

Software Engineering for Machine Learning, page 1
 www.sei.cmu.edu/podcasts

Software Engineering for Machine Learning: Characterizing and

Understanding Mismatch in ML Systems
Featuring Grace Lewis and Ipek Ozkaya as Interviewed by Jonathan Spring

--

Welcome to the SEI Podcast Series, a production of the Carnegie Mellon University Software

Engineering Institute. The SEI is a federally funded research and development center sponsored

by the U.S. Department of Defense. A transcript of today’s podcast is posted on the SEI website

at sei.cmu.edu/podcasts.

Jonathan Spring: Welcome to the SEI Podcast Series. My name is Jonathan Spring, and I am a

senior vulnerability researcher here at the SEI CERT Division. Today, I am joined by two

illustrious colleagues, Dr. Grace Lewis, principal researcher and lead of the Tactical and AI-

Enabled Systems Initiative here at the SEI, and Dr. Ipek Ozkaya, technical director of the

Engineering Intelligent Software Systems Directorate also here at the SEI. Today, we are here to

discuss their research in software engineering for machine learning. Welcome to you both.

Grace Lewis: Thank you.

Ipek Ozkaya: Thanks.

Jonathan: Grace, Ipek, can we start with telling our listeners a little bit about yourselves and

what brought you here to the SEI?

Grace: Sure, I can start. My name is Grace Lewis. I came to the SEI, hard to believe it, but 20

years ago after completing my masters in software engineering at Carnegie Mellon University. I

joined as an engineer, meaning that I was a software developer on several projects that were

ongoing. Very quickly, I learned that my passion was really the research. I mean, I like

engineering, but my passion was really the research side.

After that I got a PhD in computer science from the Vrije Universiteit Amsterdam. Now, with the

SEI, I lead an initiative, like you said, called TAS, Tactical and AI-Enabled Systems, where we

conduct applied research and development in three focus areas. One is tactical-edge systems. The

second is software engineering for AI systems. And the third is the intersection of the two,

meaning how do you do AI at the edge.

http://www.sei.cmu.edu/podcasts
https://www.sei.cmu.edu/publications/podcasts/index.cfm
https://resources.sei.cmu.edu/library/author.cfm?authorID=4347
https://resources.sei.cmu.edu/library/author.cfm?authorID=3659
https://vu.nl/nl

SEI Podcast Series

Software Engineering for Machine Learning, page 2
 www.sei.cmu.edu/podcasts

Jonathan: Great. Thanks. Ipek, how about yourself?

Ipek: Well, thanks for having us. Ipek Ozkaya, and I came to the SEI longer than I actually can

admit to myself, around 2006. This was right after I completed my PhD at Carnegie Mellon

University in a field called computational design. That was applying software engineering to

design professionals and to architecture and design tasks. But I was very passionate about

software and its research. Ever since I joined the SEI, my focus has been on software architecture

and combining software architecture practices and applying it with organizations. My current

research is focused on understanding how to manage technical debt, again which builds on

architecture and software architecture principles, and also with working with Grace and our other

teams on understanding what software engineering for AI-enabled systems looks like.

Jonathan: Thanks. I know building on both of these pieces of work for ML systems, you two

recently wrote a blog post exploring software engineering and ML and characterizing what you

call mismatch in ML systems. How does this problem of mismatch come up with machine

learning, and can you describe the entry point for the problem or why we care about it?

Grace: Yes. Sure. So the origin of mismatch is that, when you think about how machine-

learning systems are built, they are built by three different types of teams. You have data

scientists or machine-learning engineers that are building machine-learning models. Then that

model is typically passed on to a software engineering team for integration into a larger system.

Then the system itself is passed on to an operations team that now is in charge of operating and

monitoring the system as a whole. The problem is that, if you look at how these teams are

composed: very different people, very different backgrounds, very different vocabulary and, in

the end, also very different system concerns. So what happens is that these teams, because they

also operate independently, unfortunately tend to make assumptions about what the other parts or

the teams in the systems are doing, and that is what leads to mismatch. So basically, mismatch is

a problem that occurs because of an incorrect assumption made in isolation by one of these

teams. In addition to that, we found that you can trace the cause of the mismatch to some piece

of information that should have been shared between stakeholders, and if it would have been

shared, it would have avoided that problem.

Jonathan: Great. I am sure that misaligned assumptions are not totally new, but, Ipek, can you

talk a little bit about how the mismatch shows up from traditional software engineering and how

that gets maybe worse in machine-learning systems?

