe same code units would be warranted, to ensure the 
PPM is accurate.
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Continuing into the 
Build PhaseBuild Phase
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Updating PPM – Post Design PPM

Update PPM with actual values
Rerun predictionsRerun predictions
Reevaluate risks and take appropriate actions

• Mitigation plans
• Contingency plans
• CAR/OID actions
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Build PPM

Updates PPM with most recent actuals
Adjusts for changes inAdjusts for changes in

• Staff
• Process definitions
• PDP
• Scope/requirements/design

Produce detailed phase PPMs for detailed monitoring during oduce de a ed p ase s o de a ed o o g du g
build phase
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Monitoring the Build

Multi-mode monitoring (not just PPMs)
• SPC – Micro level performanceSPC Micro level performance
• PPM – Macro level performance
• EVMS – Cost/Schedule implications

Schedule Critical path/Dependency effects• Schedule – Critical path/Dependency effects
Each monitors different aspects of the product build (similar 
strategy/tactics can be used during any phase or for 
maintenance
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Build – Component Buildup – Predicted

Sigmoid Curve
100

120

Y L+((U L)/(1+ [ 1*(( M)/W)])

• x time 
• L = lower asymptote

80

Y = L+((U–L)/(1+exp[–1*((x–M)/W)])

• L = lower asymptote 
• U = upper asymptote 
• M =  Middle point of growth 

W idth f l b tt d

60

• W = width from leaves bottom and 
gets to top 

20

40

0

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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Build – Component Buildup – Predicted

Sigmoid Curve
100

120

Y L+((U L)/(1+ [ 1*(( M)/W)])Th t i ll ld b

• x time 
• L = lower asymptote

80

Y = L+((U–L)/(1+exp[–1*((x–M)/W)])These typically would be 
functions with controllable factors 
such as elicitation method (JAD, 
prototyping reengineering etc ) • L = lower asymptote 

• U = upper asymptote 
• M =  Middle point of growth 

W idth f l b tt d

60

prototyping, reengineering, etc.), 
team experience, domain 
experience, # staff, etc.

• W = width from leaves bottom and 
gets to top 

20

40

0

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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Build – Component Buildup – Predicted

Sigmoid Curve
100

120

Y L+((U L)/(1+ [ 1*(( M)/W)])

• x time 
• L = lower asymptote

80

Y = L+((U–L)/(1+exp[–1*((x–M)/W)])
Calibration of this model for 

different domains, customers, etc. 
and the effects of the controllable • L = lower asymptote 

• U = upper asymptote 
• M =  Middle point of growth 

W idth f l b tt d

60
factors is critical

• W = width from leaves bottom and 
gets to top 

20

40

0

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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Build – Component Buildup – Example  

120

140

Component 
buildup can be

80

100

buildup can be 
monitored  

similarly to the 
requirements

40

60

requirements 
buildup

Component Build consists of 
C t

20

40 Create
Peer Review
Unit Test

-20

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

113
Robert Stoddard
Rusty Young
© 2008 Carnegie Mellon University



Monitor Component Build – SPC

Components designed to be homogeneous or segment into 
homogeneous subsets (note, may result in an S curve for 
each sub group)each sub-group)
Stabilize the build process

• Control chart
– Size
– Complexity
– Effort
– Duration

• May also chose to stabilize
– Unit testUnit test
– Build peer review

May also perform CAR/OID activies to optimize process
M difi ti t th PPM
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Monitor Component Build – EVMS

EVMS, PPMs, and SPC are not incompatible
• Each manages different aspectsEach manages different aspects
• Although there is some overlap

Is value earned at
• End of Build
• End of Unit test
• End of Peer review
• Or a percent at each step

When using EVMS, may want to emphasize monitoring
C t i• Cost variance

• CPI
To monitor quality aspects, PPMs can supplement EVMS
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Monitor Component Build – Schedule

Don’t forget the critical path
The models and EVMS may indicate no problemThe models and EVMS may indicate no problem

• But the slippage of a single small task on the critical path can be a 
source of project trouble
Sometimes the issue will be picked up as a special cause on a• Sometimes the issue will be picked up as a special cause on a 
control chart, but the CPM implications are unseen and ignored, 
thus not detecting that the project may be in trouble
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The Model – 2 Partitions, Iterative Build

