6/7/23, 3:30 PM CERT€ Secure Coding eNewsletter (October / November)

L

October / November 2014

News

Language Standards Updates
Upcoming Events and Training
Our People

Secure Coding_Resources

News

In case you missed it, the Java Coding Guidelines are now available free online. We are making
some efforts to better allocate guidelines between The CERT Oracle Secure Coding Standard
for Java and the Java Coding Guidelines. We are hoping to update both The CERT Oracle
Secure Coding Standard for Java and the Java Coding Guidelines to Java Standard Edition
(SE) 8 and we encourage the community to participate in this project.

Major development work continues on the CERT C++ Secure Coding Standard, which has a

archive.constantcontact.com/fs192/1102365225130/archive/1119128284698.html 1/7



6/7/23, 3:30 PM CERT®@ Secure Coding eNewsletter (October / November)

long list of added, changed, and removed rules in this newsletter. Because of the close
relationship between C and C++, we have also made some changes to The CERT C Secure
Coding Standard, including adding a new floating point rule.

_ The CERT Division has produced a set of SCALe
B Demonstration Videos narrated by David Svoboda.
These videos illustrate the process of auditing a

small C codebase using our Source Code Analysis
Laboratory (SCALe)..

P @] LA

Source Code Analysis Laboratory (SCALe) Demo

We continue to improve DidFail, our static taint flow analyzer for Android app sets. Instructions
for installing the latest version of DidFail are here, and more work is in progress to further
improve its soundness and precision.

How are you using the CERT Secure Coding Standards?

As a reader of this eNewsletter, we want to hear from you. Submit your comments

e and let us know how you are using CERT Secure Coding Standards.

Language Standards Updates

CERT C Coding Standard
Editors: Martin Sebor (Cisco Systems, Inc.) and Aaron Ballman (SEI/CERT)

Added

» FLP37-C. Do not use object representations to compare floating-point values

Changed

e INT30-C. Ensure that unsigned integer operations do not wrap includes a brief
description of CVE-2014-4377.

e MSC12-C. Detect and remove code that has no effect or is never executed has been
merged with MSCO7-C. Detect and remove dead code.

Depreciated

e MSCO07-C. Detect and remove dead code
e STR08-C. Use managed strings for development of new string manipulation code

CERT C++ Secure Coding Standard

archive.constantcontact.com/fs192/1102365225130/archive/1119128284698.html 2/7



6/7/23, 3:30 PM

CERT€ Secure Coding eNewsletter (October / November)

Editors: Martin Sebor (Cisco Systems, Inc.) and Aaron Ballman (SEI/CERT)

The C++ Secure Coding Standard has been substantially restructured. Recommendations and
Rules have been split into their own parent sections, which are now linked to from the main C++
page. Additionally, the Rules Versus Recommendations page has been updated to better align
with the C page of the same title.

Added

STR36-CPP. Do not pass a null pointer to char traits::length
EXP31-CPP. Do not delete an array through a pointer of the incorrect type

Changed

OOP38-CPP. Gracefully handle self-assignment

Updated the compliant solution to provide a basic exception guarantee; updated
surrounding text to call this out explicitly.

F1018-CPP. Never expect write()_to terminate the writing_process at a null character
Fixed a small think-o in the compliant solution.

STR35-CPP. Guarantee that storage for strings has sufficient space for character data
and the null terminator

Significant updates to the content; was previously called STR35-CPP. Do not copy data
from an unbounded source to a fixed-length array.

STR38-CPP. Use valid references, pointers, and iterators to reference elements of a
basic_string

Significant updates to the content; was previously called STR38-CPP. Use valid
references, pointers, and iterators to reference string objects.

STR39-CPP. Range check element access

Significant updates to the content.

CTR32-CPP. Use valid references, pointers, and iterators to reference elements of a
container

Significant updates to the content; was previously called CTR32-CPP. Do not use
iterators invalidated by container modification.

CTR30-CPP. Guarantee that container indices and iterators are within the valid range
Significant updates to the content; was previously called CTR30-CPP. Guarantee that
array and vector indices are within the valid range.

CTR33-CPP. Guarantee that library functions do not form invalid iterators

Significant updates to the content; was previously called CTR33-CPP. Guarantee that
copies are made into storage of sufficient size.

CTR39-CPP. Do not use pointer arithmetic on polymorphic objects

Significant updates to the content; was previously called CTR39-CPP. Do not treat arrays
polymorphically.

CTR40-CPP. Provide a valid ordering predicate

Significant updates to the content; was previously called CTR40-CPP. Use a valid
ordering rule.

CTR34-CPP. Use valid iterator ranges

Significant updates to the content; merged in content from CTR43-CPP.

