
SPDX SBOMs: 
Enabling Automation of 
Safety & Security Analysis

Kate Stewart
VP Dependable Embedded Systems, The Linux Foundation
kstewart@linuxfoundation.org

1



Software is Used in Critical Systems Today

Chemical

Communications

Dams

Emergency
Services

Financial

Government
Facilities

Information
Technology

Transportation
Systems

Source: https://www.cisa.gov/critical-infrastructure-sectors

Commercial
Facilities

Critical
Manufacturing

Defense
Industrial
Base

Energy

Food &
Agriculture

Healthcare & 
Public Care

Nuclear 
Reactors, 
Materials, 
& Waste

Water & 
Wastewater 
Systems

https://www.cisa.gov/critical-infrastructure-sectors


Critical Infrastructure Today:  
Mix of Open & Proprietary

Source:
[Synopsys2020] “2020 Open Source Security and Risk Analysis Report” by Synopsys 
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf
[Synopsys2021]  "2021 Open Source Security and Risk Analysis Report” by Synopsys 
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html 

Source: [Synopsys2021]

98% Percent of general 
codebases and Android 
apps that contained OSS 
[Synopsys2021]

70% Percent of codebase that 
was OSS on average 
[Synopsys2020]

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html


Cybersecurity & Critical Infrastructure

source: https://www.nisc.go.jp/eng/index.html#sec4

https://www.nisc.go.jp/eng/index.html#sec4


Maintenance and Promotion of Safety Principles

• Documentation for application manual for the component
– The intended use of the software component
– Instructions on how to integrate the software 

component correctly and invoke it properly

• Requirements for the software component
– This should include the results of any testing to 

demonstrate requirements coverage
– Coverage for nominal operating conditions and 

behavior in the case of failure
– For highly safety critical requirements, test coverage 

should be in accordance with what the specification 
expects (e.g., Modified Condition/Decision Coverage 
(MC/DC) level code coverage)

– Any safety requirements that might be violated if the 
included software performs incorrectly.  This is 
specifically looking for failures in the included 
software that can cause the safety function to 
perform incorrectly.  (This is referred to as a 
cascading failure.)

– What the software might do under anomalous 
operating conditions (e.g., low memory or low 
available CPU)

Source: https://www.linux.com/featured/sboms-supporting-safety-critical-software/

Safety Standards are looking for:
• Unique ID, something to uniquely identify the 

version of the software you are using. 
– Variations in releases make it important to 

be able to distinguish the exact version you 
are using.  

– The unique ID could be as simple as using 
the hash from a configuration management 
tool, so that you know whether it has 
changed.  

• Dependencies of the component
– Any chained dependencies that a 

component may require.
– Any required and provided interfaces and 

shared resources used by the software 
component.  A component can add demand 
for system-level resources that might not be 
accounted for.

• The component’s build configuration (how it was 
built so that it can be duplicated in the future) and 
sources

• Any existing bugs and their workarounds

https://www.linux.com/featured/sboms-supporting-safety-critical-software/


Maintenance and Promotion of Safety Principles

Requirements are needed to know you’re “done” after applying a patch:
• Need to be able to ensure you have compliance to the updated system requirements 

after applying a patch
• Given the rate of change and vulnerabilities, we need a way to make this automated, 

so it needs to be machine readable
• For each file patched,  what requirements does it interact with, what tests need to be 

rerun to regenerate the evidence

Software Bill of Materials (SBOMs) today:
• Machine readable - Identities & Dependencies are part of the minimum definition
• SPDX SBOMs can also enables recording and connecting the sources, assessments, 

vulnerabilities & patches, build & calibration data, tests, requirements and evidence ⇒ 
path to automation



Common Understanding of “SBOM” 

“An SBOM is a formal record containing the 
details and supply chain relationships of 
various components used in building 
software. 

These components, including libraries and 
modules, can be open source or 
proprietary, free or paid, and the data can 
be widely available or access-restricted.”

Source:  NTIA’s SBOM FAQ

https://www.ntia.gov/files/ntia/publications/sbom_faq_20200821.pdf


NTIA SBOM Guidance

Source:https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf.

http://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf


NTIA Software Bill Of Materials (SBOM) Guidance - 
Minimum Elements

Source: https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

SPDX 2.2 +
(ISO/IEC 5962:2021)
supports all required 
minimum elements
(as well the optional that 
are mentioned in report)

Checker available at: 
https://github.com/spdx/n
tia-conformance-checker

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.iso.org/standard/81870.html
https://github.com/spdx/ntia-conformance-checker
https://github.com/spdx/ntia-conformance-checker


When should an SBOM be created or consumed?

