6/7/23, 1:40 PM CERT® Secure Coding eNewsletter - Fall 2016
SHARE:

Join Qur Email List

CERT® Secure Coding
eNewsletter

iy

'CER === Software Engineering Institute | Carnegie Mellon University

Fall Edition 2016

News

Recent and Upcoming Events
Language Standards Updates
Our People

Welcome to the Fall 2016 Edition of the CERT Secure Coding Standards
eNewsletter!

Another season has passed, and while we had a pleasant and mild start to the season, it's now
getting cold in Pittsburgh.

In this newsletter, we highlight some recent and upcoming changes to the wiki accounts and
structure, in addition to changes in the guidelines. We also highlight recent and future events
that you might be interested in. Many of these events were open to the public, so we have
linked to the materials in case you were unable to attend.

We hope you find this information useful. As we prepare to finish this year and get ready for the
next, let us know your thoughts about our work and send us any challenges you think we should
address.
Thanks,

Bob Schiela

SEI CERT Standard Publications

We have developed and published a set of errata for the SEI CERT C Coding_Standard, 2016
Edition. We will continue to publish identified errata in this location.

https://myemail.constantcontact.com/CERT--Secure-Coding-eNewsletter---Fall-2016.html?soid=1102365225130&aid=m_3ePBFrmnA 1/8

6/7/23, 1:40 PM

CERT® Secure Coding eNewsletter - Fall 2016

We expect the final version of the SEI CERT C++ Coding_Standard to be available in the next
couple of months. We plan to publish this standard as a free PDF, similar to the release of the
SEI CERT C Coding Standard, 2016 Edition.

Secure Coding Wiki Changes to Registered Accounts

There are some dormant accounts on the wiki. To more efficiently manage our site license, in
early January 2017, we will disable accounts that have not been active (i.e., at least logged in)
within the last 180 days. We will also disable accounts that were created more than 30 days
ago if the user has not yet logged into it.

We will retain user history, contributions, and comments with attribution even after the accounts
are disabled. However, users will no longer be able to log in unless they contact us to reactivate
their account.

We will continue this policy moving forward and disable accounts that haven't been used in 180
days or that were created where the user did not log into it for more than 30 days.

We will also require that all registered accounts contain a valid email addresses in the user's
profile. We will begin disabling accounts that do not have valid email addresses starting 1 July
2017 (following the initial 180 day window for inactive accounts).

Secure Coding Wiki Changes to Structure

Each language section now has a "Related Guidelines" summary page for each related coding
standard (e.g., MISRA, MITRE CWE). These pages list the relationships that exist between
CERT rules/recommendations and guidelines in external coding standards. These pages are
automatically generated from the individual rule/recommendation pages.

e C
o C++
e Java

Each language section now has a "Risk Assessments" summary page that displays all
rule/recommendation risk assessments for the language. These pages are automatically
generated from the individual rule/recommendation pages.

C

Ci
Java
Perl

We also developed guidelines for those who contribute content to the wiki, such as tool vendors
that add mappings to rules.

Recent Events

Bob Schiela and the Software Engineering Institute hosted the CERT Secure Coding
Symposium on 8 September 2016 in Washington, DC.

https://myemail.constantcontact.com/CERT--Secure-Coding-eNewsletter---Fall-2016.html?soid=1102365225130&aid=m_3ePBFrmnA

2/8

6/7/23, 1:40 PM

CERT® Secure Coding eNewsletter - Fall 2016

* Peter Fonash, DHS CS&C CTO, presented the keynote Strengthening the Cyber
Ecosystem

e Mary Ann Davidson, Oracle CSO, presented the keynote Unleashing_ Your Inner Code
Warrior

 David Svoboda gave a 90-minute presentation entitled Common Exploits and How fo
Prevent Them

David Svoboda alsogave the following presentations at JavaOne 2016 in September:

 Exploiting Java Serialization for Fun and Profit
e The Java Security Architecture: How and Why
* Inside the CERT Oracle Secure Coding_Standard for Java

CERT, the Software Engineering Institute, and Carnegie Mellon University hosted the |SO/IEC
WG14/PL22.11 C Standard meeting in Pittsburgh on 17-21 October 2016. Several members of
our team participated, including Dan Plakosh, Aaron Ballman, and David Svoboda.

