Does your DevSecOps Pipeline
only Function as Intended?

Timothy A. Chick

Carnegie Mellpn UII}V&I‘SItyO [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
Software Engineering Institute

Document Markings

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering
Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM22-1142

Carnegic M"u"“ Ln““““f ©2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 9
Software Engineering Institute

Agenda

About DevSecOps

Challenges associated with DevSecOps

« Challenge 1: Connecting process, practice, and tools
« Challenge 2: Cybersecurity of pipeline and product
Addressing the Cybersecurity challenges with MBSE

Carnegie Mellon University

)]) © 2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 3
Software Engineering Institute

About DevSecOps

Carnegie

Mellon

University
Software
Engineering
Institute

Today: Program Office Whac-A-Mole

Winning in Features and Effectiveness,
but Losing in Defensibility and Stability

In June of 2020 a generally successful DoD program
completed an 8 week “Hardening the Software
Factory” effort in order to address accumulated
technical debt and to address insufficient security and
operations practices due to the narrow focus on speed
of delivery.

These things occur, even in small relatively successful
programs, when technical debt and insufficient security
and operational practices are in place due to lack of
knowledge, experience, and reference material to fully
design and execute an integrated DevSecOps strategy
in which all stakeholder needs, including
cybersecurity, are addressed.

While playing Whac-A-Mole is inevitable, instead of
missing the holes, or constantly hitting the same hole, the
key is to fill in the holes.

Carnegie Mellon University
Software Engineering Institute

© 2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 5

DevSecOps: Modern Software Engineering Practices and Tools that
Encompass the Full Software Lifecycle

TIME

BENEFITS

DEFENSIBILITY

7

FEATURES

STABILITY

QUALITY

DevSecOps is a cultural and engineering practice that breaks down
barriers and opens collaboration between development, security,
and operations organizations using automation to focus on rapid,
frequent delivery of secure infrastructure and software to production.
It encompasses intake to release of software and manages those
flows predictably, transparently, and with minimal human
intervention/effort [1].

A DevSecOps Pipeline attempts to seamlessly integrate “three
traditional factions that sometimes have opposing interests:

+ development; which values features;

+ security, which values defensibility; and

* operations, which values stability [2].”
Not only does one need to balance the factions. They must do so in a

way that balances risk, quality and benefits within their time,
scope, and cost constraints.

[1] DevSecOps Guide: Standard DevSecOps Platform Framework. U.S. General Services Administration.
https://tech.gsa.gov/guides/dev_sec_ops_guide. Accessed 17 May 2021
[2] DevSecOps Platform Independent Model, https://cmu-sei.github.io/DevSecOps-Model/

Carnegie Mellon University
Software Engineering Institute

© 2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 6

An Enterprise View

Captures stakeholder
needs and channels the
whole enterprise towards
meeting those needs

Business Mission

Capablllty DEIlVEfy The people, processes,
and technology necessary
to build, deploy, and
operate the enterprise’s
products (i.e., the software
factories)

Mission Systems or services
that are delivered, deployed,
and operated for use by the
warfighters

ecOps

'*r\ Oriented Enterprise
Application Business Case Platform
Shared Services Requirements Infrastructure

All DevSecOps-oriented enterprises are driven by
three concerns:

Business Mission — captures stakeholder
needs and channels the whole enterprise in
meeting those needs. It answer the questions
Why and For Whom the enterprise exists
Capability to Deliver Value — covers the
people, processes, and technology necessary
to build, deploy, and operate the enterprise's
products

Products — the units of value delivered by the
organization. Products utilize the capabilities
delivered by the software factory and
operational environments.

Carnegie Mellon University
Software Engineering Institute

©2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 7

Carnegie

Mellon

University
Software
Engineering
Institute

Challenges Associated with
DevSecOps

Challenge 1: connecting process, practice, and tools

Captures stakeholder
needs and channels the
whole enterprise towards
meeting those needs

Business Mission

Capability Delivery

The people, processes,
and technology necessary
to build, deploy, and
operate the enterprise’s
products (i.e., the software
factories)

Mission Systems or services
that are delivered, deployed,
and operated for use by the
warfighters

DevSecOps

Creation of the DevSecOps (DSO) pipeline
for building the product is not static.

» Tools for process automation must work
together and connect to the planned
infrastructure

 Infrastructure and shared services are
often maintained across multiple
organizations (Cloud for infrastructure,
third parties for tools and services, etc.)

* Processes, practices, and tools must

evolve to meet the needs of the products
being built and operated

|| . .
*) Oriented Enterprise
Application Business Case Platform
Shared Services Requirements Infrastructure
Carnegie Mellon University ©2023

Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Many valid approaches to implementation’

George Box is famously quoted as saying, “All models are
wrong but some are useful.” The same can be said for the
various Agile and DevSecOps methods, as much of the
material around Agile and DevSecOps assumes a
simplification or idealization of a model development team.

The key to successful Agile and DevSecOps implementation
is understanding how you will instantiate the Agile manifesto,
Agile principles and DevSecOps principles.

The principles have implications for the characteristics of the
lifecycle that can be used. But there’s still more than one
valid way of implementing the principles...

Carnegie Mellon University
Software Engineering Institute

© 2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 1 0

Many Valid Approaches to Implementation?

« The family of Agile and DevSecOps methods has grown since 2000 to
incorporate techniques that address team, project, and enterprise levels of
scaling.

« Hybrids of multiple methods and techniques are common practice in both
industry and government.

« This is one reason it's so difficult to say a program is “Agile” or “doing
DevSecOps correctly,” or not.

« To succeed, you must select the correct techniques, regardless of chosen
methods, to meet your organization’s and customer’s goals, objectives, and
missions.

Carnegie Mellon University

)]) © 2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 1 1
Software Engineering Institute

Selecting the Appropriate Techniques

Three Fundamental Factors

1. ldentifying the ability of the organization to adopt new techniques
- Successful adoption requires the absorption of associated costs, as well as
expending the required time and effort.
2. Determining the suitability of Agile and DevSecOps practices in the
development of a given product or system

- Development and product characteristics play a large role in determining the
suitability of a particular agile technique.

- The desired product qualities also play a role in determining appropriate agile
technique
3. Determining the suitability of Agile and DevSecOps practices for the
organization developing the product or system

Adapted from Sidky, Ahmed; James Arther, Determining the Applicability of Agile Practices to Mission and Life-critical Systems,
Proceedings of the 31st IEEE Software Engineering Workshop (SEW 2007). pp 3-12.

Carnegie Mellon University ©2023

-))) [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 1 2
Software Engineering Institute

Challenge 2: Cybersecurity of Pipeline and Product
_ The tight integration of Business Mission,
et L Capability Delivery, and Products, using integrated
- processes, tools, and people, increases the attack
@ Papsushwct;rd ~\ zero Days/ -
DevSchps Managing and monitoring all the various parts to

surface of the product under development.
; '*r\ Oriented Enterprise . ensure the product is built with sufficient
' [icoion || oot || Potom | — cybersecurity and the pipeline is maintained to
Data .

operate with sufficient cybersecurity is complex.

