

ReqSpec Notation, page 1 www.sei.cmu.edu/podcasts

ReqSpec Notation
featuring Peter Feiler as Interviewed by Suzanne Miller

--

Suzanne Miller: Welcome to the SEI Podcast Series, a production of Carnegie Mellon

University’s Software Engineering Institute. The SEI is a federally funded research development

center sponsored by the U.S. Department of Defense and operated by Carnegie Mellon

University. A copy of today’s podcast can be found at the SEI website at

www.sei.cmu.edu/podcasts

My name is Suzanne Miller. I am a principal researcher at the SEI. Today, I am very happy to

welcome once again to our stage Peter Feiler, one of my friends and colleagues from a long way

back, who is here to tell us about some of the latest work that he and his colleagues are doing

with the AADL [Architecture Analysis & Design Language] and some of the derivative kinds of

research that has come out of that.

Peter, welcome, thank you very much for joining us today. I know you have travel plans in the

near term that will probably be taking you away from us for a while. So thank you very much for

making the time.

Peter Feiler: Thanks for the introduction. Welcome to you too.

Suzanne: Tell us a little, for people that do not know about AADL, just give us a little, sort of 30

seconds what is AADL and what is important about it. Then, what are some of the challenges

that you have dealt with in your work with AADL?

Peter: The focus of AADL is on safety-critical software systems like, the ones they find in cars

and so on. We see plenty of evidence of issues with those.

Suzanne: I just realized, I just said AADL, and we have not told our readers what AADL stands

for. So, why don’t you go ahead and do that?

Peter: We will get to that in a moment. The problem space we are dealing with is embedded

software systems, especially safety-critical. What we are encountering is that things go wrong,

and we do not detect that until these systems are in operation.

http://www.sei.cmu.edu/podcasts
http://www.sei.cmu.edu/podcasts
http://www.sei.cmu.edu/about/people/profile.cfm?id=feiler_13051
http://www.aadl.info/aadl/currentsite/

SEI Podcast Series

ReqSpec Notation, page 2 www.sei.cmu.edu/podcasts

There was research in the ’90s. We then turned that into an industry standard on modeling

architectures and doing it through a language that has strong semantics so you can analytically

assess how the system will work. We used a term virtual system integration as a concept to draft

that idea forward.

The standard has been originally published in 2004. We have done work on it. Industry groups

have embraced it, like the aerospace industry and others as well.

We also have been extending the standard suite. There are a number of annexes to the standard,

and we also have been publishing revisions of the standard. The standard activities are quite

alive, and its application is quite alive as well.

Suzanne: What are some of the challenges? Once you have a language like this, I am sure that as

soon as you have one thing, now you need another. What are some of the things recently that

have led to this most recent work?

Peter: When you deal with an embedded system, the initial focus of AADL was to characterize

your system—both the software, the hardware, and the physical system it is dealing with—in

such a way that you can focus on understanding the interactions between the parts. Because that

is where 80 percent of the problems that we discover today do not occur until post unit test. It

clearly indicates it is those kinds of things. So that has been the focus.

Five years ago, we were asked to do a study to help see how we can improve qualification of

systems. That is when we realized, doing the development is fine, and improving it, but when we

are doing the qualification, we do it against requirements. We need improve the way we specify

requirements, and we want to keep a record of all the evidence we are collecting, not just in the

final test but throughout the whole development process. That led to a project that deals with

incremental assurance, a project called ALISA. It is in that context where we developed this

language called ReqSpec or requirement specification language, which is today’s topic.

Suzanne: In traditional developments, requirement specifications—we are modeling all kinds of

things—we still tend to write those in English or a native language in prose using typical The

system shall do this, that, or the other thing. What kind of information is lost when you use that

kind of requirements basis instead of doing something that is more model-based, and it has some

stronger semantics?

Peter: Again, studies have been done on that front. What we find is that a lot of the issues are

introduced during the requirements phase, and it is often because they are missing requirements.