Ipek: Of course. And as you have identified, mismatch is not new to software engineering

systems and actually any engineering system. It is really the assumptions that different parties

make and how you communicate those assumptions. What is different is, in the software

engineering systems, we have techniques that we actually anticipate and we have kind of

http://www.sei.cmu.edu/podcasts
https://www.sei.cmu.edu/our-work/software-architecture/
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=6520
https://insights.sei.cmu.edu/blog/software-engineering-for-machine-learning-characterizing-and-detecting-mismatch-in-machine-learning-systems/

SEI Podcast Series

Software Engineering for Machine Learning, page 3
 www.sei.cmu.edu/podcasts

safeguarded with it. What has been catching a lot of the organizations who are developing now

ML-enabled systems unprepared is the data scientists. The new set of technical stakeholders that

are joining the development of these systems, first of all, may be making different assumptions.

Their techniques are different. The way they measured success or how the elements that they

develop, like the ML models are developed, behaviors are different, and these models go through

so many different stages that software engineers may not always appreciate. So putting that

together, there are actually new categories of mismatch or mismatch assumptions that occur and

also, maybe opportunities to safeguard the systems, both with automation or other techniques.

And that was the observation that we made, and that’s how the research started.

Jonathan: I think that we will want to talk to what we might recommend people can do to

safeguard against different kinds of mismatch, but it is clear that we need to know what they are

before we can safeguard against them. Can you tell us a little bit about how you would go about

methodologically characterizing the new kinds of mismatch and maybe also interesting places

where you have identified the same mismatches [but] maybe more impactful. How would we go

about studying this?

Ipek: Let me get started. The approach we took was an empirical approach. There were some

observations we had started to make based on the organizations we worked with, things we read,

our research, and whatnot. But we stepped back and said, OK, what does a mismatch really look

like and do these mismatches appear the same way from a data-scientist perspective, from a

software-engineer perspective, from an operations-individual perspective? So we interviewed

individuals across the board—that included a combination of these different expertise levels—

and we collected their examples. Then we also supplemented that information with things that

had been written. There are quite a number of actual papers now coming out from experiences—

Microsoft, Google, and some of these organizations who are doing it—and there are examples

there as well. And as a result, there were about 140 examples of mismatch that we collected, then

we went about with a characterization exercise to see whether there are some categories that are

emerging, and that kind of started snowballing the research.

Jonathan: Great. I think that that is a really great example of mixed methods: social science and

general research, which is super important and, I think, underused to understand, at least the

security side of things. I am not as expert in software engineering, but is that also something that

maybe people need to do more of for software engineering?

Grace: I would say so. Like Ipek said and like you said, it is definitely a mixed-method study.

One part of it was understanding, from real practitioners, what does mismatch look like? Or

even, like, that was a hypothesis that we had, but is this real? Does mismatch really happen?

Right? So that was the part of the interviews that we also validated with a survey. But in parallel

to that, just as Ipek said, we said, You know what? Mismatch has occurred in the past. There are

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

Software Engineering for Machine Learning, page 4
 www.sei.cmu.edu/podcasts

lots of kinds of mismatch. Let’s look at what the literature says and maybe are there best

practices out there already for these types of systems? And so we conducted what is called a

where you look not only at the white literature, which is the academic literature, but you look at

the gray literature, which is basically what comes up when you Google something. So, like, more

informal blog posts. And the advantage of that is that you get the academic perspective, but you

also get the industry perspective because those are folks that are writing the gray literature. And

so then, after that, what we did was basically a mapping. We said, OK, we know that all these

mismatches exist. Which one of these best practices can we map to those mismatches? Then we

ended up with a really, really nice matrix. Then, at the end, what happened is that all that

information that should have been shared, we codified it into a set of descriptors. They’re

machine readable. And so these descriptors are for parts of the system. So, This is how you

describe your trained model. This is how you describe your raw data. This is how you describe

your training data. This is how you describe your operational environment. Because, that way,

that information now is explicit. It is shared. The goal of making them machine readable is that

our next steps are really to build tooling around this, have people build tooling around these

descriptors. So yes, absolutely, totally agree.

Ipek: Part of the approach also helps us, as well as the practitioners and researchers identified.

