SECURE BY DESIGN & SECURE BY DEFAULT: CISA'S PATH FORWARD

JACK CABLE

The most explosive and influential best selier of the decade! UNSAFE ATANY SPEED The Designed-In Dangers of the American Automobile

timely, topical and terrifying ... a stashing, fully documenter dictment of industrial irresponsibility, governmental default ablic apathy ... a chilling expose of the automobile industry —American Trial Deepers Association Jerma

s1.00

Technology 12.05.17

n the past fifty years, the car crash death rate has dropped by nearly 80 percent in the United States. And one of the reasons for that drop has to do with the "accident report forms" that police officers fill out when they respond to a wreck. Officers use these forms to document the weather conditions, to draw a diagram of the accident, and to identify the collision's "primary cause."

99pi

 $+ \downarrow \square$

For the more than 30,000 fatal car crashes that happen each year, information gathered on the side of the road goes from the accident report form into a federal database: the <u>Fatality Analysis Reporting</u> <u>System</u>.

A man holding a laptop computer in Warsaw, June 2013

Despite a global multibillion-dollar cybersecurity industry, the threat from malicious cyber-activity, from both criminal and state actors, continues to grow. While many cyber incidents are never reported by their victims, Verizon's 2022 Data Breach Investigations Report noted that ransomware attacks rose 13 percent that year—more than the past five years combined. These breaches included attacks that threatened public health and safety, with several hospitals across the United States forced to cancel surgeries and divert patients because they were locked out of their systems.

Over the past decade, adversaries of the United States have developed increasingly sophisticated offensive cyber-capabilities. As cybersecurity

What do *mature* industries look like?

NTSB General Aviation Accident Dashboard

(?)

2 000

1,500

1,000

500

Accidents

000

00

be

FARS

 Fatality Analysis Reporting System

						Cras	hStat	s F	ARS D	ata Ta	bles	Que	ery FA	RS Dat	ta	State	Traffi	c Safe	ty Info	b T	raffic	Safet
																	Sumn	nary	Tre	ends	Cra	shes
Did You Know?	National Statis	tics																				
View Archive		2020*	2019	2018	2017	2016	2015	2014	2013	2012	20 11	2010	2009	2008	2007	2006	2005	2004	2003	2002	2001	2000
Motorcycles in fatal crashes in 2020 had the highest proportion of collisions with fixed objects (24.6%), and buses in fatal crashes had the lowest proportion (2.6%). [Vehicles 2020]	Motor Vehicle Traffic Crashes																					
	Fatal Crashes	35,766	33,487	33,919	34,560	34,748	32,538	30,056	30,202	31,006	29,867	30,296	30,862	34,172	37,435	38,648	39,252	38,444	38,477	38,491	37,862	37,52
	Traffic Crash Fatalities																					
	Vehicle Occupants																					
	Drivers	19,519	17,984	18,321	18,819	18,717	17,615	16,470	16,520	16,838	16,474	16,864	17,670	19,279	21,717	22,831	23,237	23,158	23,352	23,625	22,914	22,91
	Passengers	5,966	5,846	5,962	6,237	6,485	6,213	5,766	5,896	6,106	5,972	6,451	6,793	7,441	8,716	9,187	9,750	10,042	10,171	10,370	10,227	10,45
	Unknown	51	61	49	74	74	71	71	67	73	64	56	63	71	94	101	83	76	104	110	102	8
	Sub Total1	25,536	23,891	24,332	25,130	25,276	23,899	22,307	22,483	23,017	22,510	23,371	24,526	26,791	30,527	32,119	33,070	33,276	33,627	34,105	33,243	33,4
	Motorcyclists	5,579	5,044	5,038	5,226	5,337	5,029	4,594	4,692	4,986	4,630	4,518	4,469	5,312	5,174	4,837	4,576	4,028	3,714	3,270	3,197	2,89
In 2020 it was a criminal offense to operate a motor vehicle at a blood alcohol concentration (BAC) of .08	Nonmotorists																					
	Pedestrians	6,516	6,272	6,374	6,075	6,080	5,494	4,910	4,779	4,818	4,457	4,302	4,109	4,414	4,699	4,795	4,892	4,675	4,774	4,851	4,901	4,7
	Pedalcyclists	938	859	871	806	853	829	729	749	734	682	623	628	718	701	772	786	727	629	665	732	6
	Other/ Unknown	255	289	220	236	260	233	204	190	227	200	185	151	188	158	185	186	130	140	114	123	1
	Sub Total2	7,709	7,420	7,465	7,117	7,193	6,556	5,843	5,718	5,779	5,339	5,110	4,888	5,320	5,558	5,752	5,864	5,532	5,543	5,630	5,756	5,5
	Total*	38,824	36,355	36,835	37,473	37,806	35,484	32,744	32,893	33,782	32,479	32,999	33,883	37,423	41,259	42,708	43,510	42,836	42,884	43,005	42,196	41,94
g/dL or above in all 50 States, the	Other National Statistics																					
District of	Vehicle																					

How do we compare?

