

Why Software Architects Must Be Involved in the Earliest Systems Engineering Activities, page 1
 sei.cmu.edu/podcasts

Why Software Architects Must Be Involved in the Earliest Systems

Engineering Activities
Featuring Sarah Sheard as Interviewed by Suzanne Miller

--

Welcome to the SEI Podcast Series, a production of the Carnegie Mellon University Software

Engineering Institute. The SEI is a federally funded research and development center sponsored

by the U.S. Department of Defense. A transcript of today’s podcast is posted on the SEI website

at sei.cmu.edu/podcasts.

Eileen Wrubel: Hello, my name is Eileen Wrubel, and I am the technical director of

Transforming Software Acquisition Policy and Practices here at the Software Engineering

Institute. Today, I am pleased to sit down with Dr. Sarah Sheard. Dr. Sheard is a principal

systems engineer here at the SEI.

Today we are here to talk about why software architects must be involved in the earliest systems

engineering activities. Welcome, Dr. Sheard.

Sarah Sheard: Thank you.

Eileen: You recently wrote a blog post on this topic, and it went viral on Hacker News, which

was really exciting for all of us. That is what we are really here to really talk about today. Before

we get into that, I would like to do what I call stepping back into my way-back machine a little

bit. I would like to get to know a little bit about your background. You are a systems engineer.

Can you tell me how that field has changed since you first entered it?

Sarah: Thanks, Eileen. I started systems engineering back around 1980, and I was working on

satellites. I also have a blog post on how the satellites have changed since then. In general, I

think systems engineering kind of jelled as a field in, I’d say, about the 90s. A systems engineer

from this company or that company would be able to talk to another systems engineer, and they

would be speaking the same language. In that time, of course, software was making this

incredibly huge change from something you might write a couple of lines of code for a program

to figure out something to the way everything is run.

http://www.sei.cmu.edu/podcasts
https://www.sei.cmu.edu/publications/podcasts/index.cfm
https://resources.sei.cmu.edu/library/author.cfm?authorID=3611
https://resources.sei.cmu.edu/library/author.cfm?authorID=3959
https://insights.sei.cmu.edu/sei_blog/2019/08/why-software-architects-must-be-involved-in-the-earliest-systems-engineering-activities.html
https://insights.sei.cmu.edu/sei_blog/2014/07/the-changing-relationship-of-systems-and-software-in-satellites-a-case-study.html

SEI Podcast Series

Why Software Architects Must Be Involved in the Earliest Systems Engineering Activities, page 2
 sei.cmu.edu/podcasts

In that time, the people who were young back when I was young did not work with the software

that we have today. These are the people who are running programs now. When they were back

being systems engineers or in some other engineering field or even managing at that time, the

ground floor of what was being done is different from today. Now that they are managers and at

the 50,000-feet level, they are seeing the big picture, but what they have in their head as to what,

how things work is really not the same as how it’s working today. The people who are doing

software, in particular, have developed an enormous number of specialties and approaches that

are appropriate for today’s technical systems, including that idea of a software architect who

defines the basic principles behind how software is going to work.

Eileen: OK. Let’s talk about going back into defining those rules for how the software is going

to work in the system. When the government, when the DoD needs a capability, how do systems

engineers and acquirers typically determine how that problem should be solved and how that

capability really is provided across the system?

Sarah: Well, that is a really excellent question, Eileen, because somebody has to make the first

cut. We can’t take a problem that the government is having, like, We don’t have enough

resolution on this particular kind of thing, and we would like to have twice as good a resolution,

and just throw that at the industry. Instead the government itself has to decide, What is the

problem? What kinds of technologies that we have available or that might be available in the

near future might help to solve that problem? How are we going to acquire the pieces of

technology, so that we can put it together to have the functionality that we need?