There is ambiguous requirements. There is just…

http://www.sei.cmu.edu/podcasts
http://www.sei.cmu.edu/architecture/research/model-based-engineering/virtual_system_integration.cfm
https://wiki.sei.cmu.edu/aadl/index.php/Standardization
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9743
http://www.erts2016.org/uploads/program/paper_13.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=464370

SEI Podcast Series

ReqSpec Notation, page 3 www.sei.cmu.edu/podcasts

Suzanne: There is a lot of assumptions. I know when I wrote requirements, I am creating a

mental model of what I want, and I have English prose as my way of expressing that. It is very

difficult to express essentially what we would put into a model when we are using that kind of a

prose expression.

Peter: Exactly. There are a couple of ways forward. One way where there has been quite a bit of

research is to process textual notation and try to extract from it the behavioral part as a state

machine. Then, once you have a state machine, you can figure out: Are you missing some states?

Are you missing some transitions? But, that is just one piece of the puzzle.

What we have said is, then, complement that research and leverage obviously but to say, Can we

come up with a technique that helps us make sure we have coverage? Because like I said, 80

percent of the problems are not necessarily on the formal part but simply you missing certain

things. This is where we then have an approach, we call it architecture-led requirements

specification, and I will be elaborating on that when we get to the use scenarios.

Suzanne: So, the SEI—I am just laughing a little bit because we have many things now that are

architecture-led, architecture-influence. Many of us at the SEI strongly believe that architecture

is a key communication vehicle. It is just like, every time we do something else we run back into

that, is actually one of the core elements that we have to deal with. So tell us a little bit about the

requirements specification, ReqSpec notation. How is different from textual processors for state

machines and other things that people have tried?

Peter: We got into this notation by building—again, I like to build again on other people’s work

so I do not have to reinvent the wheel. It turned out there was a group, a research group in France

who had been looking over that requirement specification space because again, there was

research in the late ’90s and early 2000s on that front. They were building on that, and it looked

also at what people do in SysML and came up with a proposal for a metamodel for requirements

specification associated with AADL models and brought that to the committee.

In that metamodel, what they wanted to do is focus on the ability to specify stakeholder

requirements, or sometimes [they are] also called goals, because it is goal-oriented that

requirements engineering came from, and system requirements. The main difference is—and you

want to have an explicit separation of those two—stakeholder requirements, they sometimes can

be in conflict with each other. And you do not necessarily resolve them and those kinds of

things. So you need to give space to express everything, and you want to make sure that

everybody talks about all the requirements and assumptions.

Then you turn them into system requirements, and system requirements need to be verifiable,

because otherwise you cannot qualify against them. So, in our notation we support both of them.

http://www.sei.cmu.edu/podcasts
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447184
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447184
http://sysml.org/

SEI Podcast Series

ReqSpec Notation, page 4 www.sei.cmu.edu/podcasts

For both of them, we do it by associating them with a specification of your system. In some cases

you use the architectural language not to describe the internal architecture of the system but the

system in its operational context, because that is a system as well.

Suzanne: So, you are including the environment then as part of what you are describing in the

requirements envelope I will call it?

Peter: Exactly. When you do that…I have seen plenty of these documents for—on the

stakeholder side, the first describe use scenario. That is, for example, for a situational awareness

system. I need to track electric power lines. I need to track other flying objects. I need to track

mountains, and this and that and the other thing. Then, at a later stage, when they elaborate those

requirements, they forget half of them. I mean it is simple things like that. They find out a model

where I say, Here is my system and here are all the entities in my environment. And I will have

something specific to point to and make sure I have covered each of those and have covered

them from a variety of angles.

Suzanne: So you are basically doing a model of the environment in which the requirements are

meant to satisfy goals as well as modeling the goals and then as well as modeling the expression

of how you think when you start the system is going to be able to actually achieve those goals.

Peter: Exactly. There is a number of scenarios that we make use of if you already have a

stakeholder document that was collected separately, and it is a paper document. We can import

that into our representation and then you use that as a basis to start focusing on how to define a

system requirements. You do those around now your architectural specification.

If you don’t have stakeholder requirements yet, you may already at that point want to define

those in the context of an architectural representation.

Basically we have two formats for the requirements: One that follows a document structure and

then another one that follows the architectural elements. You can interlink those so there is full

traceability all the way back to individual stakeholders.