Team members made the following presentations at the SEI 2016 Research Review, which took
place at the SEl in Pittsburgh on 25-26 October 2016. Links to the Secure Coding topics appear
below; you can see a list of all presentations from the Research Review in the SEI's digital
library.

» Experiences Developing_an IBM Watson Cognitive Processing Application by Mark
Sherman

e Prioritizing Alerts from Static Analysis with Classification Models by Lori Flynn

» Automated Code Repair by Will Klieber

e Establishing Coding Requirements for Non-Safety-Critical C++ Systems by David
Svoboda

Lori Flynn chaired the SPLASH co-hosted workshop, Mobile! 2016, which took place on 31
October 2016 in Amsterdam, The Netherlands.

The following papers and tutorials were presented at the |EEE CyberSecurity Development
(SecDev)_Conference, 3-4 November 2016:

e Static Analysis Alert Audits: Lexicon & Rules by David Svoboda, Lori Flynn, and Will
Snavely

e Automated Code Repair Based on Inferred Specifications by William Klieber

e Tutorial: Beyond errno: Error Handling in C by David Svoboda

Mark Sherman presented Experiences Developing an IBM Watson Cognitive Processing
Application to Support Q&A of Application Security (Software Assurance) Diagnostics (co-
authored with Lori Flynn and Chris Alberts) at the AAAI 2016 Fall Symposium on 18 November
2016.

Upcoming Events

Bob Schiela will present at the Software Assurance Community of Practice (SwA CoP) meeting
in early December.

We plan to release the SEI CERT C++ Coding Standard in the next couple of months. Watch for
our notices.

https://myemail.constantcontact.com/CERT--Secure-Coding-eNewsletter---Fall-2016.html?soid=1102365225130&aid=m_3ePBFrmnA

3/8

6/7/23, 1:40 PM

CERT® Secure Coding eNewsletter - Fall 2016

David Svoboda will give a Secure Coding Tutorial at the Software Solutions Symposium 2017,
in Arlington, VA on March 2017, where other software engineering and security presentations
and hands-on tutorials will be given. Topics include machine learning and software engineering,
security engineering risk analysis, requirements elicitation, and software supply chain risk
management. Registration is now open.

SEI CERT Secure Coding Standard Updates

CERT C Coding Standard

Editors: Aaron Ballman, SEI/CERT

David Svoboda, SEI/CERT

Download the latest stable version.

No C rules were added or removed.

Changed

F1021-C. Do not create temporary files in shared directories

First, the severity is now Medium, as there seems to be no way to achieve privilege
escalation or remote code execution through misuse of temporary files. Second,

the tmpfile () entry now indicates that this system call can create files with reduced
permissions, as indicated by POSIX.1-2008.

FLP30-C. Do not use floating-point variables as loop counters

Clarified the meaning of "loop counter"; corrected typo with a floating-point literal last
compliant solution.

DCL38-C. Use the correct syntax when declaring_a flexible array member

Discussed a compiler extension as though it were a standard feature; removed mention
of the compiler extension.

STR34-C. Cast characters to unsigned char before converting to larger integer sizes
Corrected an off-by-one error with the size of the array declared for the second
noncompliant & compliant code pair.

F1041-C. Do not call getc(),_putc(),.getwc(), or putwc() with a stream argument that has
side effects

Corrected a typo with a noncompliant code example where the code was missing a
closing parenthesis.

F1045-C. Avoid TOCTOU race conditions while accessing files

Corrected a typo in a compliant solution where a semicolon was missing.

The "Expanding Buffer" solution in FI020-C. Avoid unintentional truncation when using

Second, it avoids subtracting two null pointers. Finally, it uses strcpy () rather
than stract () which would have undefined behavior when trying to concatenate to the
initial buffer, as it is uninitialized.

New Clang Checkers

e MSC30-C. Do not use the rand()_function for generating pseudorandom numbers

https://myemail.constantcontact.com/CERT--Secure-Coding-eNewsletter---Fall-2016.html?soid=1102365225130&aid=m_3ePBFrmnA

4/8

6/7/23, 1:40 PM CERT® Secure Coding eNewsletter - Fall 2016

CERT C++ Secure Coding Standard

Editors: Aaron Ballman, SEI/CERT
David Svoboda, SEI/CERT

No C++ rules were added.