Sources of info

- **Private** fire brigade reports (no NTSB)
- Do they help?
 - Do they help customers?
 - Do they help manufacturers?
 - Do they show the same trendlines every issue?
 - Do they hold vendors accountable for software quality?

CISA Whitepaper

- On 4/13, CISA and 9 U.S. and international partners released a whitepaper on Secure by Design & Secure by Default
- This will be an iterative process

 we look to many stakeholder
 verticals to help refine future
 iterations

Shifting the Balance of Cybersecurity Risk: Principles and Approaches for Security-by-Design and -Default

Publication: April 13, 2023

Cybereecurity and Infrastructure Security Agency

NSA | FBI | ACSC | NCSC-UK | CCCS | BSI | NCSC-NL | CERT NZ | NCSC-NZ

Discletimer: This document is marked TLPCLEAR. Disclosure is not limited. Sources may use TLPCLEAR when information carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release. Subject to standard copyright rules, TLPCLEAR information may be distributed without restriction. For more information on the Traffic Light Protocol, see http://www.class.gov/tip/.

daily life. Internet-facing systems are our economic prosperity, livelihoods, and gement to medical care. As only one is cancelling surgeries and diverting patient ies in critical systems may invite malicious y¹ risks.

anufacturers to make Secure-by-Design and gn and development processes. Some stry forward in software assurance, while y encourage every technology manufacturer omers from having to constantity perform on their systems to mitigate cyber ownership of improving the security ogy manufacturers have relied on fixing ployed the products, requiring the customers by incorporating Secure-by-Design practices lying fixes.

Irity, the authoring agencies encourage uct security as a critical prerequisite to ring teams will be able to establish a new ed-in and takes less effort to maintain. einforces the importance of product security utacturers should implement security it manufacturers from introducing

ed products are safer for customers, the o their design and development programs to ts to be shipped to customers. Products that y of the customers is a core business goal, ducts start with that goal before te those that are secure to use "out of the sary and security features available without

TLP:CLEAR

¹ The authoring agencies recognize that the term "safety" has multiple meanings depending on the context its used. For the purposes of this guide, "safety" will refer to raising technology security standards to protect customers from malicious cyber activity.

3 CISA | NSA | FBI | ACSC | NCSC-UK | CCCS | BSI | NCSC-NL | CERT NZ | NCSC-NZ

Underlying principles

3 Principles

- 1. Manufacturers should take ownership of the security **outcomes** for their customers. The burden of safety should never fall solely upon the customer.
- 2. Manufacturers should embrace radical **transparency** and accountability.
- 3. Manufacturers should build **organization structure** and leadership to ensure safety is built in.

Security by <u>Design</u>

- Is a business goal of top business leaders and not delegated to tech teams
- Security is a formally stated goal *before* the design process begins
- Requires real tradeoffs, like changing programming languages
- Can't be bolted on later. Think: collapsible steering columns, airbags, ABS

Costs of lack of safety by design

TAKE THE TWIST OUT OF THOSE SWING AXLES

EMPI CAMBER COMPENSATOR®

Probably the best single suspension modification you can make on a Corvair, Volkswagen, Tempest, or other swing axle rear end is the addition of a Camber Compensator®.

The Camber Compensator® links both half axles into a fully integrated spring suspension system that keeps both wheels working when cornering or driving in gusty winds.

This specially designed heavy-duty transverse spring linkage shackles to the axles just behind the wheel hubs, with a center pivot point at the differential housing. The stabilizing effect of this simple modification is literally amazing. Cornering loads are shared by both wheels. The result is improved handling and road holding stability, particularly at speed.

Kits come complete with all fittings and hardware. \$19.95 and \$24.95.

EMPI TRACK-TRU SWAY BARS

These new anti-sway bars are second generation improvements over earlier models. They have been extensively tested at Riverside International Raceway and have an even higher degree of stability than their quite successful forebears. These new models are husky enough to withstand the rigors and extreme stresses of race competition.

The TRACK-TRU front bar will add considerably to the safety and driving ease of any Chevy II, Volkswagen or Corvair passenger car or truck. It will improve steering and reduce the effect of crosswinds.

TRACK-TRU bars are cad plated for rust protection. The installation is quite a calm affair, requiring no welding or cutting. The kit comes complete with everything you need except manpower. **\$17.95** and **\$19.95**.