CTR38-CPP. Do not use an additive operator on an iterator if the result would overflow
Significant updates to the content; was previously called CTR38-CPP. Do not add or
subtract an integer to a pointer or iterator if the resulting value does not refer to a valid
element in the array or container.

DCL38-CPP. Do not recursively reenter a function during the initialization of one of its
static objects

Minor modifications to normative wording, completely new NCCE/CS pair.

archive.constantcontact.com/fs192/1102365225130/archive/1119128284698.html 3/7



6/7/23, 3:30 PM

CERT€ Secure Coding eNewsletter (October / November)

EXP39-CPP. Do not cast or delete pointers to incomplete classes

Significant updates to the content.

EXP36-CPP. Do not cast pointers into more strictly aligned pointer types

Significant updates to the content; was previously called EXP36-CPP. Do not convert
pointers into more strictly aligned pointer types.

EXP35-CPP. Do not access a cv-qualified object through a cv-unqualified type
Significant updates to the content; was previously called EXP35-CPP. Do not cast away a
const qualification.

MEM45-CPP. Provide placement new with properly aligned pointers to sufficient storage
capacity

Significant updates to the content; was previously called MEM45-CPP. Provide properly
aligned pointers to placement new.

OOP37-CPP. Write constructor member initializers in the canonical order

Significant updates to the content; was previously called OOP37-CPP. Constructor
initializers should be ordered correctly.

OQP08-CPP. Do not return references to private data

Downgraded to recommendation; was previously called OOP35-CPP. Do not return
references to private data.

O0P34-CPP. Do not delete a polymorphic object without a virtual destructor

Significant updates to the content; was previously called OOP34-CPP. Ensure the proper
destructor is called for polymorphic objects.

OQP33-CPP. Do not slice derived objects

Significant updates to the content; was previously called OOP33-CPP. Do not slice
polymorphic objects.

OO0P09-CPP. Ensure that single-argument constructors are marked "explicit"
Downgraded to recommendation; was previously called OOP32-CPP. Ensure that single-
argument constructors are marked "explicit."

DCL34-CPP. Do not write syntactically ambiguous declarations

Significant updates to the content; was previously called OOP31-CPP. Ensure object
construction invocations isn't mistaken for a function variable declaration.

MSC34-CPP. Do not modify the standard namespaces

Significant updates to the content; was previously called MSC34-CPP. Do not modify the
standard namespace.

CTR36-CPP. Do not subtract or compare two pointers or iterators that do not refer to the
same array_or container

Fixed a minor typo.

F1045-CPP. Do not rely on an ending_null character when using_read(),

Fixed a minor typo.

ERR34-CPP. Do not use setjmp()_or longjmp()

Significant updates to the content; was previously called ERR34-CPP. Do not use
longjmp.

ERR35-CPP. Do not reference base classes or class data members in a constructor or
destructor function-try-block handler

Significant updates to the content; was previously called ERR35-CPP. A handler in a
constructor or destructor's function-try-block should not reference class data.
CTR04-CPP. Assume responsibility for cleaning up data referenced by a container of
pointers

Fixed the code examples to be vaguely more C++-like; removed a compliant solution that
did not address the guideline.

ERR36-CPP. Catch handlers should order their parameter types from most derived to
least derived

Updates to the content; was previously called ERR36-CPP. Multiple catch handlers to a
try block should order their exceptions from most derived to most basic

archive.constantcontact.com/fs192/1102365225130/archive/1119128284698.html

417



6/7/23, 3:30 PM

CERT€ Secure Coding eNewsletter (October / November)

DCL31-CPP. Do not define a C-style variafic function
Significant updates to the content; was previously called DCL31-CPP. Do not define
variadic functions

Removed

CTR37-CPP. Do not add or subtract an integer to a pointer to a non-array object

This rule was covered entirely by the C rule ARR37-C. Do not add or subtract an integer
to a pointer to a non-array object.

CTR42-CPP. Never modify a set or multiset key in-place

This rule was not required because it is not an issue for compilers conforming to
C++2003 or later.

CTR41-CPP. A container's allocator should never have a data field that is not static
Whereas C++03 and earlier prohibited stateful allocators, C++11 and later allow for them.
CTR43-CPP. Do not access collapsed elements from a remove(), remove_if() or unique()
operation

This rule was merged into CTR34-CPP. Use valid iterator ranges

CTR35-CPP. Do not allow loops to iterate beyond the end of an array or container

This rule is covered by CTR30-CPP. Guarantee that container indices and iterators are
within the valid range and CTR34-CPP. Use valid iterator ranges.

EXP32-CPP. Do not access a volatile object through a non-volatile reference

This rule is entirely covered by the C rule EXP32-C. Do not access a volatile object
through a nonvolatile reference, and the C++ rule EXP35-CPP. Do not access a cv-
qualified object through a cv-unqualified type.