There are some categories of mismatch that will actually emerge because the field is new; you

don’t know some of the things you don’t know. Eventually, those will fall in place. But others

are actually enduring challenges that we need to do more research on, and this kind of an

approach allows us to separate, OK, some of these will eventually go away by themselves because

the practices will be learned by all these individuals. There are other safeguards that are already

maybe out there that people will start employing. Others, and we have identified some of these

like, for example, testing being one. That really requires more research from different individuals

to actually advance the field and make these machine-readable descriptors, define them, identify

more of them, developing automation and all the good stuff that comes with it.

Jonathan: Ipek, you mentioned testing there as if that’s sort of a simple and one thing. But

because of all of these different areas of mismatch, is there a different testing that is needed for

maybe each of the pairings? I imagine that there are some mismatch between data scientists and

engineers. Some mismatch between data scientists and ops. Some between ops and engineers.

Are there different tests on each of those axes, and how do we go about making sure that the

right people learn about the right tests?

Ipek: Absolutely. That is actually why we are going to do continuing work in this area because

the work we did just scratched the surface. This happened coincidentally at the time when we

were working with some organizations who happen to have challenges in, What does it mean to

test an ML model while it’s being developed by data scientists? What does it mean to test that

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

Software Engineering for Machine Learning, page 5
 www.sei.cmu.edu/podcasts

model when it’s actually part of the system? And when it’s deployed, are there techniques that

are already applied by software engineers that are used? There are techniques that data

scientists use, but it seems to be more of an art rather than a science in terms of how some of

these organizations are going about that. So that is actually what we are going to be doing next.

You are right. There are mismatches that we can safeguard. There are some, again, obvious

methods that could be used. But there [are] also gaps that we need to identify and do more work

on.

Jonathan: Grace, I don’t know if the more interesting part for our listeners is the things that we

can fix easily or the things that are going to be super hard to fix and we might be stuck with for a

while. But maybe do you want to talk about maybe the good news first?

Grace: Sure.

Jonathan: And then the bad news.

Grace: Right. So here is the good news. The good news is that, at a small scale, we were able to

validate our findings. We were able to validate that mismatch exists. Yes, this is very important

to share to avoid that mismatch. The good thing is that, for many of those mismatches, there is

not really a rule that says, This value has to equal this value. For many mismatches, just share

the information. So, for example, when you hand data to a data scientist, tell them more about it.

Where did you collect it? How did you collect it? At what time was it? I mean, like, just basic

information or, Where did you get it from? When the model is operational, how fast is the data

going to be coming into this model? So a lot of them, I would say about 70 percent of them are

really just sharing information. For others, we did have to build rules. So, for example, when a

data scientist is building a model, it is a good idea if that data scientist has some information on,

What are the computing resources that are required to serve the model? But there you can have

a formula, right? We need resources in operations to be greater than resources required for

running the model. So yes. So the good news is that a lot of it is really simply information

sharing. For a lot of them, there are kind of simple rules.

But there are areas that are still very difficult. The number one cause of mismatch in our

interviews was really testing. Because we don’t really know how to test these types of systems.

For example, from the data scientists’ perspective, when they say, Yes, we tested the model, it

basically means, We evaluated the model and the model has the expected accuracy that we were

targeting. For a data scientist, that is what testing means. For a software engineer, it’s like, Have

you done unit testing? And the data scientist is like, Oh, unit test? I’m not sure I know what that

is. So part of the work that we’re going to be doing next is really building on that because that’s

where we saw there was, like, the biggest gap. So, for example, how can we, through tooling,

how can we help data scientists build unit tests? It’s nothing wrong. It’s just that they weren’t

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

Software Engineering for Machine Learning, page 6
 www.sei.cmu.edu/podcasts

trained with that. From a software-engineer perspective, what does it mean to integrate a

machine-learning model and what does integration testing look like? I guess the bad news—

although you could say it’s good news—is there is so much work to be done.

Jonathan: Thanks, Grace. I think that the different testing stuff is really interesting. One of the

things I was curious about reading your work is whether the security side of these things falls

under operations. So I have been doing some thinking about how to manage vulnerabilities in

ML-enabled systems, which is sort of an operations problem. But the security community has

different testing like fuzzing, or symbolic execution, or whatever sort of program-verification

stuff to do something similar to what unit tests are doing, but looking for a different objective.

Grace: Mm-hmm. Right.

Jonathan: How do you think we can communicate those sorts of tests? I know that this isn’t

exactly what you did your research on, but can we sort of integrate all of that into the testing that

we need to bring together with the mismatches?

