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Abstract—When establishing communication between two
nodes, identification, authentication, and authorization provide
the information and assurances necessary for the nodes to trust
each other. A common solution for establishing trust between two
nodes is to create and share credentials in advance, and then use a
third-party, online trusted authority to validate the credentials of
the nodes. However, the characteristics of tactical environments
— such as those in which first responders, search and rescue
teams, and military personnel operate — do not consistently pro-
vide access to that third-party authority or certificate repository
because they are DIL environments (disconnected, intermittent,
limited). The goal of this paper is to present a solution for
establishing trusted identities in disconnected environments based
on secure key generation and exchange in the field. For the
implementation and evaluation of the solution we use our open
source implementation of a tactical cloudlets system that is
targeted at supporting disconnected operations.

I. INTRODUCTION

First responders, search and rescue teams, military person-

nel, and others operating in crisis environments increasingly

make use of handheld devices to help with tasks such as

face recognition, language translation, decision support, and

mission planning and execution. Due to the computation-

intensive — and often data-intensive — nature of these tasks,

mobile systems can make use of cyber-foraging to leverage

proximate resource-rich surrogates to augment the capabili-

ties of resource-limited mobile devices through computation

offload and data staging [1]. In these tactical environments,

often characterized as DIL environments (disconnected, inter-

mittent, limited), surrogates are pre-provisioned with all the

computation and data needed for a mission so that they do

not have to rely on reach back to the enterprise.
To support mobile computing at the edge we developed

tactical cloudlets. These are forward-deployed, discoverable,

virtual-machine-based servers that can be hosted on vehicles

or other platforms to provide infrastructure to offload computa-

tion, provide forward data-staging for a mission, perform data

filtering to remove unnecessary data from streams intended

for users, and serve as collection points for data heading

for enterprise repositories. The forward-deployed, single-hop

proximity to mobile devices promotes energy efficiency as

well as lower latency (faster response times) [25]. Tactical

cloudlets are intended in many cases to work completely

disconnected from the enterprise [26]. Prior to a deployment,

cloudlets are pre-provisioned with the capabilities and data

that will be needed for a particular mission. Once in the

field, mobile devices discover proximate cloudlets, query for

services, and then start services on demand. The initial version

of our tactical cloudlets implementation had no security or

trust embedded into the system other than at the network

level, meaning that a user could connect to a cloudlet if it

had network accessibility to it.
When establishing communication between two nodes —

such as between a mobile device and a tactical cloudlet in

the field — identification, authentication, and authorization

provide the information and assurances necessary for the nodes

to trust each other (i.e., mutual trust). A common solution

for establishing trust between two nodes is to create and

share credentials in advance, and then use a third-party, online

trusted authority to validate the credentials of the nodes.

However, the characteristics of tactical environments do not

consistently provide access to that third-party authority or

certificate repository.
In the context of tactical cloudlets we need to develop a

trusted identity solution that meets four major requirements:

1) The solution cannot require network connectivity to a

third party such as the Internet, an enterprise or wide-

area network (WAN), or a Certificate Authority (CA). In

a DIL environment, these connections may be unreliable,

non-existent, or even undesirable. Therefore the solution

cannot use technologies such as a central authentication

service or Internet-based identity management.

2) The solution cannot place any specific security require-

ments on hardware, such as a Trusted Platform Mod-

ule (TPM) processor (Section II-A). Multi-organization

groups often come together to support missions and

need to be able to join the group without specially-

provisioned hardware.

3) The solution cannot require pre-provisioning of creden-

tials on the mobile devices. Although cloudlets them-

selves can be pre-provisioned for a specific mission or

deployment, end devices must be able to join during the

mission, in a contested environment.

4) The solution must address the threats of a tactical envi-

ronment (Section III-A). The main difference with other

threat models is that there is likely to be an adversary

in physical proximity to the system. Therefore, the so-

lution must consider loss or theft of the mobile devices,

proximity to short-range radios, and the ability of an

adversary to control or contest any network connection
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to the Internet or enterprise network.

The goal of this paper is to present a solution for establish-

ing trusted identities in disconnected environments based on

secure key generation and exchange in the field that meets the

above requirements. For the implementation and evaluation of

the solution we use our open source tactical cloudlets system

that is targeted at supporting disconnected operations.

Section II presents related work in the area of trusted

identities. Section III describes our trusted identity solution,

including the development process and rationale. Section IV

presents the implementation of the solution in the tactical

cloudlets system. Section V presents the evaluation of the

solution. Finally, Section VI summarizes and concludes the

paper.

II. RELATED WORK

Establishing trust in disconnected environments requires

decentralized security solutions and infrastructure that are

challenging to implement due to basic security concerns such

as how to exchange keys, how to manage keys, how to

integrate with existing applications, and how to configure

security policies [2]. This section presents potential solutions

for decentralized security with discussion related to their

applicability to disconnected environments, in particular those

involving mobile clients interacting with servers deployed in

the field.

A. Hardware-Based Solutions

Hardware-based solutions require the presence of an on-

board secure hardware component that stores security creden-

tials. Because credentials are embedded in hardware, these

solutions are typically harder to break than software-based

solutions. In addition to cost, a problem with hardware-based

credentials is that these need to be delivered to the field

should they need to be changed, which could be problematic

in disconnected environments. Examples of hardware-based

solutions include Trusted Platform Module (TPM) [3], ARM

TrustZone [4], and SmartCards [5].