Product

Iteration 1 Iteration 2

There is support for iterative forms of de elopment s ch as

Components 1-110 Components 111-220

There is support for iterative forms of development such as 
iterative builds and agile methods

• Use sets of linked sigmoid curves
• Refactoring models

Points to the use of multiple linked models
Don’t have to stick to a single equation
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Iterative Build – Component Buildup – Example 

200

250

Iteration 2

150

200 Iteration 2

100 Iteration 1

50

-50
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An Example Process 
Performance ModelPerformance Model 
(PPM) as an input to 
System TestingSystem Testing
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The Situation in Systems Testing

The System Test team receives baselines from various 
feature teams during the series of system test baselines g y
within each of the product incremental baselines

Th S t T t t d t h th h d l thThe Systems Test team does not have the schedule nor the 
resources to conduct 100% coverage of all possible test 
cases

OUR NEED:  A PPM used by each feature team during the 
h d ff f f t b li t S t T t h b thhandoff of a feature baseline to System Test, whereby the 
feature team will predict the relative likelihood of a list of 
defect types.   This will enable prioritized, efficient testing!
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Details of the System Testing PPM

The outcome, Y, is the relative likelihood of occurrence of 
the different standard defect types (e.g. nominal categories yp ( g g
such as:  logical, data, and algorithmic)

Th f t d i thi di ti l i fThe x factor used in this prediction example is a measure of 
staff turnover of the feature development team prior to 
System Test (e.g. continuous data as a percentage)

This x factor was chosen because it historically surfaced as 
i ifi t f t i l i i t f d f t f d ia significant factor in explaining types of defects found in 

System Test.
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Background Information on the Data

We collected historical data (of the defect type and the staff 
turnover of the responsible feature team) for a large volume p ) g
of defects found in System Test

O ti l d fi iti d t i i d t d tOperational definitions and training were conducted to 
ensure consistency and repeatability of defect types found 
in System Test, as well as, the staff turnover rates for 
feature teams reaching System Test
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Development of the System Test PPM - 1
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Development of the System Test PPM - 2
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Development of the System Test PPM - 3

This will accomplish

Nominal Logistic

Regression to handle

a Y factor that is

Discrete
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Development of the System Test PPM - 4
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Development of the System Test PPM - 5
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Intended Use of this System Test PPM - 1

Once we decide on the final form of the PPM, we will use it 
in two primary ways:p y y

1) As each feature team proceeds through development, 
the team will anticipate the final staff turnover rate at the 
point of System Test based on turnover to-date, and 
then evaluate the PPM at these updated values to 
predict the likelihood of the types of defects.   If this p yp
prediction is unacceptable, they will take immediate 
action to address the staff turnover rate while still 
possiblepossible.
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Intended Use of this System Test PPM - 2

Once we decide on the final form of the PPM, we will use it 
in two primary ways:p y y

2)System Test will use the prediction to decide if the feature 
is suitable to enter System Test.   If not, the feature team 
may have to take risk reduction actions.
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Updating this System Test PPM

As more features are tested and defects are found, they will 
continue to record the type of defects found and the 
corresponding information of the staff turnover of the 
responsible feature team

Wh f d f t f S t T t h bWhen a group of defects from System Test have been 
recorded, the organization may choose to add this 
additional data to the existing data set and then repeat the 
exercise of developing the nominal logistic regression.

Ultimately, the organization may pursue inclusion of 
dditi l f t th t b li d t l i th d f tadditional x factors that are believed to explain the defect 

types surfacing in System Test.
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Tutorial Summary
W h h i l l f fWe have shown practical examples of process performance 
models used in a variety of ways across the lifecycle

Th th d d i t d t k t i d bThe methods depicted are not rocket science and may be 
performed by practitioners, without becoming statisticians

The greatest challenge in implementing process performanceThe greatest challenge in implementing process performance 
models is not the quantitative or statistical science, but 
rather…

It is the domain expertise to decide what are the business-
important outcomes worthy of prediction, and what are the 
controllable sub process factors likely to prove significant incontrollable, sub-process factors likely to prove significant in 
predicting that outcome
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