Suzanne: That also enables a different kind of discussion about what you can get into. I do a lot

of work in Agile, and the Agile requirements way of dealing with things often is called a story

where you add into the what, a who, and a why. This is a different way of getting at that who and

the why. You are dealing with the stakeholders explicitly. The why is coming from the context. If

I can’t figure out the why directly, then I am probably going to ask about it. Now we can have a

discussion about what we really drives this, find a new element that we did not know about in the

architecture, and all those kinds of things. Excellent.

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

ReqSpec Notation, page 5 www.sei.cmu.edu/podcasts

Peter: Then the second part of it is, you have the requirement for the system as a whole to

evolve your architectural design. Are those requirements moving along to the various subsystems

or not? Most of the time, they tend not to.

Suzanne: Something happens.

Peter: By using our notation, it is a very natural…It is the same mechanism that lets you say OK,

I am going to do my next-level design. I now define the assumptions that I make about the parts I

am using. Guess what those assumptions are? They are the requirements I have on the parts to be

used, or they reflect the spec sheet of a component I may have chosen.

That is how, then, this whole process becomes an incremental process of pushing requirements

down and at the same time, as soon as you have done the next level of design, based on those

specs of the next level, I can already verify whether the upper-level requirements are satisfied at

this level, and so you get this continuous incremental assurance activity.

Suzanne: So this has been part of your real focus, is getting things in place that allow not just

virtual system integration but the incremental assurance, which is a very expensive part of

certainly DoD systems and other complex systems. This is a way of enabling, going up a little bit

higher in that space, by having something that is verifiable all the way up to the stakeholder

requirements. Nice.

Peter: Exactly. It is fun work to do. As we have been developing that, we had the opportunity of

actually applying it with an external customer. There is an Army technology demonstrator

program called Joint Multi Role. They had a project where they were leading some work with

two contractors and some internal integration team. We then came in part way into the project.

We then did a shadow project, took the requirements that were given to those contractors,

captured those in this notation. Then in that context, again early on, tried to see if we can identify

some holes and some potential integration issues. That was then validated. We identified about

85 issues in the requirements specification. It was confirmed by the contractors, yes those are the

issues that we have to resolve.

As a result of that, now in the next round— they just had a request for proposals and are

currently leading the contracts. They will lead six contracts. They did not require the contractors

to use it but they strongly encourage contractors to use this whole concept of virtual system

integration. In that context, we are offering as part of the tool set that comes with AADL the

OSATE tool set, the ReqSpec support is already included.

Suzanne: I was going to ask you about that.

Peter: It is already publicly available for people to use.

http://www.sei.cmu.edu/podcasts
https://www.army.mil/article/158626/Joint_Multi_Role_Program_is_preparing_for_Future_Vertical_Lift_Mission_Systems_Architectures
http://osate.org/

SEI Podcast Series

ReqSpec Notation, page 6 www.sei.cmu.edu/podcasts

Suzanne: If I am a software architect or if I am a requirements business analyst, and I have

already been using the tool set in OSATE, I have already been using AADL, I can extend easily

into this.

Peter: Exactly, and it already comes with the standard release now.

Suzanne: What other kinds of support do you have for people that want to learn about this and

want to become proficient at using ReqSpec?

Peter: One of the things that we have is a tech report that just came out that elaborates on all the

elements of the language, because there is a rich set of capabilities underneath it. To just give

you another example of how we try to home in on semantics of these things and sometimes the

solutions. The guides that came with metamodel distinguished between verifiable requirements

and satisfiable requirements.

Suzanne: How did they distinguish those? That is an interesting set of words.

Peter: They use those words, and I think one of them was traced back to the Sysml crowd. But

verifiable means yes or no. There is no question.

Suzanne: It is a binary.

Peter: It is a binary decision. Satisfiable is I would like to you to build a car for me that goes 250

miles an hour. It is kind of a design goal.

Suzanne: I am sure you would, Peter, but get over it. Maybe 120.

Peter: And given that you have conflicting requirements.

Suzanne: I can do there is some room for negotiation.

Peter: It is a goal that you set and then what you do is as part of the process of taking

stakeholder requirements and turn them into system requirements, you then kind of make a trade

off.