B. Software-Based Solutions

Software-based solutions rely on credentials stored in soft-

ware components of a system, such as certificate stores,

configuration files, and databases. Examples of software-based

solutions that could be applicable to disconnected environ-

ments include:

• Identity-Based Cryptography (IBC): In IBC, a public key

is derived from an arbitrary data string, and the corre-

sponding private key is created by binding this string with

a system master secret owned by a trusted authority called

a public key generator (PKG) or key generation center

(KGC) [6]. IBC is ideal for disconnected environments

because (1) it does not require users to pre-compute key

pairs and obtain certificates for their public keys and (2)

nodes contact KGCs only once to obtain their private

key. The main disadvantage of IBC is the property of

key escrow because the KGC knows the user’s private

key.

• Secure Key Agreement without a Trusted Third Party

(TTP): Work in this area leverages out-of-band channels

for securely pairing two devices (computational units)

without previous exchange of a secret key, or needing to

have each other’s public key. The challenge is to do so

without relying on a trusted third-party to create and dis-

tribute this secret key. Examples of solutions in this space

include SafeSlinger which leverages physical proximity

and visual confirmation to provide secure communication

between members of a group [7]; MVSec which leverages

various out-of-band channels readily available in com-

mercial vehicles and mobile devices, such as humans,

light, sound, and vibration, to secure communication

between an individual’s smartphone and his/her vehicle

[8]; and SPATE which relies on visual channels and

physical interactions to establish trust in small groups [2].

The advantage of these solutions is the ability to generate

credentials in the field. The disadvantages are related to

the lack of centralized control, which makes it difficult to

add a node to a group of trusted nodes once credentials

have been exchanged and validated, or to remove a node.

• Distributed Trust Models: These solutions are common

in ad-hoc networks, in which there are mechanisms that

allow a node to evaluate the trustworthiness of other

nodes based on, for example, trust chains, trust tables or

reputation scores [9][10]. The advantage of these solu-

tions is that they leverage peers for trust verification. The

disadvantage is that they rely on nodes that are connected

or aware of other nodes, which is not necessarily the case

of mobile devices that leverage field-deployed servers in

disconnected environments.

C. Hybrid Solutions

Hybrid solutions have a software and a hardware compo-

nent. As an example, layered trust models have a software

layer built on top of a hardware layer, such as using smart

cards as secure containers for digital certificates and a software

PKI-based trust model built on top [11]. Hybrid solutions

inherit both advantages and disadvantages of software-based

and hardware-based solutions.

D. Human-Centric Solutions

Human-centric solutions, as the name indicates, involve

humans for establishing trust. Examples of human-centric so-

lutions that could be applicable to disconnected environments

include:

• Social Networks: In these solutions the trust relationships

between users in their real social networks are auto-

matically translated to trust relationships between their

devices [12]. The advantage is that there is no need to

exchange keys or certificates. However, the disadvantage

is that the relationships in the social world have to be

trusted.
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• Biometrics and Behaviometrics: These solutions use

biometrics (e.g., fingerprints, face recognition, voice

recognition, retinal scans) and/or behaviometrics (e.g.,

keystroke analysis, handwriting, gestures) as identities

[13][14][15][16]. The advantage of these solutions is

identity strength. The main disadvantage is that they

need to compare against a saved or network-accessible

template that may not be available in disconnected envi-

ronments.

III. DEVELOPMENT OF THE TRUSTED IDENTITY

SOLUTION

This section presents the approach by which our trusted

identity solution components were selected and our trusted

identity solution was developed. We first identified a threat

model for disconnected environments, then validated the so-

lutions from Section II against the threat model, and finally

developed an identity solution based on components that best

addressed the threats in the threat model, and the requirements

from Section I.

A. Threat Model for Disconnected Environments

The context for the threat model is a client/server type

of system in which the client is a mobile device and the

server is providing capabilities to mobile devices. The server is

fully disconnected from the network and provides capabilities

to proximate mobile devices connected via WiFi. The threat

model was developed using Microsoft’s SDL Threat Mod-

eling Tool [17] which generated 60 potential threats. These

threats were examined by a threat modeling expert on our

team, evaluated for their applicability to trust in disconnected

environments, and consolidated into the 14 relevant threats

shown in Table I. Assigning priorities to those threats based on

impact and probability of occurrence in an operational setting

is also part of the threat model.

B. Evaluation of Existing Solutions Against Threat Model

Table II maps threats against identity solutions. The number

of plus signs (⊕) in a cell represents the potential of the

identity solution (or elements of the identity solution) to

mitigate the threat.

⊕⊕⊕⊕ Solution fully addresses the threat

⊕⊕⊕ Solution mostly addresses the threat but

needs to be combined with other solution(s)

to fully address the threat

⊕⊕ Solution has some elements that could be

used to address the threat but need to be

needs to be combined with other solution(s)

to fully address the threat

⊕ Solution has minimal support to address the

threat

None Solution has no support to address the threat

Based on an analysis of Table II by threat we can note

that (1) most solutions will address threats that involve mobile

device and server identity/authentication, (2) threats related to

code identity will require mechanisms for code signing and

validation, and (3) threats in which mobile devices and servers

are compromised will require mechanisms to limit connection

time and identity expiration.

The analysis of Table II by solution, in conjunction with an

analysis of the advantages and disadvantages of each, and the

solution requirements presented in Section I, shows that:

• Traditional PKI addresses most of the threats and there

is a lot of out-of-the box support and easy integration

with HTTP and TLS. However there are several major

drawbacks to Traditional PKI systems. One is that it

requires regular, frequent network connectivity to some

form of central hub for one or more of the following

functions: (1) authentication against a central server (e.g.,

Kerberos), (2) the ability to receive Certificate Revocation

Lists (CRLs), and (3) the ability to revoke an entire

CA if it is compromised. This violates Requirement 1,

which is to not require network connectivity to a third

party. Furthermore, existing PKI solutions use very long

public keys by the standards of DIL environments —

even the MD5 signature of a public key certificate is

32 hexadecimal characters. Because credentials cannot

be pre-provisioned per Requirement 3, keys need to be

bootstrapped on to devices, sometimes over very low

bandwidth channels (e.g., voice, visual). This is further

limited by Requirement 4, the ability to remain secure in

an adversarial, tactical environment.

