

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY REV-03.18.2016.0
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

PREDICTIABILITY BY CONSTRUCTION
Sagar Chaki, Scott Hissam, Gabriel Moreno, Linda Northrop, Kurt Wallnau
December 2016

Overview
Predictability by construction (PBC) makes the behavior of a component-based system predictable prior
to implementation, based on known properties of components. The PBC vision is for software compo-
nents to have certified properties (for example, performance) and for the behavior of systems assembled
from components to be predictable.

Benefits
PBC enables you to

• establish design and implementation standards that lead to software systems with predictable
runtime quality

• use automation to enforce these standards, leading to systems that are predictable by construc-
tion

• define objective standards and measures for trusted components, developed internally or by
third parties

• incrementally and systematically introduce state-of-the-art prediction for new or more general
classes of systems and properties

• provide a sound and objective basis to manage design risk and optimize design features

Getting Started
Across the software industry, projects face the challenge of satisfying ubiquitous demands for increased
functionality, better quality, and reduced cycle time (time to market or field) while simultaneously en-
suring that delivered software and software systems satisfy security, survivability, availability, and in-
teroperability requirements.

While the use of component-based development promises to address the first set of demands, current
processes and technologies fail to help developers predict the qualities of a system of components, re-
sulting in expensive integration and testing efforts. Exploiting the full potential of component-based

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

development to meet these demands requires the software industry to develop improved, enhanced, or
new processes, methods, and tools for determining the properties of software systems before they are
built and for confirming their "as-built" properties.

The software industry has developed numerous technologies such as .NET, Enterprise JavaBeans (EJB),
and the Common Object Request Broker Architecture (CORBA) to assemble systems from components
that are created in isolation. Significant economic and technical benefits from component approaches
have accrued. However, component approaches miss the mark in being able to substantively address
some of the real issues, namely, the inability to predict individual component behavior, the behavior of
assembled components, and hence, the quality of the system. Component technologies available today
allow system builders to plug components together, but do little to allow the builder to ensure how well
they will play together. As a result, there are rampant failures with component assemblies that receive
inadequate testing and expensive integration and test cycles on those that are made to succeed. Conse-
quently, it is not surprising that there is a lack of consumer trust in the quality of software components
and in the quality of assemblies that have not received extensive and expensive testing.

In short, though the component approach has helped and does hold promise, it does not now address the
real challenges; software components are critical to the software industry, but the behavior of compo-
nent assemblies is unpredictable. The impetus for today's component technology was inarguably the
exponential growth of information technology (IT) industry needs. However, software component tech-
nology has not yet demonstrated an ability to predictably meet the requirements for scale, robustness,
and performance that information-technology-bound organizations have. The result is unpredictable
and costly development, decreased assurance of how the delivered system will behave, and ultimately,
slowed adoption of component technology.

The fundamental technical reasons behind these inadequacies are

• Component interfaces are not sufficiently descriptive.
• The behavior of components is, in part, an a priori unknown.
• The behavior of component assemblies consequently must be discovered.

To compound these nontrivial technical reasons, there is, in general, a lack of consistency in how soft-
ware industry speaks about components and consequently much misunderstanding as to what a compo-
nent really is, what current component technologies provide, and where COTS components fit into the
component discussion. Some equate components exclusively with COTS, while others equate compo-
nent technologies with a specific vendor's offering, for example, EJBs. Of course, such inconsistencies
and misunderstandings lead people to make poor decisions.

In order to effect the promised potential of component technology and to make component technology
effective for the software industry, there must be focused technical leadership to crystallize component
concepts and channel researchers to address their current inadequacies, to find ways to predict the be-
havior of an assembly of components before their development, purchase, installation, and integration
and, finally, to improve the level of trust that can be associated with software components.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

PBC Concepts

PBC builds on software architecture technology, software component technology, and a
growing body of theory for predicting the quality attributes of software systems (for ex-
ample performance, security, safety). Architectural design constraints that satisfy the as-
sumptions of quality attribute theories ("smart constraints") are enforced at construction
time and run time by software component technology. Analysis is automated by auto-
matic generation of predictive models from assembly specifications. The complexity of
this interpretation, and of the underlying analytic theories, is packaged in a reusable form
called a reasoning framework. The resulting predictions have an established and verifia-
ble statistical or formal basis for objective confidence.

