
December 2013/January 2014 Winter Edition

News
Language Standards Updates
Upcoming Events and Training
Our People
Secure Coding Resources

News

I hope everyone enjoyed their holidays. My present this year
was that we completed the manuscript for The CERT C
Coding Standard (pictured at left).

The final manuscript weighed in at 98 rules and not the
predicted 92, as the new cover shows. Other than that, we

CERT� Secure Coding eNewsletter (Winter Edition) http://archive.constantcontact.com/fs192/1102365225130/archive/1115...

1 of 6 6/7/2023, 3:40 PM

are quite happy with the quality of the manuscript and are
looking forward to the release of the book in April, 2014.
Work is continuing on the recommendations on the wiki,
which are not included in the book. If you would like to
contribute to this or other efforts, and want to contact us
privately, please send email to secure-coding@cert.org.

In other news, ISO/IEC TS 17961:2013(E), Information
Technology - Programming Languages, Their Environments and System Software Interfaces - C
Secure Coding Rules [ISO/IEC TS 17961:2013] was officially published in November 2013 and
is available for purchase at the ISO store (http://www.iso.org
/iso/catalogue_detail.htm?csnumber=61134). The purpose of ISO/IEC TS 17961 is to establish a
baseline set of requirements for analyzers, including static analysis tools and C language
compilers, to be applied by vendors that wish to diagnose insecure code beyond the
requirements of the language standard. All rules are meant to be enforceable by static analysis.
The criterion for selecting these rules is that analyzers that implement these rules must be able
to effectively discover secure coding errors without generating excessive false positives.

We asked, You answered.
How are you using the CERT Secure Coding Standards?

"I have taken the Secure Coding for C/C++ - Integers course. Thank you for
preparing this wonderful course! It is the best teaching material I have read in recent
years. I haven't taken the Strings course yet, but I am sure it's at the same quality.
The language of the course and examples are clear. Course doesn't leave room for
ambiguity or confusion. There are references to the standard. The language invites

engineers to read, because it is precise, direct and reassures that the author knows what he is
talking about." - Ismail

As a reader of this eNewsletter, we want to hear from you. Submit your comments about how
you are using CERT Secure Coding Standards.

Language Standards Updates

CERT C Secure Coding Standard
Editors: Martin Sebor (Cisco Systems), Aaron Ballman (SEI)

Guidelines Added
MSC40-C. Do not violate constraints
INT35-C. Use correct integer precisions
ENV33-C. Do not call system()
FIO45-C. Avoid TOCTOU race conditions while accessing files
FIO46-C. Do not access a closed file
FIO23-C. Do not exit with unflushed data in stdout or stderr

Guidelines Changed
ARR39-C. Do not add or subtract a scaled integer to a pointer was moved during the course of
review; it was formerly EXP41-C.
ARR36-C. Do not subtract or compare two pointers that do not refer to the same array has
improved code examples. The noncompliant code example takes the address of the local

CERT� Secure Coding eNewsletter (Winter Edition) http://archive.constantcontact.com/fs192/1102365225130/archive/1115...