• Hardware-based solutions are the strongest, but the re-

liance on special servers and mobile devices with hard-

ware trust components make it a challenge for dis-

connected environments. Our use cases envision teams

from multiple services, countries, and agencies being

able to form ad hoc networks with their own equipment

(Requirement 2).

• IBC is a decentralized solution that maps well to discon-

nected environments. There are several algorithms and

implementations that could enable the server to act as

the PKG.

• Secure Key Agreement without a Trusted Third Party

is also a decentralized solution that maps well to dis-

connected environments, specifically exploiting initial

physical proximity between servers and mobile devices

for secure key exchange, and also as part of two-factor

initial authentication (bootstrapping).

• Distributed trust models do not address many of the

threats by themselves, but elements of this solution could

be employed as part of a two-factor authentication solu-

tion.

• Layered trust models combine the advantages and dis-

advantages of hardware- and software-based solutions.

This type of solution could work well in a homogeneous

hardware environment.

• Social network solutions do not address many of the

threats. Even though elements of a social network so-

lution could be employed as part of a two-factor authen-
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TABLE I
THREAT MODEL FOR DISCONNECTED ENVIRONMENTS

# Name Description Priority
1 Impersonating a device Unauthorized device attempts to gain access to the server environment H

2 Finding an active client Authorized phone is lost with an established connection H

3 Finding a device Authorized phone is lost without a connection currently operating H

4 Altered software Software on an approved device is changed due to downloaded malicious code, tampering,
unintended changes, or some other means

M

5 Daisy chaining External device is able to connect to the authorized device and exploit its approved access M

6 Lost credentials Authorization information is obtained by a malicious person who then tries to spoof the device H

7 Sniffing wireless WiFi signal is monitored by an external party providing visibility of traffic stream H

8 Site intrusion Physical access to server is obtained providing hands-on access to the equipment H

9 On the net Network access to the service infrastructure is obtained H

10 On the box Access to server OS is obtained H

11 Super-user compromise System admin access is compromised and software and data can be stolen or changed impacting
services and integrity

H

12 Application compromise Application controls are compromised L

13 Seeing everything Data management controls are compromised L

14 Server impostor Impersonating a trusted server environment and enticing devices to connect H

TABLE II
EVALUATION OF SOLUTIONS AGAINST THREAT MODEL FOR DISCONNECTED ENVIRONMENTS

Threat Traditional PKI Hardware-Based
Software-Based Hybrid Human-Centric

IBC

Key
Agree-

ment w/o
TTP

Distributed Layered Social
Networks

Bio- and
Behavio-
metrics

1. Impersonating a device ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕ ⊕⊕⊕⊕ ⊕⊕ ⊕⊕
2. Finding an active client ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕⊕
3. Finding a device ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕ ⊕⊕⊕ ⊕⊕ ⊕⊕⊕⊕
4. Altered software ⊕ ⊕⊕⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕
5. Daisy chaining ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
6. Lost credentials ⊕ ⊕⊕⊕⊕ ⊕ ⊕ ⊕ ⊕⊕⊕ ⊕ ⊕⊕⊕
7. Sniffing wireless ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕ ⊕⊕⊕ ⊕⊕ ⊕⊕⊕
8. Site intrusion ⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕
9. On the net ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕⊕ ⊕⊕ ⊕⊕⊕
10. On the box ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
11. Super-user compro-
mise

⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕ ⊕⊕⊕⊕

12. Application compro-
mise

⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕ ⊕⊕⊕⊕ ⊕ ⊕⊕⊕⊕

13. Seeing everything ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕ ⊕⊕⊕⊕ ⊕ ⊕⊕⊕⊕
14. Server impostor ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕ ⊕⊕⊕⊕ ⊕⊕ ⊕⊕

SCORE 34 39 34 33 21 40 16 35

tication solution, there is no equivalent of software-level

social relationships in disconnected environments, other

than for example being part of the same team or squad,

which even then would require that relationship to be

represented at the software-level.

• Biometrics and behaviometrics provide very strong iden-

tities but are not a good match for disconnected environ-

ments because access to templates for comparison would

need to be available, violating Requirement 1.

Overall, from a quantitative perspective (last row of Table

II), 5 of the 7 alternative solutions to Traditional PKI pro-

vide similar threat mitigation potential (in the 33-40 range).

Hardware-based and hybrid solutions provide greater threat

mitigation because they provide hardware elements that can

be used for device/server identities as well as user identities.

However, from a qualitative perspective, IBC and Secure Key

Agreement without a Third Party provide very similar threat

mitigation potential to Traditional PKI but also address some

of its limitations. A combination of IBC and Secure Key
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Agreement would therefore address most of the threats but

would need to be combined with code signing capabilities, and

external server-, OS-, network-, and application-level controls

to address all of the threats.

C. Description of Developed Solution

The structure of the tactical cloudlet implementation that

includes our trusted identity solution is presented in Figure 1

and is based on the design presented in [26]. In this imple-

mentation, a tactical cloudlet is composed of a Cloudlet Host
computer that acts as a server, which is connected via Ethernet

to a WiFi Access Point that provides wireless access to clients

to the cloudlet’s services. These two components define a

cloudlet unit. A Cloudlet Client is a mobile device with WiFi

capabilities. Both the Cloudlet Host and the Cloudlet Client

also have Bluetooth and/or USB capabilities (which will be

used for pairing).
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Fig. 1. Tactical Cloudlet Physical Components

The goal is to establish trust between a device (Cloudlet

Client) and the cloudlet. There are two human users involved

in this process: the Device User, who uses the Cloudlet Client,

and the Cloudlet Admin, who manages the cloudlet as needed.