Safety and Security expect 
that Configuration 
Management (CM) 
information will be 
maintained throughout the 
software lifecycle.

SBOMs provide a 
mechanism to track key 
artifacts and dependencies 
as well as other useful CM 
information

Image derived from : NTIA’s  Survey of 
Existing SBOM Formats and Standards

https://www.ntia.gov/files/ntia/publications/ntia_sbom_formats_and_standards_whitepaper_-_version_20191025.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_formats_and_standards_whitepaper_-_version_20191025.pdf


SBOM Types
SBOM TYPE DEFINITION

Design SBOM of intended, planned software project or product with included components (some of which may not yet exist) 
for a new software artifact.

Source SBOM created directly from the development environment, source files, and included dependencies used to build an 
product artifact. 

Build
SBOM generated as part of the process of building the software to create a releasable artifact (e.g., executable or 
package) from data such as source files, dependencies, built components, build process ephemeral data, and other 
SBOMs.

Deployed
SBOM provides an inventory of software that is present on a system. This may be an assembly of other SBOMs that 
combines analysis of configuration options, and examination of execution behavior in a (potentially simulated) 
deployment environment.

Runtime
BOM generated through instrumenting the system running the software, to capture only components present in the 
system, as well as external call-outs or dynamically loaded components. In some contexts, this may also be referred 
to as an “Instrumented” or “Dynamic” SBOM.

Analyzed 
SBOM generated through analysis of artifacts (e.g.,  executables, packages, containers, and virtual machine 
images) after its build. Such analysis generally requires a variety of heuristics. In some contexts, this may also be 
referred to as a “3rd party” SBOM.

Source: Types of Software Bills of Materials (SBOM) published by CISA on 2023/4/21

https://www.cisa.gov/resources-tools/resources/types-software-bill-materials-sbom


KEY: Generate SBOMs when the data is available

Source SBOM

Build SBOM

Deployed SBOMRuntime SBOM

Design SBOM



Understanding System:  Traceability

Runtime 
SBOM

Deployed SBOM

Deployed SBOM

Deployed SBOM

Build SBOM

Build SBOM

Build SBOM

Build SBOM

Build SBOM



Understanding Safety Critical System:  Traceability

Runtime 
SBOM

Deployed SBOM

Deployed SBOM

Deployed SBOM

Build SBOM

Build SBOM

Build SBOM

Build SBOM

Build SBOM

Source SBOM

Source SBOM

Source SBOMSource SBOM



Managing a security fix: 
Customer & Integrator need to check Safety Profile

Search through Deployed SBOM (to 
Build SBOM and maybe to Source 
SBOM) to determine if impacted. 
➔ If source is not included in build, or 

not reachable via configurations, 
document and no further action 
required.

➔ Else do impact analysis and 
determine mitigation.

Customer 
Security Integrator

Customer
Procurement

Get ‘Product’ 
update from 
Integrator with 
new Build 
SBOM, and 
confirm Safety 
Profile (when 
applicable) has 
been assessed.

Change monitoring to use new 
Build & Deployed SBOMs for 
monitoring

NVD

Deployed 
SBOM

New 
Build SBOM

Customer
Operations

New Deployed 
SBOM

Integrator

See VEX/VDR 
from Integrator or 

Vulnerability 
Database

If indicator of 
compromise, request 

mitigation from 
integrator if needed

Create New 
Deployed SBOM 
to document new 
‘Product’ installed 
and confirm 
Safety Profile 
(when applicable) 
and record new 
Deployed SBOM 



SPDX SBOM’s Enable Linking: 
Requirements to Code to Tests to Evidence

App Source Files, 
Tests Framework, 
Build Options

App Executable, 
Build Configurations

App Deployed Image, 
Calibrations 

Design, 
Documentation, 
Requirements

Log Files, 
Evidence

Build Tool



Package Information

SPDX v2.3 Document must contain:

SPDX Document 
Creation Information

Package Information

Other Licensing InformationOther Licensing 
Information Detected

Other Licensing InformationFile Information

Other Licensing Information
Annotations Information

Other Licensing InformationRelationships between SPDX 
Elements Information

Other Licensing InformationSnippet Information Charter:  To create a set of data 
exchange standards that enable 
companies and organizations to 
share human-readable and 
machine-processable software 
package metadata to facilitate 
software supply chain processes.