Predictability By Construction Concepts

Reasoning Frameworks

A reasoning framework is a way to package, as a fully-automated tool, the expertise
needed to understand and predict the runtime qualities of software systems. A key objec-
tive of a reasoning framework is to make this expertise available to engineers who are not
expert in the quality attribute. As such, the reasoning framework includes all that is nec-
essary to generate and analyze quality-specific views of an architectural specification.
The reasoning framework also exposes the assumptions underlying an analytic theory,
and ensures that systems satisfy these assumptions so that the user has confidence that all
predictions are not only sound, but valid.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Reasoning Frameworks

Prediction-Enabled Component Technology

Our approach to achieving the PBC objectives is to use prediction-enabled component
technology (PECT). As its name suggests, a PECT is an enhanced component technol-
ogy. What is a component technology? There is no answer to this question that won’t
provoke an argument, any more than there is a universally agreed-upon answer to the
question “what is a component?” Nonetheless, there is growing agreement on the follow-
ing rough definitions:

• A software component is an implementation, ready to execute on some (possibly
virtual) machine, with well-defined interfaces that enable third-party composition
(roughly, integration with other components).

• A component technology is a component model and runtime environment where
o the component model specifies what interfaces a component must provide,

and how components are allowed to interact with one another and their
runtime environment

o the runtime environment is a container in which component behavior exe-
cutes and in which components interact. The runtime environment may
also provide useful services—persistence, transactions, etc.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

There is a similarity between this definition of component model and the usual definition
of architectural style (or pattern) as a collection of component types and their allowable
patterns of interaction. Even though they may differ in many respects, a component
model and architectural style both specify invariants that must be satisfied by any in-
stance of that model/style. These invariants are exactly those “well-formedness” rules
that we impose on component assemblies to ensure that they can be analyzed, and there-
fore to ensure their predictability.

Seen in this light, a component technology can be thought of as an infrastructure for de-
signing, developing, and deploying applications that adhere to a particular architectural
style. The infrastructure does restrict the freedom of developers and designers, but in
compensation it enforces design and implementation invariants that, in this case, ensure
predictability. The tradeoff between restricted freedom and predictability has been seen
before—in the development of strongly typed programming languages, now considered
an essential element of modern software engineering practice. The long-awaited shift to a
higher level of abstraction—from functions and classes to components—is underway.

PECT as a Component Technology with Validated Reasoning Frameworks and their Interpretations

In this figure, abstract component technology specifies the invariants imposed on by a specific compo-
nent and a collection of reasoning frameworks (each which may impose their own additional invariants).
A PECT can and generally will support several analysis models, each of which is “packaged” in its own
automated reasoning framework. An interpretation defines an automated translation from assemblies of
components specified in the construction language to the reasoning framework.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Glossary

abstract component technology
a vocabulary and notation for specifying components, assemblies, and their runtime envi-
ronments in a component-technology-independent way, and for specifying the con-
straints, imposed by reasoning frameworks, that must be satisfied for predictions to be
valid

analytic constraints
constraints imposed by one or more reasoning frameworks on an abstract component
technology

annotation
a property P associated with a referent R, meaning that “R has property P,” denoted as
R.P

assembly
a set of components and their enabled interactions

assembly constraints
behavioral and topological rules of well-formedness imposed on components and assem-
blies by one or more (real) component technologies, and one or more reasoning frame-
works

automated reasoning procedure
a decision procedure and interpretation, each susceptible to full automation. See also
property theory

binding label
a linking mechanism embedded in components to enable their interaction with other com-
ponents. See also pin.

component
an implementation in final form, modulo bound labels, that provides an interface for
third-party composition and is a unit of independent deployment

component technology
a component technology imposes fabrication standards for assembling software from
large-scale building blocks. A component technology consists of a component model and
a runtime environment. The component model specifies fabrication standards governing
such issues as a component's life cycle and allowable forms of interaction. A runtime en-
vironment is an execution environment that enforces aspects of the component model and
provides standard interaction mechanisms and services.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

compose
to enable component interaction through connectors

composition
a set of interactions among components enabled through connectors. See also assembly.

Communicating Sequential Processes (CSP)
a specification language and formal notation for describing concurrency behavior in sys-
tems.

connector
a mechanism provided by the runtime environment that enforces an interaction protocol,
or discipline, on the components that are participants in an interaction

construction framework
an abstract component technology, tools to enforce assembly constraints, and other tools
used to automate the specification, development, and deployment of components and
their assemblies

construction language
a language for specifying abstract component technologies (ACTs) and their well-formed
components and assemblies

counter example
a counterexample is an execution trace that results in the violation of a behavioral asser-
tion Counterexamples provide diagnostic feedback that help engineers understand and re-
produce failures

contain
to restrict the visibility of interactions on pins

co-refinement
a process for developing reasoning frameworks, and in particular, for finding an accepta-
ble tradeoff among various qualities of a reasoning framework, such as generality, com-
plexity, and stability

decision procedure
a function that evaluates claims made on assemblies, described in the property theory, to
the values “true” or “false”

deploy
defines where (in which instance of a runtime environment, and, ultimately, on which
physical computing device) component behavior is executed