Somebody up there in government land decides how this system is going to be cut up into pieces

that can be then allocated out to this contractor, that contractor, and the other contractor. If you

are going to build a house, you would probably have a plumber, and you would have an

electrician, and you would have somebody working the internet capabilities, the windows

people. We all understand with a house, the kinds of pieces you have to cut it into for it to work.

But these super new, super high-capability programs that have a lot of software content are

making new steps. They are really learning a new way to do things.

Now, the obvious way—and I am going to go back to the example of the global positioning

system or GPS. You have got a satellite up there that is taking pictures and understands where it

is with respect to the earth. You have got ground stations that run the satellite and also provide a

lot of data back and forth. You have got handheld user units which, in this case, is my

smartphone. The easiest and most intelligent way to split that up is to have somebody build the

satellite, somebody build the ground station, and somebody build the handheld systems. It seems

to be utterly clear and obvious that you should do that. But there is a problem. It worked when

the primary difficulty of engineering was in building the thing.

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

Why Software Architects Must Be Involved in the Earliest Systems Engineering Activities, page 3
 sei.cmu.edu/podcasts

Is the satellite going to be stable at this orbit? Is it going to get enough power? On the ground

station, do we have enough input, output? Do we have computational capabilities? Is it going to

survive through weather, et cetera? The handheld units, are they going to break? Whatever the

hard things about the units used to be the problem. It is kind of not the problem anymore because

we have a lot of that down. The bigger problem is the software that provides the continuing

capability from yesterday continuing into tomorrow, but also anything new that is useful to

people is generally based on a new kind of software. Now, the software exists because things

need to be communicating with each other. It is inherently an inter-piece of function that the

software has to provide. If you are going to do that, you have to watch out that the software isn’t

split into pieces.

Eileen: That seems to set the stage for what kinds of problems we can really have if a systems

engineer doesn’t have experience, expertise, breadth in software.

Sarah: That is I think exactly where I was hoping we would go in this. The folks who are in the

early system design phase of programs—in other words, before contracts are even let out—tend

to be pretty senior people like myself. They have not been on the ground floor of building

software today. Because if they were, they would be more junior folks. They don’t necessarily

know how the software is working and how a software architecture works and what the

difficulties are, particularly with newer and newer systems. This goes for not only the people

who are doing, I would call their role is more of acquirers, but also for the systems engineers that

then come and help them, who also tend to be senior.

They don’t necessarily understand, If we break the system into these pieces versus those pieces,

what are the benefits, pros and cons, with respect to software? They would understand that, This

particular thing would be better in wet weather for the hardware. This one would be longer

lifetime, and this one would be smaller, and this one would be cheaper, but with respect to the

software, it’s kind of throwing things up in the air.

What we tend to do today is we say, You are going to build the satellite and all of the software

that has to do with the satellite. You are going to build the ground station and all the software

that has to do with the ground station. You are going to build the handheld unit and all the

software. What happens? Well, what happens is the software built for the handheld doesn’t

communicate well, rapidly, effectively, efficiently, ingeniously with the other software. Then,

the software is broken. Remember, this software is creating…. Most of the new functionality and

most of the value of a new system is the software. You have to allow for that software to be

architected efficiently and well the first time if you want it to be able to do that effectively. Does

that make sense?

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

Why Software Architects Must Be Involved in the Earliest Systems Engineering Activities, page 4
 sei.cmu.edu/podcasts

Eileen: It does. You want to make sure that you are allocating functionality to the hardware and

the software in a way that is optimal for the platform and not just one of those concerns

independently.

Sarah: That sounds like a problem because we do need the satellite to have its software. In

particular, anything it needs to allocate power from the solar cells to the different units, the

different parts of the year, like eclipse or where it is colder or warmer. We need the ground

station to have its software work, and the handheld to have whatever it needs to do work. Most

importantly, we are forgetting that some of the software has to communicate all three together,

and it has to make sure that each of the functions of the phone works with all the other functions.