Initially, the device does not know or trust the cloudlet,

and is not able to connect to it in any way. Likewise, the

cloudlet does not know or trust the device. When in close

proximity, however, the Cloudlet Admin can recognize and

trust the Device User. The end result of the process we will

describe is that the device and cloudlet trust each other; more

specifically, that an authorized device is allowed to connect

and be authenticated to the cloudlet’s WiFi Access Point, and

that it is also allowed to securely request services from the

Cloudlet Host through the network.

The developed solution follows the Identity Based Crypto-

graphy (IBC) methodology described in [18] while using Se-

cure Key Agreement [19] to facilitate logistical requirements

of disconnected environments. Our implementation depends

on the Stanford Identity Based Encryption (IBE) Library,

which uses the Boneh Franklin scheme as a Key Encapsulation

Mechanism (KEM) and off-the-shelf (OpenSSL) ciphers and

HMACs for the actual encryption [20]. Identity-Based Short

Signatures [21] are used for the WiFi Authentication process.
The selected Secure Key Agreement without a Trusted

Third Party ceremony takes advantage of deployments in

disconnected environments; specifically, the presupposition of

physical proximity. The proposed solution requires a parti-

cipant’s physical proximity to the PKG (i.e., server) for the

initial identification and authentication. Because the Cloudlet

Admin trusts the Device User, it can also trust a device carried

by the Device User. Physical proximity can then be used to

establish trust between the device and the cloudlet with the

help of the users.
We define the following cryptographic elements for the

processes:

1) Server (Server Private Key, Server Public Key): The

Server is a program running on the Cloudlet Host that

provides cloudlet services to devices. The Server Public

Key, called IBE params in IBE, is generated by the

IBE library with IBE_setup(). The Server Private

Key, called Master Key in IBE, is a non-RSA key also

generated with IBE_setup().

2) RADIUS Server (RADIUS Server Certificate, RADIUS

Server Private Key): We use RADIUS (Remote Au-

thentication Dial-In User Service) as the client/server

networking protocol for WiFi authentication because it

is supported natively by most WPA Enterprise access

points. [22]. The RADIUS server runs on the Cloudlet

Host and it is configured to authenticate users trying to

connect to the WiFi Access Point. Both the self-signed

X.509 RADIUS Server Certificate and the corresponding

RSA RADIUS Server Private Key are generated using

OpenSSL.

3) Device (Device Private Key, Device Public Key, Device

BLS Certificate): The Device Public Key is the Device

ID and acts as the unique identifier required by IBE.

The Device Private Key is a non-RSA key generated

by the IBE Library with IBE_extract() using the

Device Public Key and the Server’s Public and Private

Keys. The BLS Certificate is the Device Public Key

signed by the Server’s Public and Private keys using

IBE_certify() from the IBE Library.

Our solution to establish trust consists of four subprocesses:

Bootstrapping, Pairing, WiFi Authentication, and API Re-

quests. The first two processes perform the actual trust estab-

lishment; the other two are used to authenticate a paired device

requesting access at the WiFi and network level respectively.

In addition, there are two ways to revoke device credentials:

Automatic and Manual.
1) Bootstrapping Process: The Bootstrapping process es-

tablishes the encryption and identity parameters on the server.

Every server deployment starts from a clean state, which is

why the first step of the process is to delete any existing

server credentials. To function as an IBC PKG, the server

must first generate its own Server Private Key and Server
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Public Key. This is the Setup phase as described in [18]. These

keys are analogous to a private/public keypair in traditional

public key cryptography. It also generates the RADIUS Server

RSA private / public keypair and X.509 certificate in order

to perform WiFi Authentication using WPA2-Enterprise [23]

against the RADIUS Server running on the server. The gener-

ated RADIUS Server Certificate and Private Key are used by

the RADIUS Server in order to use the EAP-TTLS protocol

[24]. Finally, to limit connection time and enforce identity

expiration as required by the threat model, a deployment

duration is set as the last step of the bootstrapping process.

2) Pairing Process: Pairing is the process of identifying a

client device to the server, authorizing it to access that server,

and transferring the required credentials. A Mobile Device

User would begin by presenting their device to the Cloudlet

Admin. The Cloudlet Admin would decide if the user is

authorized to use the server based on physical credentials and

characteristics, e.g., photo ID, uniforms and insignia, personal

knowledge, or delegation of trust. If approved, the Cloudlet

Admin would login to the Server and the Mobile User would

connect the candidate mobile device to the server via USB

or Bluetooth. The server asks the device to send its Device

ID (which functions as the Device Public Key) and uses it to

generate the Device Private Key. This is the Extract phase in

[18]. The advantage is that there is no need for the server to

have a pre-configured list of good devices or public keys. If the

Cloudlet Admin trusts the possessor of the device, he/she can

grant that device access. We use the Android Device ID as the

Device ID. The Android Device ID is a unique 64-bit number

(represented as a hex string) obtained with the command

Settings.Secure.getString(context.
getContentResolver(),
Settings.Secure.ANDROID_ID).

This ID is randomly generated when the user first sets up

the device and should remain unique for the lifetime of the

device.

This process addresses one shortcoming of basic IBC, which

is the need for key escrow. Under the original Boneh Franklin

scheme, the PKG knows and can recompute the private key

for any given public key. The IBE library has a method to

split that ability across multiple servers, so that no one server

has that information. However, in a disconnected environment,

the server can be considered trustworthy for its stated class of

information. This trust is verified by the user of a device before

pairing and is validated in the same way that the user was

validated — photo ID or other physical credentials. Different

servers could offer different applications or data, and each

could independently choose which users and devices to trust.

