
August / September 2014

News
Language Standards Updates
Upcoming Events and Training
Our People
Secure Coding Resources

News 

Robert Seacord is presenting at the TB3335-Why are we still not programming securely? at the
HP Protect 2014 conference that will be held September 8-11 at the Washington Hilton
in Washington, D.C. Good seats are still available.

Aaron Ballman has begun his update to the CERT C++ Secure Coding Standard, which is being
formulated on the C++ Coding Standard Development Guidelines page. Please feel free to join

CERT� Secure Coding eNewsletter (August / September) http://archive.constantcontact.com/fs192/1102365225130/archive/1118...

1 of 9 6/7/2023, 3:33 PM



the discussion as we plan this major update.

Automated detection mappings have been updated, or are underway, for several analyzers,
including PRQA QA-C, Coverity Prevent, GrammaTech CodeSonar, and SonarQube Plugin.

The SEI report titled Performance of Compiler-Assisted Memory Safety Checking, authored by
David Keaton and Robert Seacord, has been published on the SEI website. This technical note
describes the criteria for deploying a compiler-based memory safety checking tool and the
performance that can be achieved with two such tools whose source code is freely available.

David Svoboda and Robert Seacord will be presenting Inside the CERT Oracle Secure Coding
Standard for Java [CON2368] at JavaOne 2014. David Svoboda and Yozo Toda, lead analyst at
the JPCERT Coordination Center, will be presenting Anatomy of Another Java Zero-Day Exploit
[CON2120].

We continue to perform Source Code Analysis Laboratory (SCALe) assessments, which has led
to a smattering of improvements to The CERT Oracle Secure Coding Standard for Java as we
evolve rules to be clearer and more precise and to simplify conformance.

How are you using the CERT Secure Coding Standards?

As a reader of this eNewsletter, we want to hear from you. Submit your comments
about how you are using CERT Secure Coding Standards. 

Language Standards Updates

CERT C Coding Standard
Editors: Martin Sebor (Cisco Systems, Inc.), Aaron Ballman (SEI/CERT)

Added

EXP46-C. Do not use a bitwise operator with a Boolean-like operand Was previously
EXP17-C. Do not use a bitwise operator in place of logical operator, or vice versa;
updated normative text.

Changed

INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data
Clarified that this rule also applies to library functions that perform the conversions "out-
of-sight."
INT34-C. Do not shift an expression by a negative number of bits or by greater than or
equal to the number of bits that exist in the operand
Updated the implementation details section to be right-shift-specific.

Removed

CERT� Secure Coding eNewsletter (August / September) http://archive.constantcontact.com/fs192/1102365225130/archive/1118...

2 of 9 6/7/2023, 3:33 PM



EXP17-C. Do not use a bitwise operator in place of logical operator, or vice versa

CERT C++ Secure Coding Standard
Editors: Martin Sebor (Cisco Systems, Inc.), Aaron Ballman (SEI/CERT)

Added

EXP40-CPP. Do not pass a reference or nontrivially-copyable type to va_start
MSC36-CPP. Value-returning functions must return a value from all exit paths
MSC37-CPP. Do not return from a function declared [[noreturn]]
DCL39-CPP. Functions declared with [[noreturn]] must return void
Relation to the CERT C Coding Standard
Added a child page to describe how the CERT C++ Secure Coding Standard relates to
the CERT C Coding Standard.

Changed

The "Arrays and the STL" section has been renamed to "Containers"-, and its designation
has changed from ARR to CTR. All guideline titles in this section have been updated
to reflect these changes.
DCL33-CPP. Never qualify a reference type with const or volatile
Considerable edits to content, including title change.
DCL37-CPP. Overloaded postfix increment and decrement operators should return a
const object
Considerable edits to content, including title change.
ERR37-CPP. Honor exception specifications
Considerable edits to content to update it for noexcept specifications; title change.
STR08-CPP. Do not specify the bound of a character array initialized with a string literal
Was previously STR36-CPP. Do not specify the bound of a character array initialized with
a string literal; this guideline was downgraded from a rule to a recommendation and
matches the severity of the analogous C guideline.
FIO19-CPP. Do not create temporary files in shared directories
Was previously FIO43-CPP. Do not create temporary files in shared directories; this
guideline was downgraded from a rule to a recommendation and matches the severity of
the analogous C guideline.
INT18-CPP. Evaluate integer expressions in a larger size before comparing or assigning
to that size
Was previously INT35-CPP. Evaluate integer expressions in a larger size before
comparing or assigning to that size; this guideline was downgraded from a rule to a
recommendation and matches the severity of the analogous C guideline.
FLP05-CPP. Convert integers to floating point for floating point operations
Was previously FLP33-CPP. Convert integers to floating point for floating point
operations; this guideline was downgraded from a rule to a recommendation and
matches the severity of the analogous C guideline.
DCL20-CPP. Use volatile for data that cannot be cached