Software Package Data 
Exchange (SPDX®) specification 
is a standard for communicating 
the component and metadata 
information associated with 
software 

SPDX v2.3 Document may contain:



ISO/IEC 5962:2021 

18

Source: https://www.iso.org/standard/81870.html 
accessed on 2021/11/19

● Able to represent SBOMs from binary 
images and track back to the source files 
and snippets.

● Specification is freely available from ITTF 
site

● Future updates are live tracked at: 
https://spdx.github.io/spdx-spec and 
work on satisfying safety requirements is 
being included

● More information at spdx.dev

https://www.iso.org/standard/81870.html
https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
https://spdx.github.io/spdx-spec
http://spdx.dev


19
source: https://spdx.github.io/spdx-spec/v2.3/

https://spdx.github.io/spdx-spec/v2.3/


SPDX Continuously Improves 
● 2010/02 - specification drafting began in a work-group of FOSSBazaar under Linux Foundation that came to be called "SPDX",  was 

originally referred to as Package Facts.

● 2010/08 - "SPDX" announced as one of the pillars of the Linux Foundation's Open Compliance Program.

● 2011/08 - SPDX 1.0 specification - handles packages.

● 2012/08 - SPDX 1.1 specification - fixed flaw in verification algorithm

● 2013/10 - SPDX 1.2 specification - improved interaction with license list,  additional fields for documenting project info.

● 2015/05 - SPDX 2.0 specification - added ability to handle multiple packages, relationships between packages and files, annotations.

● 2016/08 - SPDX 2.1 specification - added snippets,  support for associating packages with external reference sources of information about 
packages, using SPDX License identifiers in files

● 2019/06 - SPDX 2.1.1 - conversion of specification from google docs to github as repository

● 2020/05 - SPDX 2.2 - Includes SPDX-lite

● 2020/08 - SPDX 2.2.1 prepared for submission to ISO.

● 2021/08 - ISO/IEC 5962 available

● 2022/08 - SPDX 2.3 published to improve interoperability with other formats

● 2023/Q2 - SPDX 3.0 release candidate and prototyping in progress …



Formal Model Enables Validation & 
Interchange Between Specific File Formats

.xls
(spreadsheet)

.rdf
(RDF)

.spdx
(tag:value)

.xml
(2.2 →)

.json
(2.2 →)

.yaml
(2.2→)



SPDX Relationships Clarify Dependency Types

2
2

DESCRIBES DEPENDENCY_OF PREREQUISITE_FOR GENERATES VARIANT_OF

DESCRIBED_BY RUNTIME_DEPENDENCY_OF HAS_PREREQUISITE TEST_OF FILE_ADDED

CONTAINS BUILD_DEPENDENCY_OF ANCESTOR_OF TEST_TOOL_OF FILE_DELETED

CONTAINED_BY DEV_DEPENDENCY_OF DESCENDENT_OF TEST_CASE_OF FILE_MODIFIED

DYNAMIC_LINK OPTIONAL_DEPENDENCY_OF DOCUMENTATION_OF EXAMPLE_OF PATCH_FOR

STATIC_LINK PROVIDED_DEPENDENCY_OF BUILD_TOOL_OF METAFILE_OF PATCH_APPLIED

AMENDS TEST_DEPENDENCY_OF EXPANDED_FROM_ARCHIVE PACKAGE_OF REQUIREMENT_FOR

COPY_OF OPTIONAL_COMPONENT_OF DISTRIBUTION_ARTIFACT DATA_FILE_OF SPECIFICATION_FOR

DEPENDS_ON DEPENDENCY_MANIFEST_OF GENERATED_FROM DEV_TOOL_OF OTHER

For more details see: https://spdx.github.io/spdx-spec/v2.3/relationships-between-SPDX-elements/

https://spdx.github.io/spdx-spec/v2.3/relationships-between-SPDX-elements/


SPDX Generation Tooling

● tools-java
○ Aug 12, 2022 - v1.1.0 update to support 2.3
○ Sept 2022 → Feb 2023 5 releases for performance improvements & fixes