I Shared Services ” Requirements ” Infrastructure I

How do you focus attention to areas of greatest

EE?EZ ~~~~~~~ . concern for security risks and identify the attack
Physmal
Theft

opportunities that could require additional

...... mitigations?
Backups

Carnegie Mellon University

)]) © 2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 1 3
Software Engineering Institute

Software Assurance (SwA)

DoD definition:

“the level of confidence that software is free from vulnerabilities, either intentionally
designed into the software or accidentally inserted at anytime during its lifecycle, and
that the software functions in the intended manner.”

[CNSS Instruction No. 4009; DoDi 5200.44 p.12]

SwA Curriculum Model definition:

Application of technologies and processes to achieve a required level of confidence that
software systems and services function in the intended manner, are free from
accidental or intentional vulnerabilities, provide security capabilities appropriate to the
threat environment, and recover from intrusions and failures.

[Mead, Nancy; Allen, Julia; Ardis, Mark; Hilburn, Thomas; Kornecki, Andrew; Linger, Richard; & McDonald, James. Software
Assurance Curriculum Project Volume I: Master of Software Assurance Reference Curriculum. CMU/SEI-2010-TR-005. Software
Engineering Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetlD=9415]

Carnegie Mellon University ©2023

))) [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 1 4
Software Engineering Institute

Risk

The perception of risk drives assurance decisions
» Assurance implementation choices (policies, practices, tools, restrictions) are
based on the perception of threat and the expected impact should that threat
be realized
 Perceptions are primarily based on knowledge about successful attacks
- the current state of assurance is largely reactive

- successful organizations learn from attacks and figure out how to react and recover
faster and be vigilant in anticipating and detecting attacks

» Misperceptions are failures to recognize threats and impacts — “how could it
happen to us?” or “it could not happen here!”

Carnegie Mellon University ©2023

))) [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 1 5
Software Engineering Institute

Interactions

Highly connected systems require alignment of risk across all
stakeholders and systems otherwise critical threats will be unaddressed
(missed, ignored) at different points in the interactions.
* There are costs to addressing assurance which must be balanced against
the impact of the risk.
» Risk must also be balanced with other opportunities/needs (performance,
reliability, usability, etc.).
* Interactions occur at many technology levels (network, security appliances,
architecture, applications, data storage, etc.) and are supported by a wide
range of roles.

9&1‘110:_&'1(‘ M"llf’n L 1}1x*(-r51ty" ©2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 4
Software Engineering Institute

Trusted Dependencies

Your assurance depends on other people’s decisions and the level of
trust you place on these dependencies:

» Each dependency represents a risk

* Dependency decisions should be based on a realistic assessment of the
threats, impacts, and opportunities represented by an interaction.

* Dependencies are not static and trust relationships should be reviewed to
identify changes that warrant reconsideration.

« Using many standardized pieces to build technology applications and
infrastructure increases the dependency on other’s assurance decisions.

Carnegie Mellon University ©2023

-))) [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 1 7
Software Engineering Institute

Attacker

There are no perfect protections against attacks.

There exists a broad community of attackers with growing technology
capabilities able to compromise the confidentiality, integrity, and availability of
any and all of your technology assets, and the attacker profile is constantly
changing.
» The attacker uses technology, processes, standards, and practices to craft a
compromise (socio-technical responses).

» Attacks are crafted to take advantage of the ways we normally use technology or
designed to contrive exceptional situations where defenses are circumvented.

Carnegie Mellon University

)]) © 2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 1 8
Software Engineering Institute

Mitigating Risk with Assurance Cases

Understanding risk is hard!

Without being able to quantify, or reason around,
the cybersecurity risks associated with your
product and DevSecOps pipeline, you will not be
able to:

» properly balance between features,
defensibility, and stability

* make necessary trade-off choices to achieve
your organization’s mission and vision in a
cost-effective way

An assurance case can be used to reason
about the adequacy for both the pipeline and
the product.

It is a structured approach used to argue that
available evidence supports a given claim

It provides the organization with the basis for
making risk-based choices tied to assuring that
the pipeline only functions as intended.

It provides requirements for automated systems
testing, or other evidence collection techniques.

Actual test results provide the evidence needed
to support the assurance claims.

Carnegie)l(*llf)n L'I}i“(‘rsit}" ©2023
Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 1 9

Structuring a DevSecOps Assurance Case

€1.0 The DevSecOps pipeline
only functions as intended

X

([[] 1

G1.4 The DevSecOps pipeline
provides Configuration
Management services and
functionality

C1.1 The DevSecOps pipeline
provides Planning & Tracking
services and functionality

C1.2 The DevSecOps pipeline
provides Quality Assurance
services and functionality

C1.3 The DevSecOps pipeline
provides Software Assurance
services and functionality

C1.5 The DevSecOps pipeline
provides Solution Development
services and functionality

C1.6 The DevSecOps pipeline
pravides Integration services and
functionality

©1.7 The DevSecOps pipeline
provides Verification & Validation
services and functionality

C1.8 The DevSecOps pipeline
provides Deployment services
and functionality

C1.9 The DevSecOps pipeline
provides Monitor & Control
services and functionality

provides

€1.10 The DevSecOps pipeline

Hosting services and
functionality

Assurance cases are composed of the following elements:

Claims— “assertions put forward for general
acceptance. They are typically statements about a
property of the system or some subsystem. Claims that

G1.4 The DevSecOps pipeline
provides Configuration
Management services and
functionaiity

1.4 The DevSecOps Pipeline meets
all of GM requirements and addresse
all identified abuse cases

(

C1.4.1 The CM Requirements are
met

I

\

C1.4.2 All DevSecOps Threals
associated with operational
ctvities.

tructured and

a
performed in support of CM have

r

are asserted as true without justification become
assumptions and claims supporting an argument are
called subclaims [1].”

Arguments — “link the evidence to the claim [1]” by
stating the assumption(s) on which the claim and the
evidence are built upon.

Evidence — “Evidence that is used as the basis of the
justification of the claim. Sources of evidence may
include the design, the development process, prior field
experience, testing, source code analysis or formal
analysis [1].”

Defeaters — “possible reasons for doubting the truth of a
claim [2].”