PRE30-CPP. Do not create a universal character name through concatenation

This rule is entirely covered by the C rule PRE30-C. Do not create a universal character
name through concatenation.

MSC35-CPP. Do not use goto statement to take control inside the try and catch blocks
This rule was not required because it is not an issue for conforming compilers.
FLP35-CPP. Take granularity into account when comparing floating point values

This rule is entirely covered by the C recommendation FLP00-C. Understand the
limitations of floating-point numbers.

ERR31-CPP. Don't redefine ermo

This rule is entirely covered by the C rules DCL37-C. Do not declare or define a reserved
identifier and MSC38-C. Do not treat a predefined identifier as an object if it might only be
implemented as a macro.

PRE10-CPP. Wrap multistatement macros in a do-while loop

This rule is entirely covered by the C recommendation PRE10-C. Wrap multistatement
macros in a do-while loop.

CERT Oracle Secure Coding Standard for Java
Editors: Adam O'Brien (Oracle) and David Svoboda (SEI/CERT)

The Java Coding_Guidelines are now publicly available.

Added

Stubs were added for the following rules:

(b).[relying_party the access token was granted to]

archive.constantcontact.com/fs192/1102365225130/archive/1119128284698.html

5/7



6/7/23, 3:30 PM CERT®@ Secure Coding eNewsletter (October / November)

e MSC10-J. Do not use OAuth 2.0 implicit grant (unmodified) for authentication
Changed

e DCL02-J. Do not modify the collection's elements during an enhanced for statement has
been slightly restricted. It no longer requires explicitly declaring such variables final as
long as they are not changed. The code examples have also been revamped.

e EXPO1-J. Never dereference null pointers now has a compliant solution illustrating Java
8's new Optional<> class.

e |DS01-J. Normalize strings before validating them has a revamped intro, to make the
guideline clearer.

 |DS00-J used to cover all cases of unsanitized input crossing a trust boundary. This rule
has been replaced with rules decrying more specific vulnerable practices:

o |DS00-J. Prevent SQL Injection
o |DS16-J. Prevent XML Injection
o |DS17-J. Prevent XML External Entity Attacks

e |DS02-J. Canonicalize path names before validating them has been moved to FIO16-J.
Canonicalize path names before validating them.

e The compliant solution in IDS04-J. Safely extract files from ZiplnputStream now handles
subdirectories in zip files.

* |DS05-J. Use a safe subset of ASCII for file and path names has been moved to the Java
Guidelines because its warnings are covered by several other rules.

Deprecation Candidates

e EXP05-J. Do not follow a write by a subsequent write or read of the same object within
an expression

Removed

* |DS05-J. Use a safe subset of ASCII for file and path names is being moved to a FIO
guideline

CERT Secure Coding Standard for Android
Editors: Fred Long, (Aberystwyth University) and Lori Flynn (SEI/CERT)

Added

Stubs were added for the following rules

e DRD24-J. Do not bundle OAuth security-related protocol logic or sensitive data into a
relying_party’s app

e DRD25-J. To request user permission for OAuth, identify relying_party and its permissions
scope

e DRD26-J. For OAuth, use a secure Android method to deliver access tokens

CERT Perl Secure Coding Standard
Editor: David Svoboda (SEI/CERT)

No Perl rules were added, removed, deprecated, or substantively changed.

archive.constantcontact.com/fs192/1102365225130/archive/1119128284698.html 6/7



6/7/23, 3:30 PM CERT®@ Secure Coding eNewsletter (October / November)

Upcoming Events and Training

Presentation
David Svoboda will present "Another Java 0-Day Exploit" to the Steel City Information Security

group, on November 13, 2014.

Our People

In the eNewsletter, we highlight staff members behind our secure coding research. This month
we feature Fred Long.

Fred Long is a senior lecturer and director of learning and teaching in the
Department of Computer Science, Aberystwyth University, United Kingdom.
He lectures on formal methods; Java, C++, and C programming paradigms
and programming-related security issues. He is chairman of the British
Computer Society's Mid-Wales Sub-Branch. Fred has been a Visiting Scientist
at the Software Engineering Institute since 1992. Recently, his research has
involved the investigation of vulnerabilities in Java.

L

Secure Coding Resources

Read the blog post Thread Safety Analysis in C and C++

e by Aaron Ballman

= Read the book Java Coding Guidelines
- by the CERT Secure Coding Team

L

Watch the SEI Panel Discussion - Heartbleed: Analysis, Thoughts, and Actions

Join the SEI CERT Secure Coding Community

L L

@ Constant
Contact

archive.constantcontact.com/fs192/1102365225130/archive/1119128284698.html 717