Changed

Due to the upcoming initial publication of the SEI CERT C++ Coding Standard 2017 Edition,
several rules were renumbered to remove gaps in the rule titles for a chapter.

e INT50-CPP. Do not cast to an out-of-range enumeration value
Reworded the first compliant solution to more clearly express the difference between it
and the noncompliant code example. Also, clarified the risk assessment section.

e STR51-CPP. Do not attempt to create a std::string from a null pointer
Clarified the title, performed minor wordsmithing on normative rule text. Was previously
called STR51-CPP. Do not pass a null pointer to char_traits::length().

e EXP51-CPP. Do not delete an array through a pointer of the incorrect type
Fixed the Risk Assessment section, removed superfluous code from the noncompliant
code example/CS pair.

e EXP52-CPP. Do not rely on side effects in unevaluated operands
Called out the fact that the first exception to this rule still requires the programmer to
comply with PRE31-C. Avoid side effects in arguments to unsafe macros.

e EXP50-CPP. Do not depend on the order of evaluation for side effects
Added an additional noncompliant & compliant code pair demonstrating the order of
evaluation for overloaded operators.

e ERR58-CPP. Handle all exceptions thrown before main()_begins executing
Clarified the intent of the rule to cover exceptions being thrown that cannot be caught
by main (). Now allowing static or thread-local objects to be declared at function block
scope, since exceptions thrown from constructors of such objects can still be caught.
Added a new noncompliant code example/CS pair, and a new CS to an existing
noncompliant code example/CS pair. Changed the title of the rule; was previously
called ERR58-CPP. Constructors of objects with static or thread storage duration must
not throw exceptions.

o EXPS57-CPP. Do not cast or delete pointers to incomplete classes
Used dynamic_cast inthe last CS, rather than static_cast.

e EXP60-CPP. Do not pass a nonstandard-layout type object across execution boundaries
Clarified some explanatory text, and removed an incorrect noncompliant & compliant
code pair that was better expressed in another rule.

e EXP62-CPP. Do not access the bits of an object representation that are not part of the
object's value representation
Added a noncompliant & code pair that used to live in EXP60-CPP. Do not pass a
nonstandard-layout type object across execution boundaries. Also, clarified the wording
of the exception to better define what access means and fixed a mistake in the
introductory text regarding object representations.

e QOQOP57-CPP. Prefer special member functions and overloaded operators to C Standard
Library functions
Clarified a code example and added a cross reference.

https://myemail.constantcontact.com/CERT--Secure-Coding-eNewsletter---Fall-2016.html?soid=1102365225130&aid=m_3ePBFrmnA 5/8

6/7/23, 1:40 PM

CERT® Secure Coding eNewsletter - Fall 2016

MEM51-CPP. Properly deallocate dynamically allocated resources

Added entries to the table of paired allocation & deallocation functions for class-specific
overloads of operator newand operator delete (and the array forms).
F1051-CPP. Close files when they are no longer needed

Added a new compliant solution, and called out the code example's relationship

to ERR50-CPP. Do not abruptly terminate the program.

ERR50-CPP. Do not abruptly terminate the program

Added std: :quick_exit() to the list of function calls to avoid. Also, changed a
bulleted list into a numbered list and clarified that calling std: : exit () is acceptable.
ERR56-CPP. Guarantee exception safety

The compliant solution now copies the correct number of elements from the source
object.

O0P52-CPP. Do not delete a polymorphic object without a virtual destructor

Changed the title to say "delete" rather than "destroy" and added another noncompliant
code example showing that smart pointers also suffer from the same problem.
CONb54-CPP. Wrap functions that can spuriously wake up in a loop

Corrected the predicate logic in the noncompliant code example/CS pair.

DCL58-CPP. Do not modify the standard namespaces

Moved from the MSC section to the DCL section; was previously called MSC53-CPP. Do
not modify the standard namespaces. Added another compliant solution which
demonstrates one situation where you are allowed to modify the standard namespace.
OOP54-CPP. Gracefully handle self-copy assignment

Removed mention about self-move assignment, making the rule only address self-copy
assignment. There are questions as to whether self-move assignment truly leads to
security or correctness concerns, especially given that the STL does not prohibit the
behavior.

O0P58-CPP. Copy_operations must not mutate the source object

Changed the title to more clearly state the intent of the rule; was previously

called OOP58-CPP. Copy operations must mutate only the destination of the copy.
CON51-CPP. Ensure actively held locks are released on exceptional conditions

Added explanatory text describing some of the differences between the various locking
helper classes.