● tools-python
○ OpenSSF Funded cleanup & restructuring
○ Dec 8, 2022 - v0.7.0 - update to support 2.3 & clean up bug backlog
○ Prototyping of 3.0 in progress

● tools-golang
○ Jan 12, 2023 - v0.4.0 - update to support 2.3

● spdx-online-tools (validator & translator)
○ Aug 12, 2022 - v1.0.7 add support SPDX 2.3
○ Nov 15, 2022 - v1.0.9 add in NTIA Conformance Checker Tool

https://github.com/spdx/tools-java
https://github.com/spdx/tools-java/releases/tag/v1.1.0
https://github.com/spdx/tools-python
https://github.com/spdx/tools-python/releases/tag/v0.7.0
https://github.com/spdx/tools-golang
https://github.com/spdx/tools-golang/releases/tag/v0.4.0
https://github.com/spdx/spdx-online-tools
https://github.com/spdx/spdx-online-tools/compare/v1.0.6...v1.0.7
https://github.com/spdx/spdx-online-tools/releases/tag/v1.0.9
https://github.com/spdx/ntia-conformance-checker


SPDX Consumption Tooling

● spdx-online-tools (validator & translator)
○ Aug 12, 2022 - v1.0.7 add support SPDX 2.3
○ Nov 15, 2022 - v1.0.9 add in NTIA Conformance Checker Tool

● SPDX-to-OSV (vulnerability lookup)
○ Produce an Open Source Vulnerability JSON file based on information in an SPDX document
○ Jan 10, 2022 - v0.1.1 - pick up tooing updates

● ntia-conformance-checker (minimum SBOM fields present)
○ Check that an SBOM meets the minimum field requirements
○ Started as GSOC project, and maintainer from Chainguard has adopted
○ Feb 8, 2022 - v0.2.1 - fix NOASSERTION supplier case

Also worth looking at: https://github.com/nyph-infosec/daggerboard

https://github.com/spdx/spdx-online-tools
https://github.com/spdx/spdx-online-tools/compare/v1.0.6...v1.0.7
https://github.com/spdx/spdx-online-tools/releases/tag/v1.0.9
https://github.com/spdx/ntia-conformance-checker
https://github.com/spdx/spdx-to-osv
https://github.com/spdx/spdx-to-osv/releases/tag/v0.1.1
https://github.com/spdx/ntia-conformance-checker
https://github.com/nyph-infosec/daggerboard


SBOMs Everywhere in 2022…

25

- OpenSSF - Work Stream 9 →  SBOM Everywhere SIG
- SPDX Python Library rework funded.  

- Test suite and release candidate available now
- Started work on consolidating definitions of types of SBOMs → 

CISA working group to get broader adoption
- Started documentation of use cases 

- NTIA efforts have transferred to US DHS CISA  
- 4 working groups 

- SBOM Sharing,   SBOM Adoption,  SBOM Cloud,  SBOM Tooling
- International coordination with CERTs (like Japan’s CERT) and other 

international government agencies

https://github.com/spdx/spdx-testbed
https://www.linux.com/news/an-update-on-the-spdx-python-tools/


SPDX 3.0-rc1



Why the Changes for SPDX 3.0?

● Additional Use Cases
○ AI and Data
○ Security and Defect information

● Simplify
○ Profiles
○ Remove confusing names

● Flexibility
○ Can communicate a single Element
○ Enhanced relationship structure with less relationship types (work in progress)



SPDX 3.0 Model

Source:https://github.com/spdx/spdx-3-model/blob/main/model.png

https://github.com/spdx/spdx-3-model/blob/main/model.png


SPDX 3.0 - Increases Modularity

Core Model 

Licensing Security Build AI Usage?Dataset

SPDX 3.0 (Core Model + Software Profile + Licensing Profile ) == SPDX 2.3

Software Profile



SPDX 3.0 Core Model Permits Extensions 



SPDX 3.0 Software Profile 



SPDX 3.0 Specification Infrastructure

Specification is being transformed into markdown describing
- Classes, Properties, Enumerations 
- Metadata (type & cardinality) and description for each element.
- Will be able to automatically generate schema from this version (for 

JSON, YAML, RDF, XML, tag-value, etc.) and reduce errors. 