Ipek: I think there are opportunities with the mismatches and the descriptors, both from a testing

perspective, but there were other categories of mismatches that we have identified. Like, for

example, the mismatch between development environment and operational environment would

also provide opportunities to safeguard and catch some of the issues that you are talking about. I

would not, probably, lay them all on testing, but testing definitely will create opportunities to

catch some of those.

Grace: Also I would say that some of the...let’s call it security testing is testing that we have

been doing forever and ever and ever. For example, Validate your inputs. That is not a common

practice in the data-science community, but it is a very common practice in the security and the

software engineering community. So, it is really looking at what is out there and providing those

tools for people that are not aware of what you need to do to make a secure system.

Jonathan: Yes. So Ipek, can you talk a little bit more about the mismatch between the

development environment and the production environment that you mentioned briefly there?

Ipek: Some of the examples that we came across were, for example, when the ML models were

being developed and so happened both in the data-science aspect and the software-engineering

aspect, the environment that they were collecting the data, running the model, and whatnot was

different from the actual operational environment. This was a huge resource-

consumption/assumptions mismatch. Sometimes it works, sometimes it doesn’t, but that created

a lot of failures for some of the organizations that we talked to. And this is, I think, something

that could easily both be checked as well as automated because there are attributes for these that

actually can be up front, or in an iterative way, identified and brought back into the environment.

http://www.sei.cmu.edu/podcasts
https://insights.sei.cmu.edu/blog/announcing-cert-basic-fuzzing-framework-version-28/
https://en.wikipedia.org/wiki/Symbolic_execution

SEI Podcast Series

Software Engineering for Machine Learning, page 7
 www.sei.cmu.edu/podcasts

Jonathan: I know it’s hard to briefly summarize the whole data lifecycle, but could you give us

some highlights on where some of those data-lifecycle mismatches show up?

Grace: Absolutely. Absolutely. Kind of like from a data lifecycle, so you start out with raw data.

The raw data gets processed, and you come up with training data and evaluation data. Then

eventually a model gets put into production. Now you are dealing with operational data or

production data. There are lots of opportunities for mismatch, not only just related to the data,

but also, again, related to the different categories. For example, a data scientist gets raw data. We

heard it over and over again, the data scientist saying that somebody just tosses them a piece of

data and says go do some data science to this. Just go and do something. Tell me something

about this data. And it’s, like, OK. What problem are you trying to solve? How will you know

that the problem is being solved? From that perspective, there are mismatches between the

expectations from a product owner of what a model could do and what you actually can do with

that data, if that makes any sense. So there are definitely mismatches there. Mismatches between,

let’s say, raw data and training data usually occur because there is not enough information about

the raw data. Sure, you give me the raw data and, it’s field 52, field 53, field 73. And I’m the

data scientist. I’m looking at this and I’m, like, I have no idea what field 53 is. It might be that I

may be able to tell you something interesting about field 53, but unless I have more context, I

really can’t give you a good, good, good solution.

And then, further on, okay, you have a trained model. Everything is great. But what happens?

Usually, when a data-science team trains a model, you are given the data in some, let’s call it

static format. It’s in a database. It’s in a data file. It’s in some data source. When that model is

put into production, the data is not coming from a static data source, it’s coming from a data

stream. It’s coming from user input. It’s coming from another thing. And, again, if the data-

science team doesn’t know, like, in operations, what are the data rates? It’s not only the data-

science team, but the software-engineering team is not going to be able to say, Yes, this model is

performing well. But not so much from an accuracy perspective but from a performance

perspective like running, producing inferences in an appropriate amount of time. So I hope that

answers your question, but those are some of the mismatches related to data that we found.

Jonathan: Yes. Thanks, Grace. I think that that is a good summary of the whole lifecycle from

data collection through forming hypotheses in a model and moving that into production and the

stuff that can happen. Some of this is essentially good scientific practice generally: have a

question you’re trying to answer. [Do you] have a success criteria where you know whether you

have answered it or not, like understand how it’s going to change your model of the world or

what you want to learn from it and why you care about it. I know that, Ipek, you’ve been

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

Software Engineering for Machine Learning, page 8
 www.sei.cmu.edu/podcasts

involved in that more generally in software engineering through the journal that you are chief

editor of [IEEE Software] and all of this. You have a lot of different perspectives on this.

Ipek: So it boils down to codification of best practices. There is a very important aspect of the

ML mismatch work that is codification of the best practices. Some of these are things

experienced engineers, experienced data scientists already do know. But it’s really based on their

experience. Once you codify, especially when you can codify and represent them as a descriptor

and provide some form of ability to check, regardless of who is doing it, that is really when you

baseline some of these avoidable problems. That is really what it boils down to, and that is

probably what is transferring from software engineering and software engineering for machine

learning. That is really how software engineering has improved over the decades. I think that

information is transferring, and that is the approach we brought to the project as well.