/A1.4 The DevSecOps Pipeline meats
all of CM requirements and addresses,
al identified abuse cases

D4 The Capability Requirements are
incomplete and inconsistent

[1] Bloomfield, R. E. and Netkachova, K. Building Blocks for Assurance Cases. Paper presented at the
International Symposium on Software Reliability Engineering (ISSRE), 03-11-2014 - 06-11-2014, Naples, Italy.
[2] Goodenough, John B., Charles B. Weinstock, Ari Z. Klein. Toward a Theory of Assurance Case Confidence,
CMU/SEI-2012-TR-

002 September 2012.

)

©1.4.1.1 CM Requirements have
been satisfied

©1.4.2.1 All operational activites
associated with performing GM
requirements have been identfied

/A1.4.2 CM threat mitigations are

roven by showing the threats and how

they are mitigated for all CM supporting
actvates.

[A

Evidence
mapping of C!
Requirements
10 Activities),

©1.4.2.1 Critical high priority ©1.4.2.2 Mitigations have been
threats associated with CM taken (o neutralize each identfied
activities have been idenified threat

Key: D3 Not ail high priority activity threats|

A?Ngumenl have been identfied Evidence
C =Claim

D = Defeater

D14.2.1.1 Operational activities.
‘associated with performing CM

Carnegie Mellon University
Software Engineering Institute

©2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 20

Carnegie

Mellon

University
Software
Engineering
Institute

Addressing the Cybersecurity
Challenge with MBSE

Model Based Systems Engineering

?}flzm Vision Functional Architecture

System Definition

-
E . g
:F' System Model

Concepl of Dperation

‘ Functional Model

® Translale User Operational Capabilities 1o
System Functional Requitements
 Endlo-end Mission Theeads WorkFflows # Ceaptacal Analysis Provides increased
= ldentification of System Qualities Rigor (vs fext caly)
* Readmap Developmant o Funclions
Establish Source/Originating Requiremsnts © Input/utpt
s Shuctured Hissarchy and Flowdown © Time: Sequence
& Managed Tracestslity o Logic
o Lgsed | s Desived Requiremests » Seenaro Development
o Requiremests to Simvlation o Operational

ard Verilication Blemants 0 Sarwlation
O Sysiem Dualities

0 @ l Physical Architecture

@@@
.

*The Digital System Model contains the most current requirements, key
mission/business operations, architecture, design details, implementation details, test
and evaluation details, and supporting documentation.

Requirements Model

Allocated Architecture

Analysis Made
= Yalidate Performasce
o Requinemisnis Mods Usdabe
* Funclions Madal Esecution via Distrete
Event Simalation
@ Timeline Analyses
2 Resowce Analyses
o Quastitative Benelits Analyges
o Validation ol Logic

Functional Model
= Candidaie Physical fchaectues
& HW, 3W, Inteifaces
& Human Diperators
s Allocate Functions to Components
Platform Compatiblity Assessmenis
System Physical Architecture Defisition

Not yesterday’s Document-Centric Systems
Engineering!

MBSE uses a Digital System Model* to facilitate
common system understanding and decision-
making.

The Digital System Model* is the single
authoritative source of truth

System and Components can be integrated at
various levels of abstraction and fidelity

Model Views are chosen to best communicate
information to a variety of stakeholders via the
dynamic creation of multiple, consistent,
accurate views

Impacts of changes are more easily analyzed
and evaluated

Carnegie Mellon University ©2023
Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 22

Reference Architecture/Platform Independent Model (PIM)

A Reference Architecture is an authoritative source of
information about a specific subject area that guides and
constrains the instantiations of multiple architectures and

solutions [1].

A PIM is a general and reusable model of a solution to a
commonly occurring problem in software engineering within a
given context and is independent of the specific technological
platform used to implement it.

Reference Architecture !
evaluate
: . PIM model PIM' model
Guides and constrains moee \meee
the development of 5
Metamodel map Metamodel refactor
Input f —— f{ PSM-1 evolve (f ; PSM-1'
nput for ’ model model
Stakeholder T | Solution /
ReqL"rements L N'd‘lltectl.lres J mapigenerate
/ h 4 h 4
‘//' Y k
\I\< Platform-1
[1] DoD Reference Architecture Description, https://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref Archi Description Final v1 18Jun10.pdf NOTE: PSM = Platform Specific Model

Carnegie Mellon University

Software Engineering Institute

©2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 23

https://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.pdf

DevSecOps Platform Independent Model (PIM)

is an authoritative reference to fully design and
execute an integrated Agile and DevSecOps
strategy in which all stakeholder needs are
addressed

enables organizations to implement DevSecOps in
a secure, safe, and sustainable way in order to fully
reap the benefits of flexibility and speed available
from implementing DevSecOps principles,
practices, and tools

was developed to outline the activities necessary to
consciously and predictably evolve the pipeline,
while providing a formal approach and
methodology to building a secure pipeline tailored
to an organization’s specific requirements

Carnegie Mellon University
Software Engineering Institute

©2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 24

DevSecOps PIM Content Dlagram

CortotDlgram GovSecos PRI Gt D] |

T e S ot
el [
[- 1 1 ‘Strasegic Taxsnomy
Bibliography 1 Governance. Raquinemants !anlo::mnnl mm i Orgardcationst Srwchurs
- 3 1 1
o o . B . % o] o
o ¥ . Rosoommto |
oy
__‘l,
e =
- - = e = Prde
sy i Lo =HH = LEAN 2
o " % - ==) B=
] =| Persc S
| 3 2, 1 o — e
= s 3 poreh ool
e Fcassary ‘Sirategie Traceabiiny
PR TTE g o B
L % % . Enal oupri s
RC P2 coriE Ly S - PO~ i st
==y e = T
L — e ;
—
Capatty i Tasby ﬁ
] 0} — .
5 R Fa & ==
u "
o N e,
1
=
1 il
[—
1
[T r—
s 1 -) 1
B
ot o
oty ey Tecsenrians ‘ .
Compromise.
ooyt
w1
| =]
]
L)
‘ : e=
=il T ¥y
. B =t =map
oo =
o e

Carnegie Mellon University
Software Engineering Institute

https://cmu-sei.github.io/DevSecOps-Model/

© 2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 25

https://cmu-sei.github.io/DevSecOps-Model/

DevSecOps

arequirements
aMaturity Level 1%
Product and System
Boundaries

Id ="Arc_4.2.1"
Text = "The system shall be
able o cleary identify and

Requirements

wreguirements
«Maturily Level 2»
Immutable Logs

ld="Sys 511"

arequirements
«Maturity Level 2»

Disaster Recovery
Id="Sys 524"

Text ="A disaster recovery
plan shall be documented
to provide mitigations in the
event of a disaster."

)

document trust boundaries Text = "The
between the system and the transaction logs should be
product under developmant " immutable.”
K . '
arequirements «wrequiremants «requirements
«Maturity Level 1s «Maturity Level 3» «Maturity Level 3»
Secure Usage Policy as Code Security Assurance

Id="Gov_fd414"

Text = “The sysiem shall be
capable of ensuring the
product is used in a secure

manner.”

atrace»

Id="Sys_ 5211"
Text = "The system shall
implement policy as code.”