Once the private key has been extracted, the server also

creates a Device BLS Certificate for that device that is used in

the following phases. The Device Public Key (Device ID) and

Device BLS Certificate are stored as a key/pair value in a list of

paired devices. The server registers the Device Public Key and

Device BLS Certificate with the RADIUS Server. The server

also sends the Mobile Device four pieces of information:

Device Private Key, Device BLS Certificate, Server Public

Key, and RADIUS Server Certificate. The Device Public Key

and the Device BLS Certificate are set as the user credentials

in the WPA2-Enterprise WiFi profile created on the device.

Finally, the Device Private Key is deleted on the server in

order to address elements of the threat model.
3) WiFi Authentication Process: The servers provide all of

their services over WiFi using standard 802.1X authentication.

Clients connect to a server’s WiFi Access Point (AP) and

request access to the network. The AP provides the RADIUS

Server Certificate and the client verifies its own copy of the

RADIUS Server Certificate, which it obtained via pairing.

If the certificate is valid, the client sends its Device Public

Key (Device ID) and Device BLS Certificate as the PAP

username:password tuple over a TLS-encrypted tunnel (EAP-

TTLS). The RADIUS Server checks the Device BLS Certifi-

cate against those in the RADIUS database. For added security,

the server can recalculate the certificate using the Device ID

to ensure, cryptographically, that the device has previously

paired. At this point, WPA2 Enterprise authentication has

succeeded and the client is authorized to use the server’s WiFi

network.
4) API Request Process: Services on a cloudlet are pro-

vided by a simple HTTP Request/Response protocol. To

secure the requests, the client can decide to use any of the

cryptographic elements generated in the previous phases, or

can generate and share a new secret key. If a new secret

key is generated it has to be replaced as the password for

that device in the list of paired devices on the server. Each

request/response pair is encrypted and decrypted using the

agreed-upon secret key/password. To address elements of the

threat model, before processing a request, the server first

checks if the Device Public Key (Device ID) included in the

request is in the list of paired devices. If so, it then checks if

the deployment duration set in the bootstrapping process has

not expired (Section III-C1). If it has not expired, it retrieves

the password for that device and uses it to decrypt the request.

The request is processed and the response is encrypted using

the same password.
5) Automatic and Manual Device Credential Revocation:

To address elements of the threat model, the solution includes

two ways of revoking device credentials, therefore terminating

the connection between the server and the mobile device.

• Automatic due to deployment timeout: As mentioned

in Section III-C1, the last step of the bootstrapping

process is to set a deployment duration. The server will

automatically disable all device credentials at the end of

the configured duration. This means that server will no

longer accept pairing or API requests from any device

until a new deployment is configured.

• Manual due to known loss or compromise: To address

elements of the threat model, the solution requires a way

to manually revoke device credentials if a device is known

to have been lost or stolen. Once credentials are revoked,

the device is removed from the list of paired devices, and

the server will no longer accept API requests from that

device.
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IV. IMPLEMENTATION

A. Overall Architecture and Design

The architecture of the tactical cloudlet implementation is

presented in Figure 2 and is based on the architecture presented

in [26]. As shown in Figure 2, Cloudlet Clients have Cloudlet-
Ready Apps, which are applications that can access cloudlet

services through an HTTP API over WiFi, the Pycloud API,

provided by the cloudlet. The Cloudlet Client App allows a

mobile device to setup Cloudet-Ready Apps and monitor the

status of a cloudlet. A Cloudlet Host has a web-based local

management interface, called Pycloud Cloudlet Manager,

that allows the Cloudlet Admin to manage and configure the

cloudlet and its services. The Avahi Daemon component on

the Cloudlet Host allows discovery of the Pycloud API though

Zeroconf [27] once a Client has connected to the cloudlet’s

network.

Each capability that is made available to apps is considered

a Service. Each service has associated metadata (Service

Metadata), the actual capabilities packaged as VM disk and

memory images (VM Images), and one or more Cloudlet-

Ready Apps that can use the capability. Services are stored

in a Service Repository inside the Cloudlet Host.

B. Security Components

The following are the system changes and new components

that implement our trusted identity solution:

1) Bootstrapping and Pairing Processes: A new interface

was added to the Cloudlet Manager that enables the

execution of the Bootstrapping and Pairing processes

needed to set up a mission/deployment, and to pair

devices securely to the cloudlet. The Cloudlet Client

App was also updated to handle the device side of the

Pairing process.

2) FreeRADIUS Server: FreeRADIUS is an open-source

implementation of a RADIUS server [28] that was added

to the Cloudlet Host to handle WiFi authentication. The

Access Point for the cloudlet is configured with WPA2-

Enterprise in order to authenticate devices connecting to

the network through this FreeRADIUS server (Section

IV-C).

3) Secure-Key Agreement (SKA) Package: This package

was added to Pycloud to handle the key and credential

exchange during the Pairing process. The SKA package

implements a communication protocol that can work

over Bluetooth or USB to securely pair a device to

a cloudlet for the duration of a mission/deployment

(Section IV-C). The Cloudlet Client App was updated to

implement this protocol. The Cloudlet Client App also

handles the creation of the WiFi profile that will allow

authentication with FreeRADIUS.

4) Security Package: This package was added to Pycloud

to handle the credentials for the server and its paired de-

vices. The package creates the appropriate server creden-

tials and device credentials during the Bootstrapping and

Pairing processes, and manages the repositories where

the credentials are stored. It manages the list of devices

that have been paired with the system and can revoke

authorization if requested. The Security Package is also

responsible for properly configuring the FreeRADIUS

server each time a new device is paired or unpaired with

the cloudlet. In addition, the package is responsible for

encrypting and decrypting communication going through

the Pycloud API (Section IV-C). The client side also has

a simpler, similar package that stores and retrieves the

credentials stored on the device, which can then be used

by the Cloudlet Client App or any other Cloudlet-Ready

App to encrypt the communication with the Pycloud

API.