Suzanne: It is a trade-space kind of requirement.

Peter: What we have now is actually support in that notation to not only specify requirements

that are a must but also design goals. This is what I want. There is a minimum, but this is what I

would like to have.

Suzanne: We sometimes call those thresholds and objectives in DoD language.

http://www.sei.cmu.edu/podcasts
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=464370

SEI Podcast Series

ReqSpec Notation, page 7 www.sei.cmu.edu/podcasts

Peter: Exactly. People use similar terms. It is stuff like that, and you have a notation. The other

piece that is around it is part of the methodology of doing this thing is to say…First of all there is

all this traceability stuff all the way back from the system requirements up the architecture

hierarchy back to the stakeholder requirements and forward into the implementation.

We also have some support in there that allows you to analyze the specification for coverage. So,

in coverage we do it along three dimensions. One is along the different elements of your system

model. When you do stakeholder requirements and you say I have a system that deals with 15

different types of elements in my operational environment. I now need to make sure they are

requirements for assumptions you are making about each of those.

Suzanne: Because they are all going to have different effects on the system.

Peter: Exactly. If that is 80 percent of the problems, we do that. The second piece is to then say,

Can we make sure that you are talking about all different interesting or quality attributes,

especially operational ones, that are important to you?

Suzanne: And these are the non-functional requirements that pervade the system.

Peter: Yes, non-functional properties. I specifically then call them operational ones because

those are the ones that deal with the operation of the system, like safety and liability versus Is

this thing maintainable or is it modular?

For that, we are just incorporating elements that come from other work at the SEI, namely from

ATAM for example, the utility trees. They give us a very nice framework for saying Have you

talked about security? And under security have you made the requirement concrete enough that

it is measurable? Because we need to verify it type of thing.

The third part of it is— and this is where the safety criticality comes in—is we make use of the

Error Model Annex of AADL—and I think we have a blog on that before. Or, if not, we will be

doing one shortly. As part of that, we have a taxonomy of fault propagation.

Suzanne: A typical fault propagation.

Peter: And typically what people think of—is the thing works or it does not? But there is—that

is many more variations on that theme so we, again, can then make use of taxonomy to make

sure and point out to you, Hey, you have a data stream? Have you talked about data rate

problems? Have you talked about value problems? Have you talked about time-sensitive data

problems? Those kinds of things you can address as well.

Suzanne: That is a domain-specific model. That is an aeronautical-systems model. In the future,

there could also be medical device models. There could be other domain-specific models.

http://www.sei.cmu.edu/podcasts
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=464380

SEI Podcast Series

ReqSpec Notation, page 8 www.sei.cmu.edu/podcasts

Peter: Actually, the taxonomy is for the kind of impact that it can have on a fault, and that is a

very generic set. It is a limited generic set. There is a second class that is then domain specific.

If I provide you with a subsystem, a black box sub system, you do not really care of how it fails

internally. If I am a GPS and I am supposed to provide you with location data, what you care

about is, Do I provide it to you or not? Do I provide it to you too late or too early? How accurate

is it? Do I send bad data? Do I send it at the right rate? It is that kind of thing that you care

about. And how internally, of course, that is obviously a domain-specific problem, but the

taxonomy focuses on the impact because that is the interaction part that we typically struggle

with. People know their domain. I am leaving them to their thing, but what we do is now look at

the architectural impact of things going wrong in special cases.

Suzanne: And things going wrong in operations.

Peter: In operation. What you have is you have exceptional conditions. You want to make sure

that they are handled, and we document which ones do you assume do not occur, and which ones

do you assume do occur that you are willing to handle?

I use the word exceptional condition, or fault condition, because what we then do in our current

focus has been on the safety implications, but with more recent research work, we said, The same

exceptional conditions have also security implications. That framework is extensible not just into

safety but applicable to security as well.

Suzanne: And that is one reason we call it incremental assurance, because assurance is not just

security or just safety. It has multiple dimensions. Many of them share attributes that you can

take advantage of in these modeling kinds of activities.