Id = "Gov_64"
Text = "The system shal be
capable of supporting an
independent security
assurance review or audit of
activities and work products
associated with security
assurance claims.”

i .

£

arequiremen
«Maturity Leve
Dynamic Applic:
Security Testi
Id="Tes 32°
Text = "The system
able o support the |
dynamic code analy

in order to test the 5
product under devel

against runtime wuln
scenanos.”

&
5
-

~
|
|
|
|
|
|
|
|
|
|
|

Example of Requirements Representation in Diagrams from PIM

All requirements are organized into
categories based on logical and
functional groupings:

« Governance

* Requirements

* Architecture and Design

* Development

« Test

« Delivery

« System Infrastructure

Requirements Table Link

Carnegie Mellon University
Software Engineering Institute

©2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 26

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__49c29c66-3cd5-4435-ae7c-2348500911bb

DevSecOps Capability/Strategic Viewpoint

A capability is a high-level concept that

describes the ability of a system to

Legend
/" Trace

[System Requirements [

» Capability to Requirements
Traceability Link
» Capability to Operational

aChIeve Or perform a taSk Or a mISSIOn El () DevSecOps Pipeline [Strategic Taxonom

@ Configuration Management
(©) Deployment

() Hosting Services

@ Integration

All requirements in the DevSecOps PIM © Monitor & Control

were allocated to corresponding
capabilities.

@ Planning & Tracking

@ Quality Assurance

(©) software Assurance

(C) Solution Development
@ Verification & Validation

Activity Traceability Link
» Capability Definitions Link
» Strategic Taxonomy High
Level

Legend E L System Requirements
7 Trace 2 L 1 Governance [2 Requirements _ _ © L 4Development 8L 5Test S L 6Delivery 3 L 7 System Infrastructure
= E [E Gov_5 Knowledge Management & a E & 4 guration Management = 8 3 z T]]
g = A 3 E z 8 L E 3828 @ 3 2 25 H 2 g E£8 Ey
§ooraios) 3o £t i3 - g 333813 52 £ E: Bp 5§
2 S50=28%6 25 - g3 ERS g2t a2 £z & 538 E8,, ¢ 2 58 5338
w EE5s8-g3 D 2 8 g2 % < g & T 3 » 5 = EdD g5 2 == g 2°c @
§ 5253 <5 - Set : g £5292 %8 55853 S22y SESIE 252t
5 fEESe g £z £ = 35: i <¥3B5E S5 5 E 38 33828 R
S EgsEgY % E < § 259 o3 EEECE 2w = £5¢ o wEEEG]
: 588zé¢ & & &=z 235 23 gEEEE Esg 22z iz 28 £EEES iz
i N8 & © & ~ M g3 & & F& &V M 5553 < 3 228 z
= 5 - A U « & Eonom o & 228 E 2
K g 3 Pl 99y M) BN E o] LN YE
5 8 zée 222 H 2EEim H $5555 5555885588255
E E EE EEA E EEEER E FEEE FEEREEEAEEEEER
5] 7] Strategic Taxonomy 11 11 11 112 11 1112 21 1 113222 2132 123222.:2
(1 (€) DevSecOps Pipeline
\El(onﬂguva(mnManagemem 28 3 7 7 2 Va 7 15 AP PP PP 7 3 v Va 1 S 4 7 A7
\ . s .
Carnegie Mellon University ' .
g =) “ © 2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 27

Software Engineering Institute

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__b785f5cf-4f26-44ad-a193-fbabb098ed48
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__fae6e797-735c-49e2-b448-35606712d9c7
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__174b3b63-9066-41d3-ae86-5b79364244f8

Structuring a DevSecOps Assurance

Case Around Capability

C1.0 The DevSecOps pipeline
only functions as intended

A

r

[

I '

]

]

C1.1 The DevSecOps pipeline
provides Planning & Tracking
services and functionality

C1.2 The DevSecOps pipeline
provides Quality Assurance
services and functionality

C1.3 The DevSecOps pipeline
provides Software Assurance
services and functionality

C1.4 The DevSecOps pipeline
provides Configuration
Management services and
functionality

C1.5 The DevSecOps pipeline
provides Solution Development
services and functionality

C1.6 The DevSecOps pipeline
provides Integration services and
functionality

C1.7 The DevSecOps pipeline
provides Verification & Validation
services and functionality

C1.8 The DevSecOps pipeline
provides Deployment services
and functionality

C1.9 The DevSecOps pipeline
provides Monitor & Control
services and functionality

C1.10 The DevSecOps pipeline
provides Hosting services and
functionality

Carnegie Mellon University
Software Engineering Institute

©2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 28

DevSecOps Operational Viewpoints

Operational Process Flow [() DevSecOps Capabilty Delivery Model | |

* DevSecOps Capability
s pon s o Delivery Model Link

product feedback

An operational model for a system describes behavior of the system to conduct enterprise operations.

The main operational processes for DevSecOps includes development process for the product, as well
as the DevSecOps process itself.

Carnegie Mellon University

‘ : ‘ ©2023
Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 29

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__81be5267-879e-463c-a8ae-e49c2671c673

=

Business or Mission

DevSecOps Personnel Viewpoints

ucnﬁfhmn 8 e
Business or Mission Domain Expert i
=
Business Analyst o @
. J g
Compliance
— u
Contract Speciali . . wposts
= Personnel viewpoints are used to model =
wostr [-m'-"m
o 1 Custom =
P the socio part of DevSecOps system. = =
‘:;; il External User — 3
== A «Post» B‘ Industrial Spy
Marketing Internal User o Iy
5’.3"".2 8 @E Suh]-d;lpsr-r Expert 8 P B
«Posts 2y Organized Crime
Program Manager
Em_u:ol:mglr i X |) 3 X | cybersecurity engineer
5 devsecops champion release engineer, i site reliability engineer, architect | software developer] user experience |
Postr [«Posts = wPasts ral «Postr & woste [«Postr a | «Posts H Posts
Sales 8‘_ Inm‘:;: :‘:::nplon leu;:lm ‘ : ﬂhm‘:’mﬁl&dgmnnr m’ : -lon;:nh Drﬂ,an : I.lulm::p::;\u : WWM:@M
S:I'::l:lr | ! |
Post ar : i «Posts A : «Posts Al : m;m :] “Posts.
Systoms Analyst » Personnel Structure — 1 — - ! """':""""a, ! e ‘ —_ ’“"""’ﬂ’,"’"“
a . L oapegs ! . |
o Posts with ResponS|b|I|t|es: e = : — - ! | —_— =
R | —
M::m“ i A : wmu«m g ! 'r-tmm g : : WW‘M Sy
_ + Critical Roles — [! - | ! et
il porpegs ! 9l ! s
Souten Heneder Responsibilities, Goals and | ooty Spaeee : ! Sy eon e
— - T |
Questions ! ! f |
Carnegie Mellon University ©2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 3()