DCL60-CPP. Obey the one-definition rule

Moved from the MSC section to the DCL section; was previously called MSC52-CPP.
Obey the One-Definition Rule.

ERRS3-CPP. Do not reference base classes or class data members in a constructor or
destructor function-try-block handler

Removed the noncompliant & compliant code pair showing a function-try-block in the
destructor; the noncompliant code example was far-fetched, and the lack of a conforming
compliant solution made the exposition unenlightening.

MSC54-CPP. A signal handler must be a plain old function

Updated the last compliant solution to demonstrate a reasonable way to improve the
noncompliant code example.

ERRS57-CPP. Do not leak resources when handling_exceptions

Corrected the exception handler comments in the first set of noncompliant & compliant
code pairs..

CTR55-CPP. Do not use an additive operator on an iterator if the result would overflow
Removed a faulty noncompliant & compliant code pair.

Removed

e EXP56-CPP. Do not cast pointers into more strictly aligned pointer types

This rule was already covered by EXP36-C. Do not cast pointers into more strictly
aligned pointer types.

https://myemail.constantcontact.com/CERT--Secure-Coding-eNewsletter---Fall-2016.html?soid=1102365225130&aid=m_3ePBFrmnA

6/8

6/7/23, 1:40 PM

CERT® Secure Coding eNewsletter - Fall 2016

New Clang Checkers

MSC50-CPP. Do not use std::rand()_for generating_pseudorandom numbers

CERT Oracle Secure Coding Standard for Java

Editor: David Svoboda, SEI/CERT

Download the latest stable version.

No Java rules were added or removed.

Changed

NUMO09-J. Do not use floating-point variables as loop counters

Clarified the meaning of "loop counter"

OBJ11-J. Be wary of letting_constructors throw exceptions

Corrected "Related Vulnerabilities" reference from CVE-2008-5339 to CVE-2008-5353.
SER12-J. Prevent deserialization of untrusted data

Now forbids untrusted data (as opposed to untrusted classes).

SER02-J. Sign then seal objects before sending them outside a trust boundary,

Now mandates signing & sealing for all objects (it used to only apply to sensitive objects).
SER13-J has been demoted to a recommendation; it is now:

SEC58-J. Deserialization methods should not perform potentially dangerous operations
This guideline no longer mentions whitelisting (which is addressed in SER12-J. Prevent
deserialization of untrusted data). Therefore its whitelisting compliant solution has been
replaced with a compliant solution which always throws an exception on deserialization,
rather than perform a dangerous operation.

ERRO03-J. Restore prior object state on method failure

The code examples have improved comments to explain the math behind the behavior of
the noncompliant code example.

MSC59-J. Limit the lifetime of sensitive data

Now has a bugfix in its last compliant solution: The buffer is explicitly zeroed out with an
additional put () operation, as buffer.clear() does not erase any sensitive
information in the buffer.

CERT Secure Coding Standard for Android

Editor: Lori Flynn, SEI/CERT

No Android rules were added, removed, deprecated, or substantively changed.

CERT Perl Secure Coding Standard

Editor: David Svoboda, SEI/CERT

No Perl rules were added, removed, deprecated, or substantively changed.

Our People

https://myemail.constantcontact.com/CERT--Secure-Coding-eNewsletter---Fall-2016.html?soid=1102365225130&aid=m_3ePBFrmnA

7/8

6/7/23, 1:40 PM CERT® Secure Coding eNewsletter - Fall 2016

In the enewsletter, we highlight the staff members behind our secure coding research. In this
issue we feature Dr. Lori Flynn.

Dr. Lori Flynn is a software security researcher at the CERT Division
of Carnegie Mellon University's Software Engineering Institute. Her
research focuses on automating analysis of software for security. Prior
to joining the SEI, she co-invented a patented static analysis method to
create signatures for polymorphic viruses. Flynn is part of the CERT
team that developed DidFail, the first static taint flow analyzer for
Android app sets, and she is currently working on a research project
that will increase its precision while retaining its speed. She also leads
a research project working to accurately and automatically classify and
prioritize alerts from code analysis tools.

Join the SEI CERT Secure Coding Community

m

https://myemail.constantcontact.com/CERT--Secure-Coding-eNewsletter---Fall-2016.html?soid=1102365225130&aid=m_3ePBFrmnA

8/8