To use an example that was given to me by our former CTO, they were looking at why it took so

long to make certain computations on a battlefield system. It turned out that two or three

different contractors were involved in the process of this computation. He said that when they

looked into it, they found out that there was a Fourier transform back and forth between the

frequency and time domains between this point at the beginning of the computation and the end

of it, five times. Nobody had decided what was going to be done in the frequency domain versus

time domain. Everybody got the data in from the last phase and said, Oh, I have to switch it

around and do this computation, which not only slows it down but, as you know, it adds noise,

and it adds a lot of uncertainty to it.

Nobody had taken the software point of view up front saying, What are the parameters that we

have to settle on? What are the most important computations that are going to occur on each of

these links? How are we going to architect it so that we could get this parameter that we care

very much about in terms of a quality attribute of the system? We sacrificed this one, which we

don’t care so much about. Because, as you know from software architecture, it is all about

setting these quality attributes. If you set it one way, you will get these quality attributes over this

one. If you set it another way, you will get these. So, the systems engineer has to know what they

need out of the system in terms of what will make it function properly. But the software architect

is the one who is up to speed on how software works, understands the changes that have occurred

in cybersecurity, in software technology, in databases, encryption, whatever, and understands

what kinds of software architectures will provide those most needed and most important system

attributes. So that they can develop the software to prevent having computations take five

different long steps when they could just be a passthrough or whatever it was that they needed

for that computation.

Eileen: This early engagement also helps us into that trade space where we are allocating

functionality between software and hardware when we have a choice.

Sarah: Right.

http://www.sei.cmu.edu/podcasts
https://en.wikipedia.org/wiki/Fourier_transform

SEI Podcast Series

Why Software Architects Must Be Involved in the Earliest Systems Engineering Activities, page 5
 sei.cmu.edu/podcasts

Eileen: There are some things we can choose to do in the physical realm or in the software

realm, and we have to make choices based on those quality attributes in system performance

objectives about which implementation we are going to pursue.

Sarah: An example of it that came out in my work was we were looking at, say, a battlefield

drone. Let’s suppose this one just takes a picture of the ground. It is simple. We couldn’t do this

20 years ago, but today, it is a simple drone. It just takes pictures, and it has to bring that data

back to the ground station. Now, does that drone include the functionality to encrypt that data or

not? Because if it does, you have got a heavier drone, but you have got a smaller bandwidth

because the data that comes down is a smaller amount.

If the drone does not encrypt, then you have got raw data coming down, so it is a bigger

bandwidth but a lighter drone. All these have to be traded off, including the fact that this is a

battlefield situation. If you have got raw data coming down unencrypted, the enemy is going to

have as much access to the data as you are. Do you really want that? Including the fact that if it is

encrypted, the people on the ground who are the good guys, us people, they have to have the

proper security clearances to use, to be in possession of and use the unencryption material, and it

is heavy. They have to get it there as well. So there are a lot of considerations that go into it. It

could be that both options have to be carried up to a level at which point you can decide, In this

kind of situation you use this one, and [in] that kind of situation you use the other one.

Sometimes you don’t know in advance how a war is going to proceed.

Eileen: We talked about having these conversations based on functional capabilities we want

from the system and certain performance characteristics in the real-world conditions in which the

system is going to operate. Now, let’s talk about sustainability, keeping the platform if you will,

keeping the system alive as it is in operations and until we end-of-life it. You wrote in your blog

post, If the software architecture is not modifiable, then the system as a whole may not be

sustainable. Can you talk about the connections between architecture and sustainability?