Software Engineering Institute

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__6e950f52-c1b1-40bb-9694-d62719c9804f
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__222c0749-e4e8-4303-9ffa-e7f051881c15

Everyone Plays a Role in DevSecOps

Legend © 7 Organization Posts
/' Approves £ :Té o]
o i)
/" ContributesTo 5 55 . T 55 8 £ 5 ” g
- -1 - - I~
7 Is Capable To Perform g o |52EE 2 ges g S8 &y &2 3 &
-8 & 2E8RLgE g 22 g |y lg.l8se (682853 .58 o
/" Observes 87 rl <u s ¥ s &5 0 4 8. 99 £ § = g auw g 2 % @ & = I
> == g EB‘QE-Eﬁ 5 v oo @ b sgE€2geg EEZz3 ¢ £5525 5 g
A Multiple (one-way) T w2 T E€£€3% Fi ey 2 EEEE55 %R $5£z2£E¢8 ET933%5 ¢
gTefR BEBELO2,3 g8838 o0 25353454 263633 zcStEE B
w v - 3 > = - k- 4B =t £ x - € = =
Eifdgce it 82T S8, 055285 geoigpEeelis 3
EEEE228s359¢s §EFigYzissEosEinss 55888585 iy
o] £ 00w 28 2nvw =
345 2998y s % E%C%g 53 - iy 2 0= 23
<8838 C000C8A88SEEEEESS28Esad&diidEEd83adaares533
606060 &0 &0 &7 50 605060 €0 &0 &0 50 50 5050 €0 60 80 5080 50 50 €0 60 60 80 50 50 5a 50 6a 6a fg &g fa 60 sa s ea g &g &g &asq
[[Operational Activities and Flow Diagrams
[DevsecOps Model Overview (611 57 1 3 O I] RN HEEEE

& [Plan DevSecOps Phase
2 [Product Under Development Lifecycle
B £ P2 Product Under Development Main Flow
& £ P2-1 Plan Product
& {> P2-2 Develop Product
[£ P2-4 Validate Product

& £ P2-5 Deploy Product [SIEEEEEEE R S S = S S S S S S | S = SR = S S =
£ P2-6 Operate Product v <

5 £ P27 Monitor Product E 100 [Y 5”0 FCA 3) [[o o 1
£> P2-8 Manage Contracts, Licenses and Agreements. v Z e Ll < 2t
<3 P2-9 Provide Feedback v 7 e e e 'ars 'ars
£ P2-10 perform Quality Assurance i |l e e s s s
Z> P2-11 Perform Data Analysis | | e I'd 4 < 'd
£3 P2-12 Monitor Development and Test Environment v v v e Z e
<> P2-13 Perform Configuration Management v '
£ P2-14 Store and Manage Code and Artifacts 7 < 4 'd v v
£3 P2-15 Aggregate, Store and Report on Product Collected Monitoring, P9 ./ ./ v e s v <

¢ Process Involvement Matrix Link

Critical Roles are mapped to Operational Activities.

Carnegic Meﬂpn Un.lversny. ©2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 39
Software Engineering Institute

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__c682f34a-3ea0-4c62-82a8-f590e26323a7

Threat Scenarios

Template:

Example:

Part Descripti ..
echpron Part Description

Activity The activity diagrammed in the PIM or PSM. There can be more than one . K) K

activity applied to the Threat Scenario. Activity Develop Product, Static and Dynamic Analysis
Actor The person, or group, that is behind the threat scenario. Threat actors can be Actor Insider Threat

malicious or unintentional. Developing a standard set of actors is beneficial for) - -

this step. Persona non grata could be useful in determining malicious actors. Action Results from analysis are disclosed for effect

Threat actor may be a person, or group, internal to an organization structure.

Attack Information Disclosure

Action A potential occurrence of an event that might damage an asset, a mission, or

goal of a strategic vision. Asset Analysis Results
Attack An actionl taken that utilizes one of more vulnerabilities to real%ze a Ifhreat to Effect Damage organization, vulnerabilities are publicly enumerated for a product

compromise or damage an asset, a mission, or goal of a strategic vision. under development
Asset A resource, person, or process that has value. Objective Develop a targeted exploit for the product under development, financial attack
L The desired or undesired consequence resulting from the attack. Statement An insider threat publicly releases the results of static and dynamic analysis to
Objective The threat actor’s motivation or objective for conducting the attack the public to damage the organization’s reputation.
Statement Structured prose summarizing the 6-part security scenario

Carnegie Mellon University

©2023

Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 32

Purpose
Entry
Criteria:

General

Step

Identify threat scenarios for a given system

The following Unified Architecture Framework (UAF) defined views have been created

for the system under evaluation:

o Requirements Diagrams

e Operational Process Flows

e Relationships between Operational Activities and System Requirements

e Operational resource structure, Posts (Le-roles) and corresponding responsibilities
including the Involvement relationships.

e As the system architecture and associated system instantiation evolves, so will the
threats and corresponding mitigations. While this process defines an approach to
systematically define applicable threat scenarios for the given system, threats should
be identified, evaluated, and captured continuously outside this process.

e During the structured and unstructured brainstorming activities, there are no right or
wrong ideas. The goal is to identify any reasonable action that can be taken to exploit
the various activities within the system to ultimately impact the final product. The
ideas will be evaluated later in the process.

Activities Description

Planning e Identify relevant stakeholders. Participants must contain a mix of

engineering, operational, user, business, and cyber security
experience.

e Schedule a date and time, or series of events, in which all relevant
stakeholders can actively participate.

Kick-off Event | e Review the workshop process and introduce participants

e Discuss the goals and objectives of the workshop

e Introduce participants to the concept of system threats and review a
few example threat scenarios that follow the format of the Threat
Scenario Template.

System and e QOutline system purpose and constraints
Architectural e Review system’s architectural views and relationships
Overview o Requirements
o Strategy
o Personnel
o Operational
Operational e Select an operational process flow to focus the threat scenario
Process Flow generation
Focus Area s Review the selected operational process flow to gain understanding

of the process, data flow between operational activities, and
performers involved. This may include reviewing associated
requirements to understand the scope and context of the various
operational activities.
Select an operational activity within the operational process flow
Either working individually or in pairs, brainstorm threats for the
selected operational activity and write them down. Threats can
bridge multiple operational activities. The brainstormed ideas
should be captured in the individual’s natural language.

e Using an affinity diagram, organize the threats identified by the

whole group and remove duplicates.

e Create a list of potential threats to the system.
Structured * Use the same operational activity as in step 5.
Brainstorming | e Break into groups of 2-3 people.