CERT� Secure Coding eNewsletter (August / September) http://archive.constantcontact.com/fs192/1102365225130/archive/1118...

3 of 9 6/7/2023, 3:33 PM



Was previously DCL34-CPP. Use volatile for data that cannot be cached; this guideline
was downgraded from a rule to a recommendation and matches the severity of the
analogous C guideline.
INT30-CPP. Do not cast to an out-of-range enumeration value
Considerable edits to content, including title change.
CTR32-CPP. Do not use iterators invalidated by container modification and MEM30-CPP.
Do not access freed memory
Received NCCE/CS pairs from STR33-CC. Do not access invalid output of c_str() or
data().
MEM32-CPP. Detect and handle memory allocation errors
Considerable edits to the content; added and extended examples from MEM36-CPP.
MEM34-CPP. Only free memory allocated dynamically
Considerable edits to the content. Received NCCE/CS pair and text from MEM31-CPP.
Free dynamically allocated memory exactly once.
MEM30-CPP. Do not access freed memory
Considerable edits to the content. 
OOP38-CPP. Gracefully handle self-assignment
Considerable edits to the content, including a title change. Was previously MEM42-CPP.
Ensure that copy assignment operators do not damage an object that is copied to itself.
ERR40-CPP. Do not leak resources when handling exceptions
Considerable edits to content. It received the content of MEM33-CPP. Ensure that
aborted constructors do not leak, and was moved from the MEM section into the ERR
section. Was previously MEM44-CPP. Do not leak resources when handling exceptions.

Removed

DCL39-CPP. Non-const references should only be initialized with lvalues
This rule affects only C++03 and earlier and is ill-formed code in C++11 and later.
FLP31-CPP. Do not call functions expecting real values with complex values
This rule applies only to ill-formed C++ code.
STR33-CPP. Do not access invalid output of c_str() or data()
This rule affects only C++03 or is covered by CTR32-CPP. Do not use iterators
invalidated by container modification and MEM30-CPP. Do not access freed memory.
MEM36-CPP. Never allocate more than one resource in a single statement
This rule was subsumed by MEM32-CPP. Detect and handle memory allocation errors
MEM33-CPP. Ensure that aborted constructors do not leak
This rule was subsumed by ERR40-CPP. Do not leak resources when handling
exceptions
MEM31-CPP. Free dynamically allocated memory exactly once
This rule was subsumed by MEM34-CPP. Only free memory allocated dynamically

The following rules were removed as being covered by the CERT C Coding Standard: 

PRE31-CPP. Avoid side-effects in arguments to unsafe macros
EXP31-CPP. Avoid side-effects in assertions
EXP34-CPP. Ensure a null pointer is not dereferenced

CERT� Secure Coding eNewsletter (August / September) http://archive.constantcontact.com/fs192/1102365225130/archive/1118...