MPI CAMBER COMPENSATOR®
7 Corvair passenger cars and trucks
Porsche 1057-61 and Tampast passen
orsche 1997-01 and Tempest passen-
er cars
All VW cars, trucks, Ghias thru
33, plus Renaults 57-62\$19.95
] Porsche 1956-57\$21.95
MPI TRACK-TRU front anti-sway
ars.
] All Corvairs, Chevy IIs, and VW
rucks and station wagons \$19.95
All VW passenger cars\$17.95
e sure to state year, make and model.
MPI will pay shipping anywhere in the
ontinental U.S. Californians add 4% tax.

JUNE 1963 7

Camber Compensator for your lovely Corvair

"...keeps both wheels working when cornering or driving in gusty winds"

 "The result is improved handling and road holding stability, particularly at speed"

Examples of Secure by Design

- Memory-safe programming languages
- Secure hardware foundation
- Secure software components
- Parametrized queries
- SBOMs
- Vulnerability disclosure policies w/ legal safe harbor

And more...

Security by Default

Security by <u>Default</u>

- Secure configs are the baselines out of the box
- Keeping configs secure should be the responsibility of the manufacturer
- Strong nudges to be more secure, like MFA
- Transform "hardening guides" into "loosening guides"
- Requires no new licenses or costs
- Comes in every product, like seatbelts (that used to be an up-charge)

Examples of Secure by Default

- Eliminating default passwords
- Single sign-on at no additional cost
- High-quality audit logs at no extra charge
- Reducing "hardening guide" size
- Security setting user experience

And more...

Where is the best CVE analysis?

- Why is there a différence between the memory safety numbers that manufacturers selfreport, and what is in the CVE database?
- What if a car manufacturer's internal numbers were different from the NHTSA's public numbers?

https://www.cvedetails.com/

CVE Details

Switch to https://

Home

Browse : Vendors Products Vulnerab Vulnerab Reports :

Search : Vendor S

Top 50 : Vendors Vendor C Products

Versions Other :

The ultimate security vulnerability datasource

Register Take a third party risk management course for FREE Log In

CVSS Score Distribution For Top 50 Vendors By Total Number Of "Distinct" Vulnerabilities

rowse :	# Of Vulnerabilities													
Vendors		Vendor Name	Number of Total Vulnerabilities	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9+	Weighted Average
Products	1	Microsoft	9285	481	111	635	250	1728	986	947	1916	40	<u>2191</u>	6.70
Vulnerabilities By Date	2	Oracle	9023	246	148	442	569	2675	2520	1017	772	42	592	5.80
enorts :	3	Google	8157	836	55	738	100	1984	691	1243	1338	37	1135	6.00
CVSS Score Report	4	Debian	7980	278	94	444	214	2213	<u>1573</u>	<u>1576</u>	1263	24	301	6.00
CVSS Score Distribution	5	Apple	<u>5981</u>	234	<u>58</u>	396	<u>55</u>	1146	716	<u>1554</u>	786	17		6.60
earch :	6	IBM	<u>5609</u>	<u>136</u>	<u>64</u>	<u>370</u>	<u>987</u>	<u>1489</u>	<u>1049</u>	<u>550</u>	539	27		5.60
Vendor Search	7	Redhat	4801	162	72	358	222	<u>1311</u>	<u>817</u>	<u>752</u>	736	<u>16</u>	355	6.00
Product Search	8	<u>Cisco</u>	<u>4380</u>	<u>114</u>	<u>6</u>	96	<u>193</u>	<u>961</u>	<u>912</u>	<u>565</u>	<u>987</u>	47	499	6.60
Vulperability Search	9	Fedoraproject	4373	422	37	<u>210</u>	<u>126</u>	1222	863	<u>903</u>	481	14		5.50
By Microsoft References	10	Canonical	3895	5	56	256	<u>133</u>	<u>1215</u>	<u>681</u>	<u>576</u>	680	<u>10</u>	283	6.20
op 50 :	11	<u>Linux</u>	<u>3097</u>	<u>205</u>	<u>106</u>	<u>476</u>	<u>85</u>	<u>921</u>	<u>164</u>	<u>232</u>	767	<u>10</u>	<u>131</u>	5.50
Vendors	12	Opensuse	3066	Z	47	<u>194</u>	<u>108</u>	<u>834</u>	<u>597</u>	<u>561</u>	402	5	311	6.30
Vendor Cvss Scores	13	Mozilla	2507	<u>155</u>	12	78	<u>8</u>	<u>541</u>	442	<u>321</u>	400	1	549	6.70
Products	14	Netapp	<u>1903</u>	<u>114</u>	26	<u>118</u>	72	<u>688</u>	405	<u>258</u>	<u>191</u>	Z	24	5.40
Product Cvss Scores	15	<u>Apache</u>	<u>1883</u>	<u>153</u>	<u>11</u>	<u>45</u>	<u>45</u>	441	<u>581</u>	<u>203</u>	305	6		5.90
ther:	16	HP	<u>1839</u>	<u>12</u>	11	70	44	<u>299</u>	<u>263</u>	<u>136</u>	400	<u>20</u>	<u>584</u>	7.40
Microsoft Bulletins	17	SUN	<u>1530</u>	<u>3</u>	26	<u>98</u>	44	<u>290</u>	<u>271</u>	<u>108</u>	404	3	283	6.80
Bugtrag Entries	18	<u>Adobe</u>	1483	<u>75</u>		<u>19</u>	<u>16</u>	<u>240</u>	<u>146</u>	<u>97</u>	96	4		7.90
CWE Definitions	19	<u>Jenkins</u>	1362	<u>172</u>	1	<u>58</u>	<u>199</u>	<u>554</u>	<u>150</u>	<u>190</u>	26	1	11	4.80
About & Contact	20	SAP	1236	97	<u>3</u>	<u>31</u>	<u>73</u>	<u>378</u>	<u>289</u>	<u>178</u>	124	3	60	5.60
Feedback	21	Suse	997	<u>16</u>	<u>19</u>	<u>81</u>	<u>20</u>	210	<u>121</u>	<u>128</u>	173		229	6.70
	22	GNU	<u>964</u>	28	12	53	<u>33</u>	258	208	<u>180</u>	153	2		6.00
Articles	23	Siemens	<u>931</u>	85	5	37	<u>31</u>	180	203	234	116	9	<u>31</u>	5.80