Sarah: Well, when I was a kid, a phone was this heavy thing made by AT&T and actually leased

to the households. After a while, you could buy your own phone. It was unbreakable. You could

have five kids in your family. We could be hitting each other with the phone. Nothing was going

to happen to that phone. It didn’t need to be sustained. AT&T leased them out. You borrowed

back the time and money to make phone calls. Nowadays, everybody buys their phone, but you

know that things are going to change every night when you go to sleep. Facebook is going to

have an update. Every time I go look at my app store, I have got 13 things that need to be

updated. They are updated without my permission, but if I don’t do it, they are not going to be

cyber-secure, so I have to get them updated. So, the sustainability of the system, including that

phone, has a lot to do with whether that software can be updated. It will have to be updated. It is

very discouraging for people my age who are in the senior levels, for example, of the

http://www.sei.cmu.edu/podcasts
https://insights.sei.cmu.edu/sei_blog/2019/08/why-software-architects-must-be-involved-in-the-earliest-systems-engineering-activities.html
https://insights.sei.cmu.edu/sei_blog/2019/08/why-software-architects-must-be-involved-in-the-earliest-systems-engineering-activities.html

SEI Podcast Series

Why Software Architects Must Be Involved in the Earliest Systems Engineering Activities, page 6
 sei.cmu.edu/podcasts

government to hear, Software is never finished, because they think of things as being like that

AT&T phone. I can buy a phone. It will work for now until the day I am done with it. Whereas,

today with these extra-high capabilities, things are changing. Our adversaries in warfare are

coming up with capabilities that we have to then leapfrog over. In order to do that, we have to be

able to update the software. In other words, in order to sustain the applicability of our new

systems, we have to be able to update the software, so the software has to be, what was the word,

adaptable?

Eileen: Modifiable.

Sarah: Modifiable. Obviously.

Eileen: Given all of the issues that we have talked about, when should software people first be

involved? And we are talking about a contract for a major systems acquisition? That is really up

at the front, the very beginning that you are talking about, right?

Sarah: In a sense, it is. If I was a contractor like Boeing or Lockheed Martin or Raytheon or

someone, I would think that that is the beginning of the program, but it is not. The beginning of

the program is before when we decide what we are going to put out that maybe Boeing or

Lockheed Martin or Raytheon or Northrup [Grumman Corporation] or somebody is going to

buy. Before the point where the contract is even awarded, or let out in the beginning, is the point

where we just split it up. Are we going to have somebody do all the software on—remember, we

were talking that satellite—or, are we going to have some software allocated to a fourth

contractor that has to do with linking all the other software together? How are you going to

make this work?

Of course, that is not easy either, because if you do have a software-only contractor and three

hardware systems contractors, you know that that software in the software-only contract part is

going to have to interface with the handheld. It is going to have to interface with the software on

the satellite. It is going to have to interface with the software on the ground station. All those

interfaces are going to be extremely difficult in the sense of having immense numbers of details

and tradeoffs. Somebody has got to do that work. If you don’t do it early, you have got the

unsustainable, unmaintainable, maybe-you-can-patch-it-together software that we see frequently

today.

We see programs that are doing fine up until the point where they realize that their software is

late. It is late because you really can’t write software if you don’t know what you want it to do.

Frequently, you find out what you want it to do later, after the hardware is at least in some

degree of preparation. It is not anybody’s fault, it is just the way it works. If you don’t have

software that’s modifiable and the architecture is set up for this situation that you are going to

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

Why Software Architects Must Be Involved in the Earliest Systems Engineering Activities, page 7
 sei.cmu.edu/podcasts

find yourself in, you are going to be having software problems. We have them today. We are

going to keep having them. The best way to ensure that they will be minimized is to have that

software architect be a required part of this early systems engineering team.

There is another reason why you can’t just make it the same person. Systems engineers have to

be broad. They have to know about the Navy, and they have to know about technology of lasers.

They have to know about the politics going on around this program in Washington. There are so

many things that a systems engineer has to know about. They excel, systems engineers, at the

50,000-foot level and the interfaces, how do they all work together. The software people have to

take a different tack. If anybody does, they have to do it, which is they have to be looking at the

details. If you don’t get your details right, you don’t get working software.