C. Communication Protocols

There are four different communication protocols that were

modified or added to our system to implement our trusted

identities solution.

1) Secure Key Agreement (SKA) Protocol (red arrow

in Figure 2): This protocol is used during the pairing

process. Although the protocol itself is independent of

the method used to transfer its messages, it is intended

to be used when the two devices are in proximity. The

two implementations included in the system are for

Bluetooth and serial USB connection message transfer.

The protocol follows a client-server model in which

the Pycloud Cloudlet Manager acts as the client, and

a mobile device with the Cloudlet Client App acts as

the server. All messages and their replies are structured

as JSON text objects. The protocol consists of three

messages and their replies: Get Data (from the mobile

device), Send Data (to the mobile device) and Send
File (to the mobile device).

The Bluetooth implementation uses service discovery

and RFCOMM [30] to connect to a device and com-

municate with it. The Cloudlet Client App provides a

Bluetooth RFCOMM server that is started during the

pairing process to receive and respond to requests.

The USB implementation uses Android’s ADB [31]

for communication. The ADB Daemon running on the

mobile device is used to receive commands and route

them to the appropriate handlers in the Cloudlet Client

App that push or pull JSON or binary files.

During the pairing process, the Get Data command is

used to obtain the Device ID. The Send File command

is used to send credential information (certificates and

keys); and the Send Data command is used to send

a command to create the WiFi profile, along with the

required information for the profile.

2) EAP over 801.X and RADIUS Protocol (light green

arrows in Figure 2): Used for WPA2-Enterprise WiFi

Authentication. The WiFi profile on the device and the

FreeRADIUS configuration are set by our code, but the

actual authentication occurs outside of our components,

between Android’s wpa supplicant, the Access Point,

and FreeRADIUS. The authentication method used is
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Fig. 2. Tactical Cloudlet Architecture

EAP-TTLS PAP, with the credentials being the Device

ID and the Device BLS Certificate set up during the

pairing process.

3) Pycloud API Protocol (blue arrows in Figure 2): These

are REST HTTP requests to the Pycloud API. The

replies for most of these messages is data in JSON

format. The current API includes commands to get

information about the capabilities of the cloudlet, a list

of services and specific service information, a list of apps

and APKs for specific apps, and commands to start and

stop Service VMs for specific services.

Because all of these messages are self-contained re-

quests, there is no session between the mobile device

and the cloudlet. Access to this API is implemented in

the Client Library, which is used by the Cloudlet Client

App and any Cloudlet-Ready App.

If encryption is enabled, the API works differently. In

this case there is only one possible message, which
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Fig. 3. Attack Tree.

includes the Device ID as an HTTP header, and only

one HTTP parameter, command, that contains the actual

command to be executed. The value of this parameter is

a URL string corresponding to one of the unencrypted

API messages mentioned above. This string is sent

encrypted with a symmetric 256-bit AES key associated

to the device, so that only the device and the Pycloud

API that the device is paired to are able to decrypt it.

The password used to generate the key is the SHA-256

of the Device Private Key created during the pairing

process with the device. Replies are also encrypted with

this symmetric key.

V. EVALUATION

A. Evaluation Against Threat Model

The first form of evaluation that we conducted was against

the threat model defined in Section III-A. How each threat

was fully addressed, partially addressed, addressed outside the

solution, or not addressed is described in Table III.

In summary, the solution fully addresses five of the 14

threats and partially addresses one of the threats due to an

explicit tradeoff. Six of the 14 threats are addressed outside

of the solution, and will be further addressed in the Ceremony

Analysis (Section V-C). Two threats are not addressed by the

solution but we provide potential mitigations that we did not

implement.

B. Vulnerability Analysis

We additionally evaluated the trusted identities solution by

performing architectural and technical analysis of possible

vulnerabilities based on the threat model (Section III-A).

Given this set of threats, we first created a simple attack tree

[32] to determine potential attack vectors, as shown in Figure

3. As an attacker, our overall goal would be to gain access

to the data being shared between clients and the server. We

identified four possible paths to access that data, of which only

two are relevant when considering the trusted identity solution.

1) Remote Network (Internet) Access: This is not relevant

because the clients and server are expected to be oper-

ating in a disconnected environment.

2) Physical Server Access (including via a USB port): We

exclude this threat because physical security controls in

a disconnected environment are outside the scope of the

identity solution. That is, physical attacks on the server

would bypass the identity solution credentials.

3) Local Network Access: This includes Bluetooth or WiFi

access from an unauthorized device.

4) Physical Device Access (Compromised Authorized De-

vice): We include physical security of the mobile device

because it is much more prone to loss or theft than the

server, and could lead to compromise of the identity

solution.

The following sections address the relevant paths of the

attack tree shown in Figure 3.
1) Local Network Access: Regarding Bluetooth Pairing,

Bluetooth is known to be vulnerable to attack in certain

configurations [33]. Although Bluetooth is a short range

protocol, it can be received within ˜100 meters. In urban or

disaster scenarios, the pairing process may happen in crowded

environments where this is a risk. We configured the Bluetooth

pairing process to use Numeric Comparison pairing, which has

been proven to be secure [34].

In our solution, the WiFi credentials consist of the Device

ID as the username and a SHA-256 hash of the Device

BLS Certificate as the password. SHA-256 is considered

secure against current attacks by the U.S. National Institute

of Standards and Technology (NIST) [35]. Furthermore, the

SSID is user-selected, making it impossible to create rainbow

tables even if a user intentionally weakened the password [36].