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

empirical evidence
evidence acquired through direct observation, preferably under controlled circumstances,
with results reported in well-defined units of measure. Empirical evidence is therefore
provisional, as any other observation might have been different. See also formal evi-
dence.

final form
a software specification that is ready for execution on a physical or virtual machine. See
also component.

formal evidence
evidence acquired through mathematical proof. Formal evidence is therefore irrefutable,
as all such proofs are tautological. See also empirical evidence.

interaction
a composition of two or more reactions, from distinct components, using a runtime-envi-
ronment-provided connector

interpretation
a mapping from assemblies specified in a construction language to specifications in the
language of a reasoning framework

in the zone
within trusted and predictable parameters. Components are “in the zone” are predictable
before they are built, and component assemblies are “in the zone” if their runtime behav-
ior is analytically predictable.

partial assembly
a (recursively defined) abstraction that aggregates a set of components and their enabled
interactions and exposes selected component pins. Logically, a partial assembly is a com-
ponent implemented entirely in terms of other components. See also assembly.

prediction-enabled component technology (PECT)
 a component technology that has been extended with one or more predication-enabling
technologies

property
an n-tuple <name, value, ... >, where name and value refer to the name of some property
and the value it takes, respectively. See also annotation.

property theory
a calculus and logic that provides an objective, rigorous, and verifiable or falsifiable basis
for predicting the properties of assemblies

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

reaction
specification of the behavior of a unit of concurrency within a component (e.g., a thread)
and the behavioral dependencies between sink pins and source pins of a component

reasoning framework
a combination of a property theory, an automated reasoning procedure, and a validation
procedure that is used to predict assembly properties

pin
a binding label in the construction and composition language (CCL). See also source pin,
sink pin, connector.

runtime environment
environment that provides runtime services that may be used by components in an assem-
bly, provides an implementation for one or more connectors, and enforces assembly con-
straints

sink pin
a pin that accepts interactions with the environment of a component (i.e., from other
components or the runtime environment). See also pin, source pin.

source pin
a pin that initiates interactions with the environment of a component (i.e., to other com-
ponents or the runtime environment). See also pin, sink pin.

unit of independent deployment
a component is independently deployable if all its dependencies on external resources are
clearly specified (e.g., as pins), and if it can be substituted for, or substituted by, some
other component. See also deployment.

validation procedure
provides an objective basis for trusting the validity and soundness of a reasoning frame-
work, and defines its required component properties with sufficient rigor to provide an
objective basis for trust in assertions of component behavior

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Bibliography
Bass, Len; Ivers, James; Klein, Mark; & Merson, Paulo. Reasoning Frameworks. CMU/SEI-2005-TR-
007. Software Engineering Institute, Carnegie Mellon University. 2005. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=7637

Predictability by Construction. . Software Engineering Institute, Carnegie Mellon University. 2009.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=28450

Wallnau, Kurt. Obtaining the Benefits of Predictable Assembly from Certifiable Components (PACC).
Software Engineering Institute, Carnegie Mellon University. 2005. http://csauth-
techxfer.sei.cmu.edu/library/asset-view.cfm?assetID=29339

Wallnau, Kurt. Volume III: A Technology for Predictable Assembly from Certifiable Components.
CMU/SEI-2003-TR-009 . Software Engineering Institute, Carnegie Mellon University. 2003.
http://csauth-techxfer.sei.cmu.edu/library/asset-view.cfm?AssetID=6633

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7637
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7637
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=28450
http://csauth-techxfer.sei.cmu.edu/library/asset-view.cfm?assetID=29339
http://csauth-techxfer.sei.cmu.edu/library/asset-view.cfm?assetID=29339

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Contact Us
Software Engineering Institute
4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone: 412/268.5800 | 888.201.4479
Web: www.sei.cmu.edu | www.cert.org
Email: info@sei.cmu.edu

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a feder-
ally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and deriv-
ative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other external and/or com-
mercial use. Requests for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0004471

http://www.sei.cmu.edu/
http://www.cert.org/
mailto:info@sei.cmu.edu
mailto:permis-sion@sei.cmu.edu
mailto:permis-sion@sei.cmu.edu

	Predictiability by Construction
	Overview
	Benefits
	Getting Started
	PBC Concepts
	Reasoning Frameworks

	Prediction-Enabled Component Technology
	Glossary
	Bibliography
	Copyright 2016 Carnegie Mellon University This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, ...