Jonathan: Ipek, that is a really good understanding of codification. What are some of the

remaining challenges in deploying, operating, and sustaining ML-enabled systems?

Ipek: There are large industry organizations that actually have been using ML models and AI

techniques as part of their software. They do it because they have resources. Some of the

software that they produce are not as mission-critical. One of the things, I think, especially for

our stakeholders within the DoD and more mission-critical, safety-critical domains, sustainment

and maintaining these systems will actually probably pose new challenges. We don’t know what

we don’t know there yet. We are mostly focused on the best use of algorithms, developing

algorithms, making sure that we improve the precision, their decision-making capability, ethics,

bias, privacy. All these good things that are actually involved in developing ML-enabled

systems. But once, I think, these systems are out there in the field, we will start seeing some of

their sustainment and deployment challenges. We will see how we will actually be able to

upgrade. Some of the work we are doing in ML mismatch will definitely contribute to that. But

there is more work to be done in terms of how we monitor them, how we scale them, how we

architect for them. Those are all, I think, going to be things that we will learn more as we have

more experience coming from the field as well.

Jonathan: That is great. Grace, can you talk a little bit about how those challenges that Ipek just

mentioned might inform your future work or the future work of our colleagues here at the SEI?

Grace: Yes. Absolutely. First of all, we have upcoming work in addition to building tooling

around mismatch detection, like we said before, we are really focusing on testing because that is

a big issue, on providing support for testing not only for data scientists but also for software

engineers and even operations folks. In addition to that, as people that have followed the SEI for

many years, especially our software-architecture work, we have a big emphasis on quality

attributes, understanding a system through its quality attributes. What does security mean for a

http://www.sei.cmu.edu/podcasts
https://www.computer.org/csdl/magazine/so
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513803
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513803

SEI Podcast Series

Software Engineering for Machine Learning, page 9
 www.sei.cmu.edu/podcasts

system? What does scalability mean for a system? And all the -ilities you can think of. One big

quality attribute that is not new but I really think it’s going to be key for these types of systems is

monitorability. If you think of the model, I mean, the model only knows what it knew at training.

If it starts seeing new data, it is not going to perform well. It might be that the environment itself

changes and then all of its predictions are somewhat different. So being able to develop systems

that have monitorability built in so that you can tell that something is different in the system. I

think that is going to be a big challenge, like Ipek said, as systems are deployed. And it is

something that we are definitely very interested in, given, like I said, our quality-attribute focus.

I just think that is one of those quality attributes that is going to emerge.

Another type of quality attribute is that we talk about ethics a lot. AI and ethics. I know that is a

big theme, but what does ethics mean from a quality-attribute perspective? How do I build a

system that shows that it is ethical? How do I say, This design is more ethical than this other

design? So it is understanding those new requirements in quality attributes that come from this

field. I think that is also a very interesting area of research that we would like to explore.

Ipek: We have efforts going on in all those areas, in addition to those that Grace mentioned.

Understanding how to move these into operations, there is all the new work coming in MLOps,

but there are missing parts of the lifecycle, and that actually meets well with the monitorability,

how you actually provide some of the information to the operations as well as data scientists

throughout the lifecycles.

Jonathan: Thanks, Grace. Thanks, Ipek. I have a number of topics I know that we could spin off

to on those two things that you just said. What is ethics from a quality-attributes point of view? is

an amazing question that I think we could probably talk about for another hour.

Ipek: Maybe next podcast.

Jonathan: Before we go too far off onto something like that, I think it is important to understand

what we can transfer to practice right now out of what we already know. For our listeners that

are software engineers or machine-learning engineers or operations people who are getting

engaged with an ML system, what resources are available to those listeners to do a little bit better

right now?