The other threat to WiFi is that of the user connecting

to a WiFi Rogue Access Point and inadvertently sharing

its credentials. The RADIUS Server Certificate created in

the bootstrapping process (Section III-C1) prevents this. The

device acquires the certificate at the same time as it acquires

its credentials, and the SSID and certificate are automatically

configured to use those credentials. Android will not allow

the user to connect to another access point with that SSID

unless it can present the RADIUS Server Public Key matching

the stored RADIUS Server Certificate. A user could possibly

connect to an SSID with a confusingly similar name, but the

stored credentials would not be sent to that SSID. The only

way an attacker could potentially spoof a legitimate access

point would be with the RADIUS Server Private Key, which

is never transferred to the device.

Our final mitigation against WiFi attacks is the fact that

all API requests are encrypted with the full Device BLS

Certificate using AES [37]. Even if an attacker gained access

to the WiFi network, they would only see encrypted data.

The WiFi password is a SHA-256 hash of the Device BLS

Certificate, which prevents attackers who obtain the WiFi

password from discovering the certificate itself.
2) Physical Device Access (Compromised Authorized De-

vice): The device contains all of the information needed
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TABLE III
EVALUATION OF TRUSTED IDENTITY SOLUTION AGAINST THREAT MODEL

Threats Fully Addressed
Threat Mitigation

(1) Impersonating a device During the pairing process (Section III-C2), the cloudlet sends the RADIUS Server the Device Public Key and Device
BLS Certificate Hash. The RADIUS Server stores these credentials in a list of authorized devices. During the WiFi
authentication process (Section III-C3) the device authenticates with the RADIUS Server by sending its stored Device
Public Key and Device BLS Certificate Hash. The communication continues only if these match. Finally, the last step
of the bootstrapping process (Section III-C1) is that the device private key is deleted on the server, which means that
the only place in which it resides is the device.

(2) Finding an active client This threat is mitigated through several mechanisms: (1) the last step of the bootstrapping process (Section III-C1) is
to set a deployment duration, (2) device credential revocation mechanisms (Section III-C5) are implemented so that
all API Requests are rejected after deployment expiration time and a device can be manually deleted in the Cloudlet
Manager if lost or compromised, and (3) each API Request is validated against the list of valid devices.

(3) Finding a device The pairing process (Section III-C2) requires physical proximity to the cloudlet to be able to connect via Bluetooth or
USB, plus visual confirmation from the cloudlet admin.

(7) Sniffing wireless The system performs transport- and message-level encryption. WPA2-Enterprise (802.1X) CCMP (AES) encryption with
a 128-bit key based on a 256-bit password is used at the transport level. The body of each HTTP message is encrypted
with AES (CBC) with a 256-bit key and a random IV at the message level.

(14) Server impostor The bootstrapping process (Section III-C1) creates a RADIUS Server Certificate that is validated by the device in the
WiFi authentication process (Section III-C3). During the pairing process (Section III-C2), the certificate is sent to the
mobile device. During the WiFi authentication process, the device asks the RADIUS Server for its certificate, which
has to be sent before that device can trust the network. If the certificates do not match, the device will not connect to
the corresponding WiFi network.

Threats Partially Addressed
Threat Mitigation

(6) Lost credentials The main mitigations are the manual and automatic device credential revocation processes described in Section III-C5.
All API Requests include the Device Public Key (Device ID) which is validated against the list of paired devices
before responding to a request. Anything stronger would require TPM and/or encrypting the Device Credentials (Device
Public Key and Device BLS Certificate), which affects usability because a password would have to be entered for every
interaction. A possibility would be for the password to be cached on the device. If an attacker obtains the Device
Credentials and RADIUS Server Certificate, it would not be able to use them without knowing the password, which is
only cached on the device itself.

Threats Addressed Outside the Implementation
Threat Mitigation

(8) Site intrusion In addition to requiring strong passwords for the root user and the cloudlet admin, the server would have to reside in
a safe, protected site.

(9) On the net The server is disconnected from the network. The cloudlet only accepts connections that are authorized by the RADIUS
Server.

(10) On the box Strong passwords for the root user and the cloudlet admin are required.

(11) Super-user compromise Cloudlets only have two users: root and cloudlet admin. Strong passwords for the root user and the cloudlet admin are
required. Cloudlet admin does not know the root password. Cloudlet admin account does not have root privileges.

(12) Application compromise There are settings in place so that the Cloudlet Manager can only be run locally.

(13) Seeing everything Strong passwords for the root user and the cloudlet admin are required. Service VMs are responsible for encrypting
data residing within the VM.

Threats not Addressed
Threat Potential Mitigation

(4) Altered software Mitigation would require integration with TPM or code signing.

(5) Daisy chaining Mitigation would require device controls that do not allow connections to a mobile device.

to connect to the server and decrypt data. Loss or theft

of the device potentially compromises that information. We

primarily mitigate this threat by establishing the two methods

of revoking the credentials of a lost or stolen device (Section

III-C5): automatic due to deployment timeout and manual due

to known device loss or compromise. This leaves a potential

window of vulnerability between an adversary obtaining a

device and the credentials being revoked. Although Android

has been susceptible to passcode bypasses [38], a properly

patched and encrypted device should be sufficiently resistant

to attack for the amount of time required to notice the loss and

rescind the credentials. Android drive encryption has also been

shown to be susceptible to Cold Boot attacks [39], but these

attacks take time due to the need to chill the device. The use

of one-time passwords would alleviate these vulnerabilities,

but at a cost of making the device much more cumbersome to

personnel in crisis environments.

The device is assumed to be fully patched, encrypted and

protected with a passcode. Further, it is assumed that no

unauthorized or vulnerable software has been installed or side-
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loaded, and that it does not contain a SIM card for cellular data

connection. Addition of any of these functions would expand

the attack surface [40] and therefore the threat model would

have to be adjusted to account for the greater attack surface.