How can CVE allow determining authoritative root causes of vulnerabilities?

And how can CVEs become the foundation for tech starting to look like more mature industries?

E.g., what percent of vulnerabilities in memory unsafe languages are memory related? In memory safe languages?

How does this change over time?

How do different products manage defects?

As it stands

- ~10% of vulnerabilities in the KEV are solely tagged as CWE-20, Improper Input Validation
 - This isn't a root cause
- Automated analysis gap:
 - Automated analysis of the KEV: ~30% of vulnerabilities are memory related (~47% in C/C++)
 - Manual analysis of the KEV: ~40% of vulnerabilities are memory related (~56% in C/C++)
 - * This data is not fully representative but gives a rough picture of where we are at.

Source: Chris Palmer, Taxonomy Of In-The-Wild Exploitation (https://noncombatant.org/2022/04/22/itw-taxonomy/)

Gaps in vendor-reported data

• Significant gaps in vendor-reported data and what can be gleaned from CVE:

Vendor	% Memory safety from CVE data (via CWEs)	% Memory safety from self-reported data	% of CVE records unmappable to CWE
Vendor 1	61%	66%	23%
Vendor 2	50%	70%	15%
Vendor 3	32%	70%	53%

CISA's Secure by Design Strategy

CISA's Secure by Design work involves several workstreams:

- Establishing CISA's work to advance Secure by Design & Security by Default
- Collecting data and best practices to understand what "good" looks like
- Outside engagement to foster tech ecosystem safety:
 - Working with technology manufacturers to incentivize software that is secure by design and secure by default
 - Encouraging organizations to demand more from their technology vendors
 - Working with educators to integrate security into computer science and other technology-related courses
 - Engaging multiple regions and stakeholder communities

Our Next Steps

- The whitepaper is the first iteration of CISA's Secure by Design work. We look to stakeholders to provide feedback & shape our work here.
- Opportunities for feedback:
 - Future iterations of this whitepaper
 - Sector-Specific Cyber Performance Goals
 - Other potential guidance

Your next steps

- Review the whitepaper and linked documentation
- Think about the history of safety in other fields
- Reach out to us & share your input!
- Think about how your work can drive Secure by Design & Secure by Default

For more information:

https://www.cisa.gov/securebydesign

SecureByDesign@cisa.dhs.gov

Secure by design ecosystem

- Manufacturers
- IT/OT/IoT
- Open-source community
- Education (university, and self-taught)
 IR firms
- Customers
 - CIOs
 - Small and Medium Orgs
- Insurance

Venture Capital firms

- Secure researchers/hackers
- Integrators
- Interagency partners

- Standards bodies
- Regulators/legislators
- Target rich/cyber poor orgs
- ISACs

Shifting the Balance

overall costs and risks to customers.