Grace: OK. So part one of this research project, which was under characterizing and

understanding mismatch, was presented in an SEI webinar. So I would definitely start there. It’s

available on the SEI website. Just go to the SEI website, search for Software Engineering for

Machine Learning under the Webinar Series. Now the paper that describes the methodology

more in detail was recently delivered and published at a brand new ICSE [International

Conference on Software Engineering] 2021 workshop on AI engineering called WAIN...W-A-I-

http://www.sei.cmu.edu/podcasts
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=651730
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=651730
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=651730
https://conf.researchr.org/home/wain-2021

SEI Podcast Series

Software Engineering for Machine Learning, page 10
 www.sei.cmu.edu/podcasts

N...2021. And a preprint of that paper is available on arXiv. It’s called “Characterizing and

Detecting Mismatch in ML-Enabled Systems. So obviously, you can look on arXiv for that. And

finally, the replication package for Part 1 of the study—if you are interested in seeing the actual

data and what the mismatches were—it is available on GitHub on github.com/galewis/ml-

mismatch. And the plan is to very soon—Ipek and I are working on that—is to upload the

replication package for Part 2, which is also going to include the resulting descriptors, which I

think are the main outcome of this project. And it is our belief that it is going to bring a lot of

benefit, especially to practitioners in the field.

Jonathan: That’s great. And we’ll definitely have links to all of those resources in the show

notes so our listeners don’t have to rewind and scribble that down. So everyone can go to the

show notes and you’ll find links to all of those wonderful resources that Grace just mentioned.

Ipek, is there anything else that you think our listeners should know right now about what they

can maybe do a little bit better with what we have available right now?

Ipek: I think the SEI puts out some of the results of the early work out there. I would encourage

listeners to visit our website and blog regularly. There are also other things that have been

published. You mentioned IEEE Software. There was a specialty issue focusing on AI effect and

there were some interesting papers that relate to what we have done. We [SEI] published 11

Practices for AI Engineering. I think those resources could also be starting points for

practitioners or researchers who are starting to think about applying software engineering to ML

engineering, ML-enabled systems, as well as thinking about AI engineering.

Jonathan: Yes. That 11 good-practices document is definitely a good place to start.

Ipek: And, in addition, recently SEI has published the Three Pillars of AI Engineering, which

include Robust and Secure AI, Scalable AI, and Human-Centered AI. I think those are also

available, and they’re good resources to get started.

Jonathan: I could go off and talk about any of those other tangents, but I can wrap it up if you

are done. So Grace, Ipek, thank you so much for taking your time to talk with us today. And

thank you to all the listeners for joining us. We’ll have links to all of the various things that

we’ve mentioned during the podcast in the show notes. Grace, Ipek, thank you very much.

Thanks for joining us. This episode is available where you download podcasts, including

SoundCloud, Stitcher, TuneIn Radio, Google Podcasts, and Apple Podcasts. It is also available

on the SEI website at sei.cmu.edu/podcasts and the SEI’s YouTube channel. This copyrighted

work is made available through the Software Engineering Institute, a federally funded research

and development center sponsored by the U.S. Department of Defense. For more information

http://www.sei.cmu.edu/podcasts
https://arxiv.org/pdf/2103.14101.pdf
https://arxiv.org/pdf/2103.14101.pdf
https://github.com/galewis/ml-mismatch
https://github.com/galewis/ml-mismatch
https://ieeexplore.ieee.org/document/9121618
https://resources.sei.cmu.edu/asset_files/WhitePaper/2019_019_001_634648.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2019_019_001_634648.pdf
https://www.sei.cmu.edu/news-events/news/article.cfm?assetid=735477
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=735344
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=735328
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=735362
https://soundcloud.com/cmu-sei-podcasts
https://www.stitcher.com/podcast/carnegie-mellon-software-engineering-institute/software-engineering-institute-sei-podcast-series
https://tunein.com/podcasts/Technology-Podcasts/Software-Engineering-Institute-(SEI)-Podcast-Serie-p1137152/
https://podcasts.google.com/?feed=aHR0cHM6Ly93d3cuc2VpLmNtdS5lZHUvcG9kY2FzdHMvZmlsZXNfcG9kY2FzdHMvaXR1bmVzRmVlZC54bWw%3D&
https://podcasts.apple.com/us/podcast/software-engineering-institute-sei-podcast-series/id566573552?mt=2
https://www.sei.cmu.edu/publications/podcasts/index.cfm
https://www.youtube.com/playlist?list=PLSNlEg26NNpzVT_Ozbo_xbs4a-lmtRUea

SEI Podcast Series

Software Engineering for Machine Learning, page 11
 www.sei.cmu.edu/podcasts

about the SEI and this work, please visit www.sei.cmu.edu. As always, if you have any questions,

please don’t hesitate to email us at info@sei.cmu.edu. Thank you.

http://www.sei.cmu.edu/podcasts
https://www.sei.cmu.edu/
mailto:info@sei.cmu.edu