Profiles can add their own Classes and Properties and may also restrict 
other profiles (e.g. values, cardinalities, …)

See: https://github.com/spdx/spdx-3-model

https://github.com/spdx/spdx-3-model


Licensing Profile Update

● Based on licensing-related fields in pre-existing SPDX spec, with updates:
○ More consistency across artifact types (package, file, snippet)
○ Aligning with SPDX 3.0 data model
○ Documenting the object model for license expressions

● Current status:
○ Fields were discussed in joint tech/legal calls in late 2020 and early 2021
○ Initial starting point draft shared in Mar. 2021
○ Revised earlier draft for new SPDX 3.0 model formatting
○ Initial draft included in main at: 

https://github.com/spdx/spdx-3-model/tree/main/model/Licensing

For more information, contact:  Steve Winslow or Alexios Zavras

https://github.com/spdx/spdx-3-model/tree/main/model/Licensing


Security Profile Update
● Communicating vulnerabilities in software

○ Associate vulnerabilities with specific elements, like packages
○ Conveying vulnerability assessment (severity, impact, exploitability)

● Linking to external security information
○ securityAdvisory

■ Advisories and miscellaneous security related document
■ Common Security Advisory Framework (CSAF)
■ CycloneDX formatted security information
■ Open Source Vulnerability (OSV) document
■ Vulnerability Disclosure Report (VDR per NIST EO 14028)

○ securityFix
■ Code fix or patch for a security issue

○ securityOther
■ Any unspecified type of security information

● VEX support to assert status of a vulnerability

● Details at: https://github.com/spdx/spdx-3-model/tree/main/model/Security

For more information contact: Thomas Steenbergen, Jeff Schutt or Rose Judge

https://github.com/spdx/spdx-3-model/tree/main/model/Security


Build Profile Overview
Use Cases:

▪ Security
▪ Reproducibility
▪ Auditing quality/pedigree of build
▪ Safety

• The source code at the time of release
• The configuration used to build the software
• The specific versions of the tools used to build the software

Producers: Build systems, secondarily, analysis tools

Initial draft has been submitted to model for discussion at : 
https://github.com/spdx/spdx-3-model/tree/main/model/Build

Contact: Brandon Lumm or Nisha Kumar

https://github.com/spdx/spdx-3-model/tree/main/model/Build


AI BOM ⇒ SPDX AI profile + SPDX Dataset profile

AI software

Dataset

Model

Software 
code

Trained model
Software 

code

Traditional 
Software

AI Software
Has additional elements that nuances 
that need to be captured to ensure its 

traceability

AI BOM  
Enhances SPDX to describe 
AI software including and 

AI Software’s components, 
licenses, copyrights, and 

security references.

Software 
components 

AI components

AIBOMExtends

Dataset profile
AI Package 

Profile



#ossummit

Components of AI Application

Source:  IBM Data Science Best Practices 
(https://ibm.github.io/data-science-best-practices/versioning.html)

Source:  IBM Data Science Best Practices 
(https://ibm.github.io/data-science-best-practices/versioning.html)

https://ibm.github.io/data-science-best-practices/versioning.html


#ossummit

Build Up Original Model

Model 
Source 
Package

Source Files

…

Original 
Model 

contains

Static 
libraries

depends on

generated from

Source SBOM for Model 

Runtime
Libraries

depends on

Build SBOM for Model



#ossummit

Building the AI Application

AI Application 
Source 
Package

Source Files

…

contains

Libraries

depends on

Generated from

Trained 
Model 

AI Application 
Executable

depends on

Source SBOM for AI Application Build SBOM for AI Application



#ossummit

Deploying the AI Application

AI Application 
Source 
Package

Source Files

…

contains

Libraries

depends on

Generated from

Trained 
Model 

AI Application 
Executable

Runtime 
dependency 
of

Depends on

Deployed Application SBOM

Runtime
Data

SPDX can 
represent most of 
this today.

But what about 
the trained 
model? 

Source SBOM for Model 



#ossummit

GAP:  Representing Training the model

Training Data

Original 
Model 

Validation Data

??

Trained 
Model 

?

Build SBOM for Trained Model



AI BOM Transparency Survey:  Fields Required?