After navigating the attack tree (Figure 3) and addressing

the vulnerabilities, we modeled all possible states of the

encryption entities to ensure there were no unexpected states

that produced vulnerabilities. Through the life cycle of a given

device, we enumerated the following state changes and the

related movement of encryption entities.

1) State 0: The device contains its public key (Device ID);

the server contains no entities.

2) State 1 (Bootstrapping): Server creates the Server Public

Key, Server Private Key, RADIUS Server Public Key,

RADIUS Server Private Key, RADIUS Server Certifi-

cate.

3) State 2 (Pairing - Phase 1): Server acquires Device

Public Key.

4) State 3 (Pairing - Phase 2): Device acquires Server

Public Key, RADIUS Server Certificate, Device Private

Key, Device BLS Certificate

5) State 4 (WiFi Authentication): Device re-acquires RA-

DIUS Server Certificate which contains the RADIUS

Server Public Key.

6) State 5 (Deployment Timeout): Server removes all

paired Device Credentials and deletes all encryption

entities.

Based on these state changes, we determine that at no point

does the device gain access to an encryption entity that could

be used to exceed its level of authorization. Specifically, the

Server Private Key or RADIUS Server Private Key would

be needed to violate the confidentiality or integrity of the

protected communications.

We do not address availability attacks because Denial of

Service (DoS) attacks would likely be analog or kinetic rather

than digital in a disconnected environment.

C. Ceremony Analysis

The concept of ceremony extends the concept of network

protocol by including human beings as nodes in the network

[41]. Ceremonies include all protocols, applications with a user

interface, and security provisioning workflows. In essence,

there is nothing out of band in a ceremony. Security analysis

of a node in a ceremony is the same for both human and

computer nodes: With what probability will an attacker be

able to fool the node into making an incorrect decision?

As Table III shows, there are multiple threats in the threat

model that are addressed outside of the implementation. In

essence, these are assumptions that are made by the solution

and left open for arbitrary people to satisfy in arbitrary ways

[41]. In addition, the pairing process requires an out-of-band

channel (physical proximity plus visual confirmation). These

are all elements that benefit from a ceremony analysis in order

to provide guidance on how to validate or enforce all elements

of the end-to-end solution.

Ceremony nodes in the exchange of credentials between

a cloudlet and a mobile device are shown in Figure 4. The

human nodes are:

• Mobile User: Owner and user of the mobile device

• Cloudlet Admin: User responsible for operating a cloudlet

in the field

• Cloudlet Provider: User responsible for setting up a

cloudlet for use in the field. The Cloudlet Provider

physically hands over a cloudlet to a Cloudlet Admin.

Mobile 
User

Mobile 
Device Cloudlet Cloudlet 

Admin
Cloudlet 
Provider

Set Password Login

Install Cloudlet Software

Set Cloudlet User Password

Set Cloudlet Management Password

Cloudlet User Password

Cloudlet Management
Password

Login (Cloudlet 
User Password)

Form of User Identification

Device ID

Device Credentials

(a)

(b)

(c)

Login

Login(Cloudlet
Management 
Password

Fig. 4. Ceremony between a Mobile Device and a Cloudlet

With the exception of the Device ID and Device Credentials
exchange shown in Figure 4 all other exchanges between

nodes in the ceremony are considered out-of-band for the

trusted identities solution. The ceremony analysis therefore

demonstrates the need to provide assurances for all other

exchanges.

(a) Cloudlet Setup

– Password used by the Cloudlet Provider to login to

set up a cloudlet (i.e., root or another user with admin

privileges) must follow rules for strong passwords.

– Installing cloudlet software by the Cloudlet Provider
must be an automated process that does not install

extra software on the cloudlet that could potentially

compromise the cloudlet.

– Passwords created for the Cloudlet User (to log

into the physical machine) and Cloudlet Management
(to log into the Cloudlet Manager application) must

follow rules for strong passwords.

– Password set by the Mobile User on his/her Mobile
Device must follow rules for strong passwords. This

is harder to enforce on personal mobile devices (i.e.,

BYOD).

(b) Cloudlet Delivery: The Cloudlet User Password and the

Cloudlet Management Password have to be delivered in
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a secure way to the Cloudlet Admin. An alternative is for

the Cloudlet Admin to set up his/her own set of passwords

following the same rules for strong passwords.

(c) Device Credential Exchange: Valid forms of User Identi-
fication presented by a Mobile User, and validation mech-

anisms for the User Identification, need to be defined such

that the Cloudlet Admin only starts the pairing process

after confirmation of a valid user.

VI. SUMMARY AND CONCLUSIONS

The paper presented a trusted identity solution for dis-

connected environments that combines Identity-Based Cryp-

tography (IBC) with mechanisms for Secure Key Exchange

without a Trusted Third Party. The solution was developed

based on a threat model for disconnected environments and

implemented in our open-source tactical cloudlets project tar-

geted at deployment in these types of environments. Evaluation

of the implementation was done against the threat model

and using vulnerability analysis. The results show that it is

a resilient solution that addresses most of the threats and

characteristics of disconnected environments if combined with

proper application-, OS-, network- and site-level controls.

An additional ceremony analysis was conducted to provide

guidance on threats that are addressed outside of the trusted

identity solution. Even though the solution was implemented

in the the context of a client/server tactical cloudlets systems,

we believe the solution could be applied to any form of

trusted communication between two or more computing nodes.

Future work will focus on expanding the threat model to a

connected environment, and identity federation across multiple

computing nodes.

The implementation of the tactical cloudlets system that

includes the developed trusted identity solution is available

at https://github.com/SEI-AMS/pycloud/wiki.
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