Unstructured .
Brainstorming e

Threat Scenario Generation Workshop

10

Exit Criteria

Define Threat
Scenarios

Operational
Activity Threat
Identification

Identify
Operational
Process Flow
Threats
Consolidate
and Review

e In small groups, identify ways that the operational activity may be
exploited to interrupt the confidentiality, integrity, and/or
availability of the system. Utilize the Process Specific STRIDES
Threat Modeling Taxonomy to reduce individual bias and to
holistically identify threats to the given activity.

e Using an affinity diagram, organize the threats identified by the
whole group and remove duplicates.

* Add new threats to the list of potential threats to the system created
in step 5.

e Ifthis is the first time any of the participates have written threat
scenarios, select a threat from the list and complete the Threat
Scenario Template as a group. Repeat until everyone understands
how to complete the Threat Scenario Template.

e Break into small groups of 3-4 people.

s Divide the list of potential threats to the system between the small
groups. Alternatively, create a pull system in which the small
groups claim a potential threat from a centralized list as needed.

e In small groups, complete the Threat Scenario Template for each
assigned, or pulled, potential threat.

s Review and update all completed threat scenarios as a whole group,
removing or consolidating duplicates.

s Select next operational activity within the selected operational
process flow.

e Repeat steps 5-7.

* Repeat step 8 until threats have been identified for all operational
activates within the selected operational process flow.

e Repeat steps 4-8 until threats have been identified for all
operational process flows for the given system.

e Consolidate all threat scenarios into a central list.

* Review and accept the threat scenarios

A list of structured threat scenarios that cover the operational activities
in the given system.

©2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

33

Example Threat Modeling Diagram for Write Code

Operational Activity

Malicious Logic Insertion
Abstraction = Meta
Id = 441"
Link = "hitps//capec. mitre.org/data/definfions/441. htmi*
‘ext = "An adversary installs or adds malicious logic
(also known as malware) into.a seemingly benign
‘component of a fielded system. This logic is often
hidden from the user of the system and works behind
the scenes 1o achiave negative impacts. With the
proliferation of mass digital storage and inexpensive
multimedia devices, Blutooth and 802.11 support,
new attack vectors for spreading malware are
‘emerging for things we once thought of as innocuous
greeting cards, picture frames, or digital projectors.
‘This pattem of attack focuses on systems already
fielded and used in operalion as 0pposed to systems
‘and their components that are stil under development
‘and part of the supply chain.”

«Attacks
Modification During Manufacture
Abstraction = Meta
Id = 438"

=] 1]
.
. <poss ray ‘<posts ay ﬂ' ay
"
Requirements to Op Activity Matrix e i ""'
Usor Exporionce Roloase Enginoer
«ContrusesTos e— -cmmwurn-: J
[]
| ! 1
| !] 1
[!] 1 isCopatiaTePodormn
[!]
| 1 Fr—ey
——————————————————— he e o Tecode [— = — — [cmeire &
Softwars Developer
! 1
" I «Compromisess 1 «Compromisess | scamess (Compromisess
1
| I
1
i
y
e F v 155 « F
1= 35 Injoct 9= 14 = 34 Vandor's PKI has been
itoms/user stories. ‘generates code based on mods or
(Efioct = %An APT group njects vuinerable heuristic instructions (Efect = *A Compromised Vendor's PKI
(Effoct = *A developer
bui he loolis
Toce A
|ancthr User or Senvce hat s not raquired 1o o= "1,
octs Text = °A coveioper
RS e | but thotoolis R
. tutna | «Cousess
. compromisad key that has siovated ‘
! | maicious work 2om to compromsa a code base.) privieges and has access
[1
| = [‘
1 | [1
| cRealizesAtiacks |- [1 !
1
1 | eReakzesAttacks [.
1 [1
| [|
1 1
v v

A.htrl®

Link =" . himr*
Text = *An attacker modifies a technology, product, o
component during a stage i its manufacture for the
purpose of carrying out an attack against some entity
involved in the supply chain lifecycle. There are an
almost limitiess number of ways an attacker can
modify a technalogy when they ara involved in its
manufacture, as the attacker has potential infoads to
the software compasition, hardware desin and
(F2oemtiy Ariare, o sk et mechacin

'An adversary st logic
(also known as malware) into a seemingly benign
‘component of a fielded system. This logic is often
hidden from the user of the system and works behind
the scenes o achieve negative impacts. With the
profferation of mass digital storage and inexpensive
multmedia devices, Blustooth and 802.11 support,
new attack vectors for spreading malware are
/emerging for things we once thought of as innocuous

Additionally,
fon autsourcod wih the hnalproduct acsembled by
the primary manufacturer. The greatest risk, however,

Is deliberate manipulation of design specifications to

produce malicious hardware or devices. There ara

billons of transistors n a single integrated circuit and

studies have shawn that fewer than 10 transistors are
required to create malicious functionality.*

. picture frames, or digital projectors.
This pattern of attack focuses on systems akready
flelded and used in operation as opposed (o systems
/and their components that are stil under

‘and part of the supply chain.”

Write Code
Operational

Activity
Connectivity Link

Carnegie Mellon University
Software Engineering Institute

© 2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 34

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__d1e17f3d-0161-4bbb-a829-80b2475a2412

DevSecOps Threat to Operational Activity Matrix

& El = Product Under Development Lifecycle
B < P2 Product Under Development Main Flow
1 {*P2-1Plan Product 1 £ P22 Develop Proi

El = System [
B ¥ P239

Legend
' Compromises

.
v

El
|

P2-4 Validate Product

a
c
a

tE

it

lan for Contras
lan for Quality
lan for ConfigL
lan Backlog [l

lan for Mea

-5 Deliver to Prod)

FZ2-5 Deploy Product

F2-f Operate Product
P2-7 Monitor Product

Pz-10 Perform Quality Ass
Pz-11 Perform Data Analy
P2-12 Monitor Developme
P2-12 Perform Configurati

=1 p2-14 Store and Manage €

S N N N N S N w w <® P2-15 Agaregate, Store an

P2-4-1-1 Perfoi @
P2-4-1-1-1 Perf
Pz-4-1-2 Perforri®
Fz-4-1-2 Perform
P2-4-1-4 Perform &
P2-4-1-5 Generate
P2-4-1-6 Aggregate

P2-8 Manage Contracts, Li
F2-9 Provide Feedback
F239-3 Implement System

=1 p2-4-2 Build and Pack:
P229-1 Design System

P2-4-3 Deliver to Testi
F239-2 Plan System

P2-1-1 Plan for Secw 151 <
| # PZ-4-4 Perform Dynam

=|{¥ P2-1-2 Design Pro |
P2-1-2-1 Create Ar
P2-1-2-2 Create Lo
Pz-1-2-3 Validate #
P2-1-2-4 Review Ar
P2-1-5 P|
P2-2-1 Select Unit of W
P2-2-2 Plan and Detal

