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The Rayon Tools: Visualization at the Command Line

A useful visualization must integrate cleanly into an analyst's work environment. For many network security analysts, that environment is the UNIX

command line. Rayon provides visualization that works well with the workflow model of UNIX and the shell.

Rayon is a Python library and a set of command-line tools. An analyst can use the Rayon tools in a UNIX command pipeline to visualize data after

selecting and transforming it with other UNIX utilities.
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The shell is common. UNIX is a pervasive operating system in network analysis e ayo n OO S Time versus Space
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The shell is open. An application needs to do very little to work in the shell
environment. The user can compose shell-friendly tools into scripts or command
pipelines that are much more useful than any of the tools in isolation
The shell is automatable. Users write shell scripts with the same commands they
use to manually work in the shell. They can write more advanced tools using
programming languages (e.g., Python, C), and use those tools, in turn, in other R p P S
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Case Study: Server Traffic Traffic volume 2010/03/04
The SiLK tool rwcount generates time series from netflow data. The following 65.9MB =
command extracts all traffic inbound to ports 80 and 443 (nominally, all incoming
traffic to web servers) within a time range:
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1: How much traffic is coming to web servers? rwilter \ Apphcaﬂons
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--start-date=2005/01/07:00 --end-date=2005/01/07:23 \
--proto=6 --type=in,inweb --dport=80 --pass=stdout |\
rwcount --bin-size=300 --delimited |\
rytimeseries \
--style=filled_1lines --output-path="1.pdf" \
--first-1ine-colnames --top-column="Bytes" \
--value-tick-label-format=metric --value-units=B \
--anhnotate-max \
--title="Traffic to web Servers"

2: How does inbound traffic compare with outbound?
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rwfilter \
--start-date=2005/01/07:00 --end-date=2005/01/07:23 \
--type=in,inweb --proto=6 --dport=80 --pass=stdout |\
rwcount --bin-size=300 --no-titles --delimited |\
awk -F\| '{printf("%s|%s|in\n", $1, $3)}' > 2-top.txt

rwfilter \
--start-date=2005/01/07:00 --end-date=2005/01/07:23 \
--type=out,outweb --proto=6 --sport=80 --pass=stdout |\
rwcount --bin-size=300 --no-titles --delimited |\
awk -F\| "{printf("%s|%s|out\n", $1, $3)}' > 2-btm.txt

cat *.txt | rytimeseries \
--style=filled_lines --output-path=2.pdf \
--top-filter="[2]==in" --bottom-filter="[2]==o0out" \
--top-column=1 --bottom-column=1 \
--annotate-max \
--value-tick-Tlabel-format=metric --value-units=B \
--title="Traffic to/from web Servers"

3: How do different services compare?

Server Traffic by Service
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for port in 25 80 443; do
rwfilter \
--start-date=2005/01/07:00 --end-date=2005/01/07:23 \
--proto=6 --type=in,inweb --dport=${port} --pass=stdout |\
rwcount --bin-size=300 --no-titles --delimited |\
awk -F\| "{printf(\"%s|%s|in|${portI\\n\", \$1, \$3)}1" \
> 3-top-${port}.txt

rwfilter \
--start-date=2005/01/07:00 --end-date=2005/01/07:23 \
--proto=6 --type=out,outweb --sport=${port} --pass=stdout |\
rwcount --bin-size=300 --no-titles --delimited |\
awk -F\| "{printf(\"%s|%s|out]|${portI\\n\", \$1, \$3)}1" \
> 3-btm-${port}.txt;
done
cat *.txt | rytimeseries \
--style=filled_1ines --output-path=3.pdf \
--top-filter="[2]==in" --bottom-filter="[2]==out" \
--top-column=1 --bottom-column=1 \
--value-ticks=max,smax \
--value-tick-label-format=metric --value-units=B \
--annotate-max --group-by=3 \
--show=25,80,443 --Tabels="SMTP,HTTP,HTTPS"
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Exploratory analysis. Generating visualizations at the command
line keeps all the data in one place for analysis, lets users stay in
a single workflow environment longer, and keeps the data in a
central location. Users can view the visualizations on their client
using XWindows or their web browser.

Prototyping. Users can create visualizations while developing
data analysis techniques. These visualizations may eventually
become work products, or they can be used to check the results
of the analysis for validity.

Automation. Producing reports takes up a lot of analysts' time.
Analysts can use Rayon in conjunction with publication tools
such as LaTeX or HTML to automatically generate reports,
freeing time for other uses.

Visualization/Analysis as a Service. Analysts can share their
analyses (including visualizations) on the web. Other users can
call them directly as needed, or the analyses can run at
scheduled intervals and make their results available online.
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