4 of 9 6/7/2023, 3:33 PM



EXP37-CPP. Call variadic functions with the arguments intended by the API
EXP38-CPP. Do not modify constant values
ARR31-CPP. Use consistent array notation across all source files
STR30-CPP. Do not attempt to modify string literals
STR31-CPP. Guarantee that storage for character arrays has sufficient space for
character data and the null terminator
STR32-CPP. Null-terminate character arrays as required
STR34-CPP. Cast characters to unsigned types before converting to larger integer sizes
STR37-CPP. Arguments to character handling functions must be representable as an
unsigned char
MEM35-CPP. Allocate sufficient memory for an object
FIO32-CPP. Do not perform operations on devices that are only appropriate for files
FIO33-CPP. Detect and handle input output errors resulting in undefined behavior
FIO38-CPP. Do not use a copy of a FILE object for input and output
FIO34-CPP. Use int to capture the return value of character IO functions
FIO35-CPP. Use feof() and ferror() to detect end-of-file and file errors when sizeof(int) ==
sizeof(char)
FIO36-CPP. Do not assume a new-line character is read when using fgets()
FIO37-CPP. Do not assume character data has been read
FIO40-CPP. Reset strings on fgets() failure
FIO41-CPP. Do not call getc() or putc() with stream arguments that have side effects
FIO44-CPP. Only use values for fsetpos() that are returned from fgetpos()
ENV30-CPP. Do not modify the string returned by getenv()
ENV31-CPP. Do not rely on an environment pointer following an operation that may
invalidate it
ENV32-CPP. All atexit handlers must return normally
ERR32-CPP. Do not rely on indeterminate values of errno
MSC31-CPP. Ensure that return values are compared against the proper type
INT30-CPP. Ensure that unsigned integer operations do not wrap
INT31-CPP. Ensure that integer conversions do not result in lost or misinterpreted data
INT32-CPP. Ensure that operations on signed integers do not result in overflow
INT33-CPP. Ensure that division and modulo operations do not result in divide-by-zero
errors
INT34-CPP. Do not shift a negative number of bits or more bits than exist in the operand
FLP30-CPP. Do not use floating point variables as loop counters
FLP32-CPP. Prevent or detect domain and range errors in math functions
FLP34-CPP. Ensure that floating point conversions are within range of the new type
FLP36-CPP. Beware of precision loss when converting integral types to floating point 

CERT Oracle Secure Coding Standard for Java
Editors: Adam O'Brien (Oracle), David Svoboda (SEI/CERT)

Added

The following new rules are all currently stubs. We will flesh them out soon.

JNI02-J. Do not assume object references are constant or unique
JNI03-J. Do not use direct pointers to Java objects in JNI code
JNI04-J. Do not assume that Java strings are null-terminated 

CERT� Secure Coding eNewsletter (August / September) http://archive.constantcontact.com/fs192/1102365225130/archive/1118...

5 of 9 6/7/2023, 3:33 PM



EXP07-J. Prevent loss of useful data due to weak references
FIO15-J. Do not reset a servlet's output stream after committing it
IDS14-J. Do not trust the contents of hidden form fields
IDS15-J. Do not allow sensitive information to leak outside a trust boundary
MSC08-J. Do not store non-serializable objects as attributes in an HTTP session
NUM14-J. Use shift operators correctly
OBJ12-J. Respect object-based annotations
VNA06-J. Do not use non-static member fields in a servlet

Changed

JNI01-J. Safely invoke standard APIs that perform tasks using the immediate caller's
class loader instance (loadLibrary) has new code examples illustrating compliance and
noncompliance.
LCK08-J. Ensure actively held locks are released on exceptional conditions has a new
noncompliant code example that unlocks a lock that might not have been locked. That
would be unlocky (smile)
SER07-J. Do not use the default serialized form for classes with implementation-defined
invariants now has code examples that illustrate CVE-2012-0507, which exploited the
AtomicReferenceArray class in Java 1.7.0_02. OBJ06-J. Defensively copy
mutable inputs and mutable internal components also mentions this vulnerability, as it
was mitigated by complying with this rule, too.
OBJ03-J. Prevent heap pollution now has code examples to illustrate lists of lists,
including variadic parameters.
EXP02-J. Do not use the Object.equals() method to compare two arrays has a new title,
updated descriptions, and new noncompliant code examples and compliant solutions.

Deprecation Candidates

NUM04-J. Do not use floating-point numbers if precise computation is required is
conditional on programmer's intent.
NUM05-J. Do not use denormalized numbers is unenforcable.
NUM06-J. Use the strictfp modifier for floating-point calculation consistency across
platforms is conditional on programmer's intent.

Removed

FIO15-J. Do not operate on untrusted file links

CERT Secure Coding Standard for Android   
Editors: Fred Long, Aberystwyth University, Lori Flynn, SEI/CERT

Added

CERT� Secure Coding eNewsletter (August / September) http://archive.constantcontact.com/fs192/1102365225130/archive/1118...