Furthermore, software is changing unreasonably quickly. It will be even faster next year, not

only in terms of the technologies that come up but in terms of the things that we have to do to

avoid cybersecurity problems. It used to be a yearly, weekly, daily basis. Nowadays, things could

change in an hourly fashion. We have to make sure that the software architect is up to speed on

that and continues to be up to speed while the systems engineer is looking broadly. I don’t ever

think that you are going to get somebody who has time to do both, much less be good at both.

Eileen: We are talking about systems now with expected lifetimes of 50, 60 years for the

capability. So we should not expect that the software is going to be the same actual lines of code

50 years from today. We need to be able to architect platforms to be able to evolve the software

as we continue to deliver the capability and sustain and upgrade the physical components over

time.

Sarah: Exactly. I think every time you make a change to the hardware, you run the risk of

having to change the software to compensate to make it work better. Every time you make a

change to the software, you make the risk of having to change the hardware. Maybe it doesn’t

work with this new software. Maybe the hardware is old, anyway, and now is the time to throw it

away. The two are very tightly enmeshed in most programs and will continue to be. You have to

have both of those aspects well supported by people who know what they are doing. The systems

engineers have their skills. The software architects have one that I believe needs to be brought in

much earlier.

Eileen: Can you tell me what is next for you?

Sarah: Well, I am retiring. Within about a month, I will be sitting on a beach in Florida. Well,

that will be two months. I think that what I am planning to do is to continue looking into systems

engineering because that is my initial love. All this valuable experience I have gained by

working at the SEI on the software point of view and, and technologies and, and things. I hope to

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

Why Software Architects Must Be Involved in the Earliest Systems Engineering Activities, page 8
 sei.cmu.edu/podcasts

push it from the systems engineering point of view and hope to be able to involve you and the

rest of the SEI as well as we come up to places where we need both sets of skills.

Eileen: I would very much like that. I have enjoyed the opportunity to work with you over the

last number of years.

Sarah: Back when you were a small girl, yes.

Eileen: Yes. Well, thanks so much for joining me today. We will include links to all of the

resources we referenced in today’s podcast in the transcript. Dr. Sheard’s blog post is available

on the SEI website at insights.sei.cmu.edu. You can click on the Browse by Author at the bottom

of the page and search on her last name, which is spelled S-H-E-A-R-D. Thank you, so much.

Sarah: Thank you.

Thanks for joining us. This episode is available where you download podcasts, including

SoundCloud, Stitcher, TuneIn Radio, Google Podcasts, and Apple Podcasts. It is also available

on the SEI website at sei.cmu.edu/podcasts and the SEI’s YouTube channel. This copyrighted

work is made available through the Software Engineering Institute, a federally funded research

and development center sponsored by the U.S. Department of Defense. For more information

about the SEI and this work, please visit www.sei.cmu.edu. As always, if you have any questions,

please, don’t hesitate to email us at info@sei.cmu.edu. Thank you.

http://www.sei.cmu.edu/podcasts
https://insights.sei.cmu.edu/sei_blog/2019/08/why-software-architects-must-be-involved-in-the-earliest-systems-engineering-activities.html
https://insights.sei.cmu.edu/
https://insights.sei.cmu.edu/authors.html
https://insights.sei.cmu.edu/author/sarah-sheard/
https://soundcloud.com/search?q=Software%20Engineering%20Institute
https://www.stitcher.com/podcast/carnegie-mellon-software-engineering-institute/software-engineering-institute-sei-podcast-series
https://tunein.com/podcasts/Technology-Podcasts/Software-Engineering-Institute-(SEI)-Podcast-Serie-p1137152/
https://play.google.com/store/apps/details?id=com.google.android.apps.podcasts&hl=en_US
https://podcasts.apple.com/us/podcast/podcasting-smarter/id566573552?mt=2
https://www.sei.cmu.edu/publications/podcasts/index.cfm
https://www.youtube.com/user/TheSEICMU
https://www.sei.cmu.edu/
mailto:info@sei.cmu.edu