Source: https://arxiv.org/pdf/1808.07261.pdfSource:https://arxiv.org/pdf/1810.03993.pdf Source:https://www.microsoft.com/en-us/research/
uploads/prod/2019/01/1803.09010.pdf

Datasheets Model Cards FactSheets

https://arxiv.org/pdf/1808.07261.pdf
https://arxiv.org/pdf/1810.03993.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/01/1803.09010.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/01/1803.09010.pdf


#ossummit

AI Profile Properties

Data

Model 

AI/ML 
Application 

Required Fields:
- Creator
- Supplier
- PackageVersionInfo
- DownloadLocation
- PackageDescription
- LicenseConcluded
- LicenseDeclared
- ReleaseTime

Optional Fields:
- Originator
- Checksum
- ValidUntilTime
- BuildTime
- PackageComments
- SensitivePersonalInformation
- EnergyConsumption
- StandardsCompliance
- InformationAboutTraining
- Hyperparameters
- SafetyRiskAssessment
- DataPreprocessingSteps
- ModelExplainabilityMechanisms
- MetricsDecisionThresholds
- Metrics
- Autonomy
- Domain
- Limitations
- Type



#ossummit

Dataset Profile Properties

Data

Model 

AI/ML 
Application 

Required Fields:
- Name
- Originator
- DownloadLocation
- LicenseConcluded
- LicenseDeclared
- PackageDescription
- BuiltTime
- ReleaseTime
- DatasetType

Optional Fields:
- Supplier
- VersionInfo
- Checksum
- ValidUntilTime
- IntendedUse
- DatasetCollectionProcess
- DatasetUpdateMechanism
- DatasetSize
- DatasetNoise
- KnownBias
- Errata
- SensorsUsed
- StandardCompliance
- SensitivePersonalInformation
- ConfidentialityLevel
- AnonymizationMethodUsed



Usage Profile: to tell intentions as “Usage” for 
Delivery Product



What’s next after After 3.0?



Future Direction: 
Hardware 
● Safety Standards expect to know “system” that software 

is running on

● Vulnerabilities come from interaction between hardware 
and software (ie.heartbleed) 

● Potential participants:  
○ RISC-V & ARM core adopters, 
○ Chips Alliance Members
○ Board Manufacturers

● For more information, contact:  Kate Stewart



Future Direction:
Safety Standards Automation

● Safety Standards expect to know
○ The source code at the time of production release
○ The documentation associated with the code
○ The configuration used to build the production software
○ The specific versions of the tools used to build the software

● Safety Standards Configuration Management (CM) Requirements are greatly simplified by 
following an effective SBOM process. 

○ An SBOM supports capturing the details of what is in a specific release and supports 
determining what went wrong if a failure occurs.

○ The goal is to be able to rebuild exactly what the executable or binary was at the time of 
release.

● To learn more, see: 
○ https://www.linux.com/featured/sboms-supporting-safety-critical-software/

https://www.linux.com/featured/sboms-supporting-safety-critical-software/


#ossummit

Leverage SPDX Relationships to Support Safety Analysis

Source:https://fosdem.org/2023/
schedule/event/sbom_fusa/

https://fosdem.org/2023/schedule/event/sbom_fusa/
https://fosdem.org/2023/schedule/event/sbom_fusa/


#ossummit

Leveraging SPDX Relationships

**Plans 
Package

Safety 
Concept ##

**
Implementation 
Guidelines 
Package

SPECIFICATION_FOR

##
Specification Package 
(Requirements)

<>
Source Package
(Code, Scripts, Docs)

??
Test Package 
(Test Spec, Scripts)

REQUIREMENTS _FOR

TEST_FOR

SPECIFICATION_FOR

R
EQ

U
IR

EM
EN

TS_FO
R

SPECIFICATION_FOR

REQUIREMENTS_FOR GENERATES

Executable

Test Framework

GENERATES Evidence, 
reports

Logs

GENERATES

GENERATES

INPUT_OF

EVIDENCE_FOR



#ossummit

Requirement to Code to Tests to Evidence Traceability

foo.c

<>

Requirement
A.1

##

make

A.1.1 test 

??

A.1.2 test

??

A.1.3 test

??

Log from 
A.1.1 test!!

Log from 
A.1.2 test

!!

Log from 
A.1.3 test

!!

Specification file, 
requirements, 
architecture

##

source file<>

Tests, test 
scripts

??

Evidence, 
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework 

Test framework 

Test framework 

GENERATES

GENERATES

EVIDENCE_FOR



#ossummit

Requirement to Code to Tests to Evidence Traceability

foo.c

<>

Requirment A.1

##

make

A.1.1 test 

??

A.1.2 test

??

A.1.3 test

??

Log from 
A.1.1 test!!