&1 p2-2-4 Write Code
P2-2-5 Write Dev Tes

W2 P2-2-6 Review Code al
P2-2-7 Execute Dev Fl
P2-2-8 Store and Mana
P2-2-9 Release Code f

=7 Plan DevsecOps Phase
Ly
<
u
<
oy
<.
o
<.
oy
<.
3 P2-1-3 P
=3 p2o1-4 P
oy
<.
3 P2-1-6 P
{2P2o1-7 P
sy
<.
sy
<
oy
<
oy
<.
o
<.
oy
<.
oy
<.
oy
i
oy
i
oy
<.
sy
<.
sy
<
oy
<
u
<
P24
oy
<.
oy
<.
Sy
<.
oy
<.
oy
i
oy
i
oy
<.
sy
<.
sy
<
oy
<.
oy
<.
oy
i

vl p2-4-1 Perform Ste 0 <

& L Threats

= 1 Reduced monitoring

2 Disrupted Monitoring

nauthorized Access/Modifies logs to divert attribution
Inadequately configures system logging

; 5 Intentionally misconfiguring

= & Intentionally locks out accounts responsible for recovering, invi
7 Intentionally misconfiguring 2

& Intentionally misconfiguring 3

9 Decrease Document Markings

10 Unauthorized Access/Modifies logs to divert attribution 2

11 Insert Malicious Code in tool chain, code repository, build art
12 Patch Tools in the pipeline

Slow Approval Process

Disable the static analysis

Alters Automated analysis reports

Configures analyzer in a way that is not best practice

17 Results from analysis are disclosed for effect

& Production data (configurations, tokens, accounts, PlI, etc) is
Development productivity tool generates code based on mod
0 Tool generates code based on predetermined code snippet:
1 Perform a code review without sufficient security review critel
2 Review Is skipped for items not covered by other defect idel
Poisoning data while aggregating it

Requirements exploration and documentation

5 Modifies measurement Metrics

£ Misleading Contracting Practices

Misinterpreting the results of the analysis

Using careless or naive code idioms

9 Build tools are misconfigured

Upstream activity provide false /modified data

31 Tampering without data

32 Data is intercepted between activies

Miscategorized data, providing unnecessary data 1
Vendor's PKI has been compromised
Injects vulnerable work items/user stories 1
Compromises a vendor
37 Injects exploitable /malicious code into upstream open sourcs
& Encryption

wt !

Threats to
, Operational
Activities Link

NN

I e e e e e e N

NNNNNN - - - -
N Ny
NN Y N w Ny

-
AR

-
NN N

Carnegic M“llf’n Lmvorsny ©2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 35
Software Engineering Institute

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__39d192d3-69c4-41ca-8de0-3bfd9f2c9b0e

DevSecOps Threats with Attributes

T~

o

3

Name

= Reduced monitoring

= Disrupted Monitoring

Unauthorized Access/Modifies logs to divert
attribution

'n

1

= Inadequately configures system logging

= Intentionally misconfiguring

= Intentionally locks out accounts responsible for
= recovering, investigating, or repairing the system

1

Text

A threat actor is made aware of a menitoring system's
reduced capacity resulting in regular service outages leaving
an open window of opportunity for an uncbservable attack.

A threat actor spoofs a legitimate account (user or service)
and injects falsified darta into the monitoring system to
disrupt operations, create a diversion, or mask the attack.

A threat actor gains unauthorized access to logging data,
alters system logs to conceal illicit activity from forensic
audits, automated responses and alerts, or to divert
attribution.

A threat actor has configured the collection of system logs in
a way that limits the effectiveness of forensic audit activities.

A threat actor has configured the collection of system logs in
a way that limits the effectiveness of forensic audit activities
in order to conceal subsequent activities.

A threat actor spoofs an individual's account in order to
create user action logs with the objective of making a
targeted user in violation of security policy and reducing the
targeted individual's organizational effectiveness.

Unit testing is insufficient to cover the reguirements and
abuse cases. A software or site reliability engineer doesn’t

Effect

Reduced or misconfigured menitoring allows for nefarious | -,
activity 1o occur ~

MONITORING: falsified data injected/spoofing, tampering,
integrity, injects falsified data into the monitoring system to| <
disrupt

Logs: insider threat modifies the logs to conceal activity 15

Accidentally misconfiguring Logging - can’t perform ru
forensics work against what is captured ~

Intentionally misconfiguring the system

5

Targeting Individual with the intent that their login is s
denied, locking out individuals who should have access

Compromises.

P2-15 Aggregate, Store and
Report on Product Collected
Monitoring, Planning and
Feedback Data

P2-15 Aggregate, Store and
Report on Product Collected
Monitoring, Planning and
Feedback Data

P2-15 Aggregate, Store and
Report on Product Collected
Monitoring, Planning and
Feedback Data

P2-15 Aggregate, Store and
Report on Product Collected
Monitoring, Planning and
Feedback Data

P2-15 Aggregate, Store and

., Report on Product Collected

Monitoring, Planning and
Feedback Data

P2-15 Aggregate, Store and
Report on Product Collected
Monitoring, Planning and
Feedback Data

P2-15 Aggregate, Store and
Report on Product Collected

Realized By Attack
607 Obstruction

61 Infrastructure
-
Manipulation

1 Infrastructure
-
Manipulation

176
#= Configuration/Environment
Manipulation

176
#= Configuration/Environment
Manipulation

2 Functionality Misuse

gnment

Caused By
& Insider Threat

Mitigated By

& Advanced Persistent Threat
& Insider Threat

AT Architect

AT cybersecurity Engineer

& Insider Threat

A Site Reliability Engineer

AT Cybersecurity Engineer

.-, SC1 Mitigation

@ Strategy 1

A software Developer

& Insider Threat

& Insider Threat

AT software Developer

Documen
Much of this was pulled fro
CAPEC info hitps://capec.m
org/data/definitions/1000.