2 of 6 6/7/2023, 3:40 PM

variable and subtracts the array address from it (which will produce the expected behavior on
some platforms, but is still forbidden). The compliant code example subtracts from the pointer
past the end of the array. Also, the text was changed to refer to element counts rather than byte
counts (which contributed nothing to the rule).
ARR30-C. Do not form or use out-of-bounds pointers or array subscripts
New noncompliant and compliant code examples were added to illustrate addition to a null
pointer, as was done by the Mark Dowd flash vulnerability. See http://www.securityfocus.com
/blogs/746 for more information. The code examples that involved a skip variable were
transferred to ARR38-C. Guarantee that library functions do not form invalid pointers and the
code examples involving the fread() system call were transferred from ARR30-C to ARR39-
C. Do not add or subtract a scaled integer to a pointer.
CON09-C. Avoid the ABA problem when using lock-free algorithms was moved during the
course of review; it was formerly CON39-C.
ENV00-C was moved from a recommendation to a rule; it is now ENV34-C. Do not store
pointers returned by certain functions.
ENV04-C was moved from a recommendation to a rule; it is now ENV33-C. Do not call system()
if you do not need a command processor.
ERR30-C. Set errno to zero before calling a library function known to set errno, and check errno
only after the function returns a value indicating failure has lost its signal() and
setlocale() code examples, as they clearly violate ERR33-C. Detect and handle standard
library errors.
EXP44-C. Do not use side effects in operands to sizeof, _Alignof, or _Generic This rule was
moved during the course of review; it was formerly EXP06-C.
EXP18-C has been moved from a recommendation to a rule; it is now EXP45-C. Do not perform
assignments in selection statements
Dynamic allocation content was moved from MEM09-C. Do not assume memory allocation
functions initialize memory to EXP33-C. Do not read uninitialized memory.
EXP37-C. Call functions with the correct number and type of arguments The 1st set of code
examples was improved to more precisely illustrate that the problem is not with parameter-less
function prototype. Due to these improvements, the second NCCE/CS is completely redundant,
so it was eliminated. Finally, the third set of code samples, which dealt with a variadic function,
actually violated DCL40-C. Do not create incompatible declarations of the same function or
object, so it was moved there.
In EXP39-C. Do not access a variable through a pointer of an incompatible type, we deleted
code examples that tried to access a float that was unioned with an int that got modified. This
works on some machines because of type punning, but it is not guaranteed by C11.
FLP36-C. Preserve precision when converting integral values to floating-point type now uses
PRECISION() and cites INT35-C. Use correct integer precisions.
FIO21-C. Do not create temporary files in shared directories was moved during the course of
review; it was formerly FIO43-C.
FIO34-C. Distinguish between characters read from a file and EOF or WEOF has assimilated
the old FIO34-C and FIO35-C and included examples dealing with wide characters.
INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data has a new
exception to permit conversion of characters between different character types.
INT32-C. Ensure that operations on signed integers do not result in overflow has several
changes:

Its division and modulo code examples are now distinct from those in INT33-C. Ensure that
division and remainder operations do not result in divide-by-zero errors.
Its left-shift examples are now distinct from those in INT34-C. Do not shift a negative
number of bits or more bits than exist in the operand.
Finally, it has a mere paragraph describing the behavior of atomic integers- rather than

CERT� Secure Coding eNewsletter (Winter Edition) http://archive.constantcontact.com/fs192/1102365225130/archive/1115...

3 of 6 6/7/2023, 3:40 PM

code examples.
INT30-C. Ensure that unsigned integer operations do not wrap now has a single paragraph
describing the behavior of atomic integers- rather than code examples. Also, exception 3 allows
wrapping on the left-shift operator- and references INT34-C. Do not shift a negative number of
bits or more bits than exist in the operand.
INT11-C was changed to a rule; it is now INT36-C. Converting a pointer to integer or integer to
pointer.
MEM31-C. Free dynamically allocated memory when no longer needed has a new exception
(based on the formerly final compliant solution). Memory need not be freed if it can be
referenced from static variables.
MEM35-C. Allocate sufficient memory for an object has swallowed EXP01-C. Do not take the
size of a pointer to determine the size of the pointed-to type. It has new "normative" text saying
to be sure to use sizeof on the right type.
DCL41-C. Do not declare variables inside a switch statement before the first case label has a
new title- but no other changes.
In MSC38-C. Do not treat a predefined identifier as an object if it might only be implemented as
a macro we updated the wording and replaced one NCCE/CS pair involving assert() with a
different example.
PRE31-C. Do not perform side effects in arguments to unsafe macros has a compliant solution
demonstrating the benefits of using a _Generic selection expression.
SIG31-C. Do not access shared objects in signal handlers we updated the wording and added
NCCEs, a CS, and an exception.
STR31-C. Guarantee that storage for strings has sufficient space for character data and the null
terminator now has code examples dealing with fscanf().
STR32-C. Do not pass a non-null-terminated character sequence to a library function that
expects a string is more limited; it is violated only if the non-null-terminated character sequence
is passed to a library function that expects a null-terminated byte string.
In FLP32-C. Prevent or detect domain and range errors in math functions we updated the
math_errhandling examples to not presume usage of a macro.