Log from 
A.1.2 test

!!

Log from 
A.1.3 test

!!

Specification file, 
requirements, 
architecture

##

source file<>

Tests, test 
scripts

??

Evidence, 
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework 

Test framework 

Test framework 

GENERATES

GENERATES

Bug Fix

Requirement
A.1

EVIDENCE_FOR



#ossummit

Requirement to Code to Tests to Evidence Traceability

foo.c

<>

make

A.1.1 test 

??

A.1.2 test

??

A.1.3 test

??

Log from 
A.1.1 test!!

Log from 
A.1.2 test

!!

Log from 
A.1.3 test

!!

Specification file, 
requirements, 
architecture

##

source file<>

Tests, test 
scripts

??

Evidence, 
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework 

Test framework 

Test framework 

GENERATES

GENERATES

Bug Fix

Requirement
A.1

EVIDENCE_FOR

New 
Requirement
From Impact 
Analysis

##

##

NR test

?? GENERATES?? Log from 
NR test

!!

Test framework 

!!



Safety Profile Introduction (3.1 target)
● Also known as Functional Safety (or FuSa).

● Purpose is to link together all the safety artifacts (including code and relevant 
tests) with the aim of being able to automatically detect what a file update may 
need to force retesting. 

● Goal is to support continuous certification of safety artifacts after security updates 
are applied.

● Overview can be found at: https://fosdem.org/2023/schedule/event/sbom_fusa/

For more information, contact:  Nicole Pappler or Kate Stewart

https://fosdem.org/2023/schedule/event/sbom_fusa/


Want to Help? 

● If you have a use-case you want to make sure can be supported in the 
future SPDX specification, 

○ join the SPDX tech team mailing list (https://lists.spdx.org/g/Spdx-tech) , 

○ open an issue in https://github.com/spdx/spdx-spec and 

○ join in on the discussion!

● Try it, and let us know if you see issues.

55

https://lists.spdx.org/g/Spdx-tech
https://github.com/spdx/spdx-spec


Thank you!     Questions?



How to Get Involved - PRs & Issues
https://github.com/spdx

▪ Specification
• https://github.com/spdx/spdx-spec  ← ISO submission format
• https://github.com/spdx/spdx-3-model  ← 3.0 development
• https://github.com/spdx/spdx-examples

▪ Tooling
• https://github.com/spdx/tools-python
• https://github.com/spdx/tools-golang
• https://github.com/spdx/tools-java

▪ License List
• https://github.com/spdx/license-list-XML

https://github.com/spdx
https://github.com/spdx/spdx-spec
https://github.com/spdx/spdx-3-model
https://github.com/spdx/spdx-examples
https://github.com/spdx/tools-python
https://github.com/spdx/tools-golang
https://github.com/spdx/tools-java
https://github.com/spdx/license-list-XML


58

Embedded Projects Generating SBOMs

Zephyr’s west spdx

Presentation / Demo:

https://www.youtube.com/watch?v=
KYC3YpSu9zs

Yocto builds

Presentation / Demo:

https://www.youtube.com/watch?v=
y0N4FnkwTOY

https://docs.zephyrproject.org/latest/guides/west/zephyr-cmds.html#software-bill-of-materials-west-spdx
https://www.youtube.com/watch?v=KYC3YpSu9zs
https://www.youtube.com/watch?v=KYC3YpSu9zs
https://www.youtube.com/watch?v=y0N4FnkwTOY
https://www.youtube.com/watch?v=y0N4FnkwTOY


Relationship between SBOMs

59Learn more at: https://www.youtube.com/watch?v=KYC3YpSu9zs

https://www.youtube.com/watch?v=KYC3YpSu9zs


SBOMs Included By Default … Automatically

Source:https://www.linux.com/featured/enhancing-supply-chain-security-for-embedded-systems-renod
e-dashboard-for-zephyr-rtos-adds-new-software-bill-of-materials-sbom-capabilities-by-default/

https://www.linux.com/featured/enhancing-supply-chain-security-for-embedded-systems-renode-dashboard-for-zephyr-rtos-adds-new-software-bill-of-materials-sbom-capabilities-by-default/
https://www.linux.com/featured/enhancing-supply-chain-security-for-embedded-systems-renode-dashboard-for-zephyr-rtos-adds-new-software-bill-of-materials-sbom-capabilities-by-default/