Keep at the Meta Level and
better explained in the “stal

Could be 1617 Most signific:
improper configuration

Could be a CAPEC - 184 50|
Attack

Threats Link

Carnegie Mellon University

Software Engineering Institute

©2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 36

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__1d6b915b-6f0a-42b0-a6b0-f4ac2e768cc6

Capturing the Complexity of the DevSecOps System

ey o e e - c =
= e e s = Chis e IR
ot under o osmare * capaiings ortna gtam o b i aa ™ cadh i wih wach [ghaninBnes ofiha Jcoriguration. tama asa gunnatmeothe 2 oy p
T ¥ ¥ TR R— |araductunder devalopmans* el uta thass in tha SBOM=)
" * T * " ' K
| | | \ ,
! | | | |
| ' I , ,
| ‘ , , | =
= ' gt ! ! gt | s i = | gt | = = | tiaturty o]
Mty L 22 | bty Lo 3 | | ! i ' | sttty Lival 1 bty L 1 | kil Leval s | Link Autarmatnd
[T R L et i ! | = i | [! , , Botwaa
6= "Duv 14T | [e=ow 2wy | Sl | ey ! =g == | | ! = "Gav 541 == ld= T 33"
Sui o Custady 3 = 5 5

Taxt= Tha gaam shall b Tart= “Tha gamm shall 4= B 5.2 | [Tt shal | [i | id= Tas 13 ' Ta= Thagmumshaibe | | d=Taq 11317 b Tet= Tiha gt

I i | o o i ST | e | sz o et Eyample o reats

iy any urauhaized || sabhubes of | [Tae= | intain | i ! et ! ! abla s acsscd it mansal | sk tha sl o | |

s) | e cui doaty || |ca wing a soed gt ot o | [drapadinata | I P i —

b cofiguraton bamn) wasarat | . 1 iz | g \ ‘ ratacceofihe e o | I | e
" | i i ’ | : | = o - . | - ===1 Traced to Capabilities
| ! | | | [K: | | * i | | ¥

| | I | |
| | | | | I | | | | | |

! ' ! ! !] 1 1]
' ' H ' | | ' h) , | ' . .
| ! | | | | | | ! | ! ! !

| | I | |
| | . | | | | ‘ | | | ' | ' | |

! L, nca al > e e ncu | amcas 1 e] e]
L | e | ew) o | o ! Lo ! ! ! ! ! . . . A t t

)
(e r—

,,,,,,,,,,,,,,, - ; - == Configuration
Management
Complexity Link

Backing isem

4) M st e ik
oy o et s

[T = Duvecpara g s cox- ko o i s . T e e of pmcsama
[k prmmas toreccn st resiig 11 ors o e b o ety .
[Lr—,

Carnegie Mellon University ©2023

))) [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 37
Software Engineering Institute

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__4454eb18-78b4-445c-be9d-3eca2f2bd5be

Addressing Assurance Case Defeaters

1.4 The DevSecOps pipeline
provides Configuration
Management services and

nctionality

il rmmrs e e Identifying and
. e
, 1 Mitigating Threats

C1.4.2 All DevSecOps Threats
C1.4.1 The CM Requirements are associated with operational

. S A helps to address

>] . :) Defeaters in your

1411 OM Requi n Ca‘s:of:i;lﬂ m’::fﬂo?:rﬁ::“émkd A1.4.2 CM threat mitigations are

A1.4 The DevSecOps Pipeline meets D4 The Capability Requirements are A1 equirements have roven by showing the threats and how A C

all of CM requirements and addres: incomplete and inconsistent been satisfied. requirements have been identified they are mitigated for all CM supporti s S u ra n c e a S e
all identified abuse cases activates.

7 N
(1
Evidence (C1.4.2.1 Critical high priority C1.4.2.2 Mitigations have been
r;aw"ng of C threats associated with CM taken to neutralize each identified
equirements activities have been identified threat
D2 Test pm::tx;:lrw; results are to Activities)

—

Key: D3 Not all high priority activity threats .
Evidence A:yArgumanl ave b dontd Evigence
C =Claim
D = Defeater
Y D1.4.2.1.1 Operational activities
lence associated with performing CM
[~ requirements are incomplete or é;:;eu:;
insufficient
Evidence
Carnegie Mellon University ©2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 38

Software Engineering Institute

The DevSecOps PIM enables Organizations, Projects,
Teams, and Acquirers to

specify the DevSecOps requirements to the lead system integrators tasked
with developing a platform-specific solution that includes the designed
system and continuous integration/continuous deployment (CI/CD) pipeline

assess and analyze alternative pipeline functionality and feature changes as
the system evolves

apply DevSecOps methods to complex products that do not follow well-
established software architectural patterns used in industry

provide a basis for threat and attack surface analysis to build a cyber
assurance case to demonstrate that the product and DevSecOps pipeline
are sufficiently free from vulnerabilities and that they function only as
intended

Carnegie Mellon University
Software Engineering Institute

© 2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 39

Summary

The use of model based systems engineering in
the design, implementation, and sustainment of
your DevSecOps socio-technical system will
assist you in building a system that is:

« Trustworthy — No exploitable vulnerabilities
exist, either maliciously or unintentionally
inserted.

» Predictable — When executed, software
functions as intended and only as intended.

f ‘. ..

1

-y

N~—

=
&
%

o
Ny

&
a
[]

Timely — Features are delivered as the speed
of relevance.

Carnegie Mellon University

))) © 2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 40
Software Engineering Institute

Contact Information

(LA e Timothy A. Chick
e ,’ B I l CERT Systems Technical Manager, CMU-Software Engineering Institute
Adjunct Faculty Member, CMU-Software and Societal Systems Department

tchick@sei.cmu.edu

https://www.cylab.cmu.edu
A " - https://s3d.cmu.edu
— g https://www.sei.cmu.edu

Carnegic M“llf’n Umvors1ty ©2023 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. - 4,4
Software Engineering Institute

mailto:tchick@sei.cmu.edu
https://www.cylab.cmu.edu/
https://s3d.cmu.edu/
https://www.sei.cmu.edu/

	Does your DevSecOps Pipeline only Function as Intended?
	Document Markings
	Agenda
	Slide Number 4
	Today: Program Office Whac-A-Mole
	DevSecOps: Modern Software Engineering Practices and Tools that Encompass the Full Software Lifecycle
	An Enterprise View
	Slide Number 8
	Challenge 1: connecting process, practice, and tools
	Many valid approaches to implementation1
	Many Valid Approaches to Implementation2
	Selecting the Appropriate Techniques
	Challenge 2: Cybersecurity of Pipeline and Product
	Software Assurance (SwA)
	Risk
	Interactions
	Trusted Dependencies
	Attacker
	Mitigating Risk with Assurance Cases
	Structuring a DevSecOps Assurance Case
	Slide Number 21
	Model Based Systems Engineering
	Reference Architecture/Platform Independent Model (PIM)
	DevSecOps Platform Independent Model (PIM)
	DevSecOps PIM - Content Diagram��
	DevSecOps Requirements
	DevSecOps Capability/Strategic Viewpoint
	Structuring a DevSecOps Assurance Case Around Capability
	DevSecOps Operational Viewpoints
	DevSecOps Personnel Viewpoints
	Everyone Plays a Role in DevSecOps
	Threat Scenarios
	Threat Scenario Generation Workshop
	Example Threat Modeling Diagram for Write Code Operational Activity
	DevSecOps Threat to Operational Activity Matrix
	DevSecOps Threats with Attributes
	Capturing the Complexity of the DevSecOps System
	Addressing Assurance Case Defeaters
	The DevSecOps PIM enables Organizations, Projects, Teams, and Acquirers to
	Summary
	Contact Information