Guidelines Deprecated & Removed
FLP31-C. Do not call functions expecting real values with complex values was merged into
EXP37-C. Call functions with the correct number and type of arguments.
MEM09-C. Do not assume memory allocation functions initialize memory was subsumed by
EXP33-C. Do not read uninitialized memory.
EXP31-C. Do not perform side effects in assertions was subsumed by PRE31-C. Do not perform
side effects in arguments to unsafe macros.
ARR34-C. Ensure that array types in expressions are compatible was subsumed by EXP39-C.
Do not access a variable through a pointer of an incompatible type.
STR35-C. Do not copy data from an unbounded source to a fixed-length array was merged into
STR31-C. Guarantee that storage for strings has sufficient space for character data and the null
terminator.
STR36-C was converted from a rule to a recommendation: STR11-C. Do not specify the bound
of a character array initialized with a string literal. The severity is now Low; typically violations of
this recommendation result in only a limited buffer overflow that no attacker can control or
modify.

CERT C++ Secure Coding Standard
Editors: Martin Sebor (Cisco Systems), Aaron Ballman (SEI)

CERT� Secure Coding eNewsletter (Winter Edition) http://archive.constantcontact.com/fs192/1102365225130/archive/1115...

4 of 6 6/7/2023, 3:40 PM

No C++ rules were added, removed, deprecated, or substantively changed last month.

CERT Oracle Secure Coding Standard for Java
Editors: Adam O'Brien (Oracle), David Svoboda (SEI)

Guidelines Changed

No Java rules were were added, removed, deprecated, or substantively changed last month.

CERT Perl Secure Coding Standard
Editor: David Svoboda (SEI)

No Perl rules were added, removed, deprecated, or substantively changed last month.

Upcoming Events and Training

FloCon
January 13-16, 2014
FloCon, a network security conference, takes place at the Francis Marion Hotel in Charleston,
South Carolina. This open conference provides a forum for operational network analysts, tool
developers, researchers, and other parties interested in the analysis of large volumes of traffic to
showcase the next generation of flow-based analysis techniques. http://www.cert.org/flocon/

CERT� Operational Resilience: MANAGE, PROTECT, AND SUSTAIN [Virtual Event]
January 23, 2014, http://www.sei.cmu.edu/goto/cert-operational-resilience

Our People

Each month, we highlight staff members behind our secure coding research. This month we
feature Lori Flynn.

Lori Flynn is a Software Security Engineer at CERT. Her ongoing work
includes an Android-focused project involving development of new secure
coding rules and composable static analysis of apps to check for compliance
with data flow rules. Lori's past experience includes network security research,
system analysis, research prototype development, standards-based security
analyses including ISO 27001 and ITU X.805, and collaboration on a novel
static analysis method for polymorphic program detection that resulted in a

patent. Her PhD research focused on secure multicast routing protocols for ad hoc mobile
networks.

CERT� Secure Coding eNewsletter (Winter Edition) http://archive.constantcontact.com/fs192/1102365225130/archive/1115...

5 of 6 6/7/2023, 3:40 PM

Secure Coding Resources

Read Secure Design Patterns by Chad Dougherty, Kirk Sayre, Robert C. Seacord,
David Svoboda, and Kazuya Togashi. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=9115

Listen to Raising the Bar: Mainstreaming CERT C Secure Coding Rules by Robert C.
Seacord http://www.cert.org/podcast/mp3/2/20140107seacord-full.mp3

Watch Robert Seacord discuss Secure Coding - Avoiding Future Security
Incidents, http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=54982

Subscribe to Our eNewsletter

Join the SEI CERT Secure Coding Community

CERT� Secure Coding eNewsletter (Winter Edition) http://archive.constantcontact.com/fs192/1102365225130/archive/1115...

6 of 6 6/7/2023, 3:40 PM