6 of 9 6/7/2023, 3:33 PM



DRD20-J. Specify permissions when creating files via the NDK
Analysis of Android Applicability: The CERT C Coding Standard (Rules and
Recommendations) is a new table showing the CERT C Coding Standard rules and
recommendations and stating their applicability to the development of Android
applications, according to an initial analysis.
Analysis of Android Applicability: the CERT Oracle Secure Coding Standard for Java
(Rules): Analyses were added with respect to new Java rules JNI02-J, JNI03-J, and
JNI04-J n

Changed

DRD03-J. Do not broadcast sensitive information using an implicit intent has new
reference to "intent sniffing."
DRD13-J. Do not provide addJavascriptInterface method access in a WebView which
could contain untrusted content. (API level JELLY_BEAN or below) was scoped and titled
to clarify that it is about Web Views in mobile apps.
Analysis of Android Applicability: CERT's Java Coding Guidelines: Analyses with respect
to Java guidelines 16, 17, and 19 were modified with text augmenting the guideline as
written in the book so that the applicability to Android of the guideline is explained.

CERT Perl Secure Coding Standard
Editor: David Svoboda (SEI/CERT)

No Perl rules were added, removed, deprecated, or substantively changed in July and August.

Upcoming Events and Training

Conference:
Protect 2014 - September 8-11, Washington Hilton, Washington, D.C.
Robert Seacord is presenting TB3335 - Why are we still not programming securely?

Conference:
Java One - September 28-October 2, 2014 - San Francisco, CA
David Svoboda and Robert Seacord are presenting Inside the CERT Oracle Secure Coding
Standard for Java [CON2368].
David Svoboda and Yozo Toda are presenting Anatomy of Another Java Zero-Day Exploit
[CON2120].

CERT� Secure Coding eNewsletter (August / September) http://archive.constantcontact.com/fs192/1102365225130/archive/1118...

7 of 9 6/7/2023, 3:33 PM



Conference:
TSP Symposium - November 3-6, 2014
The Team Software Process (TSP) Symposium 2014 technical program will go beyond the core
methodology of TSP to encompass a broader range of complementary practices that contribute
to peak performance on system and software projects.

The unifying theme of the conference is quality. Ultimately, a quality product and service must be
delivered on time and within budget, be secure, be sustainable, and provide value to end users.

Conference:
48th Annual Hawaii International Conference on System Sciences - January 5-8, 2015 Grand
Hyatt Kauai, Hawaii

Recently Released:
These programs are for individuals in government and industry organizations that are looking to
build, assess, or evaluate an insider threat program while protecting the privacy and civil
liberties of their employees.

Our People   
In the eNewsletter, we highlight staff members behind our secure coding research. This month
we feature David Svoboda.

David Svoboda has been the primary developer on a diverse set of software
development projects at Carnegie Mellon University since 1991. His projects
have ranged from hierarchical chip modeling and social organization
simulation to automated machine translation (AMT). His KANTOO AMT
software, developed in 1996, is still in production use at Caterpillar. He has
over 13 years of Java development experience, starting with Java 2, and his
Java projects include Tomcat servlets and Eclipse plug-ins. He has taught

Secure Coding in C and C++ all over the world to various groups in the military, government,
and banking industries. 

Secure Coding Resources

Listen to Raising the Bar - Mainstreaming CERT C Secure Coding Rules

CERT� Secure Coding eNewsletter (August / September) http://archive.constantcontact.com/fs192/1102365225130/archive/1118...

8 of 9 6/7/2023, 3:33 PM



by Robert C. Seacord and Julia H. Allen

Read Performance of Compiler-Assisted Memory Safety Checking
by David Keaton

Read Two Secure Coding Tools for Analyzing Android Apps
by Will Klieber and Lori Flynn

Subscribe to Our eNewsletter

Join the SEI CERT Secure Coding Community

CERT� Secure Coding eNewsletter (August / September) http://archive.constantcontact.com/fs192/1102365225130/archive/1118...

9 of 9 6/7/2023, 3:33 PM