Peter: The other part of it is, we already said is, that Requirements need to be verifiable. The

way we do that is then as part of the specification, that is not part of the ReqSpec language but a

set of other notations that are being done under the ALISA project. We will be talking about that

at a later stage—Iis you have a verification plan where you identify what are different

verification activities that need to be done. With verification activities, it is not just manual

things like Look over this document, but as running analyses on these actual models.

Suzanne: Particular analyses.

Peter: Yes. And given we have that specification in place under the ALISA project, we have

then automated the execution of these things as well and the automatic generation of assurance

cases as kind of an evidence type of thing as well. Like I said, it is beyond the topic of today

but…

Suzanne: Sure but this all connects.

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

ReqSpec Notation, page 9 www.sei.cmu.edu/podcasts

Peter: One of the reasons we want to improve the quality of the requirements is because that is

the thing that we verify against. There is a clear link by saying, If I define the requirement, I also

want to define how I am going to verify it. It helps you make the requirement sharper.

Suzanne: I think a key thing here is you are finding a way to get to missing requirements. If I

verify against the requirements [that] are there, but I am not verifying against requirements that I

do not know about, I am missing. Those are potential fault areas that are gaps, that are very

important. This is a way of minimizing some of those gaps.

Peter: I referred to the tech report, but there are also reports about the work that we have done

with that army group that I mentioned [see reports here, here, and here]. It illustrates that

particular example. There is actually a total of three reports that are specific to that work. There

are SEI reports, SEI special reports that are available, as well as the report that documents the

language itself.

Suzanne: I am sure that many of our listeners will be very interested in those. And I am

interested in them, [as] someone that used to write requirements, and I want to see what the latest

is on requirement specification. Back to the ’80s when I was doing this regularly, it was so

painful and always with so much pressure because you knew that nothing—that you could not

make it perfect.

And we have been acting in many ways as though we could make it perfect, but we know we

cannot do that with pros. We may not get perfect with ReqSpec, but we are going to get a lot

closer with that, I think, than we can with prose.

Peter: Exactly. It is a language that is a textual language, so you can process it nicely and

everything. There is a metamodel behind it. What is going to happen now is we are taking all the

textual language back to the AADL committee, because standardizing around the metamodel is

not sufficient. We needed something more. And so take it back to the committee so that this

language now will become one of the annex standards, like the aero model, as well. It is one of

the things that I am—one of my next steps—just specific to the ReqSpec.

Suzanne: So ReqSpec is well on its way. What else is coming? You have got the incremental

assurance work. What is next in that sort of whole range of things that are related to incremental

assurance?

Peter: Like I was mentioning, we have a language that lets you annotate verification plans. The

whole thing is compositional, so you can do it large scale systems. We have an implementation

of the whole thing. In terms of verification activities, we support a wide range of things that can

be used to specify the analysis.

http://www.sei.cmu.edu/podcasts
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447176
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447184
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=447189

SEI Podcast Series

ReqSpec Notation, page 10 www.sei.cmu.edu/podcasts

We have incorporated technologies from other groups like Rockwell Collins, for example. We

are doing that under a project, which will close out in September. In August, we will actually

have a public release of these verification capabilities as well.

Other work that we have is, we have an ongoing [project] where we took this work into the

security arena. There what we focus on is to say [something?] is given, have a specification of

security policies maybe. For example, that certain information is only accessible to certain

people. Or, if you are in an embedded system and you are supposed to be able to switch on and

off the light bulb. You are not supposed to reprogram the router built into a light bulb and the

Internet of Things.

Well, today there is no clear specification and no enforcement. What we are doing in that project

is to say, If you have such a specification, if you then look at the implementation are those

policies actually enforced? [That] type of thing.

Suzanne: You can do this now in a virtual way by having a good model of the system.

Peter: Exactly. Again, it is a two-year project. We are at the end of the first year. We have

already some interesting results. What we have come up with a [taxonomy] surface identification

and a [taxonomy] tree generation and analysis. Also a generation of implementation against a

verified kernel, so that we can produce implementations that are fully secure. We are in the

middle of releasing those tools, actually, probably at the end of this month as some work.

Then the final thing is something that we are heading towards is—and I just am working on a

proposal for that—is to support trade-space exploration. When you design your architecture, you

have a bunch of options. How do you figure out what are good candidates if you have a large

system that has so many different places where you can make choices?

There has been some interesting research at the system-engineering level where people have

used some techniques, some of them a combination of statistical and others for things like

satellite architectures to explore new ones for aircraft and so on. We are taking those concepts

and now applying for the embedded software system as well as the proposal that we just started

figuring out. It is, again, a nice extension. We just try to build on what we have and expand out

into additional areas.

Suzanne: One of the interesting things that comes to my mind to me when we talk about that is

there are different points in the evolution of your architecture where you know different things.

You can’t do a whole trade-space analysis at the beginning, because you are not going to know

enough to be able to make decisions. If I have got incremental model building, incremental

requirements, I can do incremental trade-space analysis as I am imagining at some point you will

http://www.sei.cmu.edu/podcasts

SEI Podcast Series

ReqSpec Notation, page 11 www.sei.cmu.edu/podcasts

be able to flag, Hey we have this data now so this kind of trade analysis that we could not do six

months ago, we can do now. That is very exciting.

Peter: It is kind of interesting, too, because you find different classes of trades that people are

interested in. In some cases, they just want to tweak their rate at which they are processing

things. In other cases, they want to add some functionality or not or pick one vendor over the

other. Then there are some choices that have major architectural implications where we bring a

new concept in, like, Should I go partitioned or federated? Should I use a pull protocol or a push

protocol. When I produce data immediately shipped, or do I request the data before it is being

shipped. [That] type of thing. We have analytical techniques that you let you find out what the

implications of those choices are.

Suzanne: Another light bulb just went off for me. A lot of the slowness in adoption of parallel

processing has to do with some of those architectural choices and not being able to know until

you implement what the effect is on total performance. When we have the ability to model

several processors in parallel, we can make some of those analyses much more effectively.

Peter: To come a little bit to a closing, too, but also why I am still excited to work at the AADL

committee. By the way, my next trip is actually to the committee in Germany next week. We

actually have a strong group of researchers that come to these meetings because they have seen

this as a very interesting platform to drive their research. By doing that, [they] immediately have

a reach into companies that are trying to use these technologies…

Suzanne: It is a very short transition space.

Peter: That is where you have groups that get as some of these issues. So, for example, right

now there is a group of folks led by Jean Pierre Talpin, from INRIA, that are taking the concept

of synchronous systems and expanding it to allow [it to] stay within the formal framework that

they have but still allow more flexibility to deal with more concurrency, more asynchronous

system behavior, and things like that. That is what makes it exciting, is you have one foot with

industry and the other foot strongly embedded with the research community.

Suzanne: Well as always, Peter, I love catching up with you and finding out what is in your head

and what has actually made it out of your head into the world. We started this journey…

Peter: A long time ago.

Suzanne: I do not want to say how long ago talking about model-based engineering and the role

of a language like AADL and the fruits of that are absolutely wonderful at this point. I see just

more and more coming into the real part of the world. That is very exciting.

http://www.sei.cmu.edu/podcasts
http://www.irisa.fr/prive/talpin/

SEI Podcast Series

ReqSpec Notation, page 12 www.sei.cmu.edu/podcasts

Let me tell people about where things are for them to find, because you have things all over the

place. AADL itself, if our listeners go to aadl.info, you will find a wealth of resources and links

to other resources.

SEI also maintains a GitHub repository with downloads of different elements of the language

and other information. Of course, with this transcript, we will provide a list of resources, because

there are several that Peter mentioned. We want to make sure that everybody has access to those.

This was a very rich discussion. Thank you very much Peter for joining us.

Peter: You are welcome.

Suzanne: I do want to highlight the fact that, as always, you can contact us through

info@sei.cmu.edu. That is another way you can get information that we may have missed in our

resource list.

As always, this podcast is available on the SEI podcast at www.sei.cmu.edu/podcasts. It will be

available on the Carnegie Mellon University’s iTunes U site. Thank you very much for joining

us today.

http://www.sei.cmu.edu/podcasts
https://wiki.sei.cmu.edu/aadl/index.php/Main_Page
http://cmu-sei.github.io/
mailto:info@sei.cmu.edu
http://www.sei.cmu.edu/podcasts
http://www.cmu.edu/itunesu/

