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Executive Summary 
The purpose of this report is to describe a test of the complexity algorithm that we developed and pre-
viously described in the report for Task 3.5: Estimating Complexity of a Safety Argument [Konrad 
2016]. The algorithm did not measure every possible kind of complexity; rather it measured the com-
plexity resulting from errors propagating from component to component; thus we call it error propa-
gation complexity. The example used in this test was a Wheel Brake System that had an available 
model in the Architecture Analysis & Design Language (AADL), a much more involved example than 
the stepper used in the previous report. Its error propagation complexity turned out to be about twice 
that of the Stepper Motor System. 

The method used to assess error propagation complexity for the Wheel Brake System was to obtain 
the architecture model of the entire Wheel Brake System, simplify the interconnections, then (as in 
Konrad 2016) count the ways that errors could propagate from one element to another. The initial 
model is shown in Figure 1 of this report, and the simplified model is Figure 3. The Wheel Brake Sys-
tem was chosen because it had a fairly complete model, including a description in a formal architec-
tural language (AADL) that noted system modes, identified components and their interconnections, 
and had a reasonably complete error model (resulting from a hazard analysis).  

The architecture was simplified to focus on aspects important to application of the error propagation 
complexity formula, namely, modes (this system had only one), components, propagation points, fail-
ure conditions, and fan-out. As before, the error propagation complexity formula essentially estimates 
the size of the safety case: assuming an average analysis time for the follow-through to determine 
whether a failure can propagate in an unsafe manner, the estimate of total time for safety case analysis 
can be created by multiplying this average time per failure propagation by the number of ways a fail-
ure can propagate, which is estimated by our formula for error propagation complexity.  

From the diagram shown in Figure 3, a complexity value can be reliably computed, as validated in an 
inter-rater test. The answer key in Section 5 shows how this is done. It consists of seven steps plus a 
matrix organizing their answers. 

In conclusion, this report shows that the formula for error propagation complexity can be applied con-
sistently to multiple well-defined architectures and results in reasonable answers. 
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1 Introduction 
This special report describes the results of Task 3.6, the fourth deliverable in a two-year project to in-
vestigate the impact of system and software complexity on aircraft safety and certifiability for the Fed-
eral Aviation Administration (FAA). The Statement of Work described this task as follows: 

3.6 Test the Identified Metrics 
Test the identified metrics on a jointly-agreed-to representative avionics system to prove the 
applicability of the proposed approach. Analyze an existing avionics system, using either 
existing source code or specifications, and highlight the complexity of the system using the 
selected metrics. Depending on the selected system and the accuracy of the artifacts under 
analysis, quantify the impact of the suggested approach. 
Deliverables: 
White paper reporting the relevance of selected metrics and demonstrating the applicability 
of our methods to manage complexity. 

Some work originally conceived of for this task was also reported in [Konrad 2016] when the com-
plexity of the stepper motor example was tested to proof the algorithm. 

2 Selecting the Example 

2.1 Wheel Brake System 

We initially applied the error propagation complexity1 formula to a Stepper Motor System [Konrad 
2016]. To further validate the formula and understand how it might be used in practice, we tried it on a 
larger example. Section 3.1 of the previous report lists the assumptions and inputs that guided the se-
lection of our example: 

The main assumption is that we have a system architectural design that may be preliminary 
in component or interconnection details but is complete in the following ways: 
1. All system modes are identified. 
2. All components and their interconnections are identified. 
3. A hazard analysis has been performed to identify all component failure conditions that 

have the capability to propagate outward from a component. The failure conditions are 
characterized using an error taxonomy. [Konrad 2016, emphasis added] 

The team identified two examples that met most of these criteria (components, interconnections, and 
failure conditions are identified—there were no modes specified): a Wheel Brake System for an aero-
space system [Feiler 2014, SAE 2011] and a Speed Regulation System for a car control system 

____________________________________________________________________________ 

1  Now called error propagation complexity; this quantity was just called complexity in the previous report. 
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[Delange 2015]. Although the documentation of the architectural design for the speed regulation sys-
tem was more complete in some ways, we determined that this completeness would not affect our 
analysis, and thus we chose the Wheel Brake System as being more relevant to the avionics domain. 
We call the hazard analysis the “error model” in this work. 

The Contiguous Aircraft/System Development Process Example describes the Wheel Break System as 
follows: 

This AIR [Aerospace Information Report] describes, in detail, a contiguous example of the 
aircraft and systems development for a fictitious aircraft design. In order to present a clear 
picture, an aircraft function was broken down into a single system. A function was chosen 
which had sufficient complexity to allow use of all the methodologies, yet was simple 
enough to present a clear picture of the flow through the process…the principles used at the 
braking system level can be applied at the higher aircraft level...[SAE 2011] 

The SEI’s AADL Wiki contains several architectural designs for the Wheel Brake System. We se-
lected one of the simpler ones [Feiler 2014].2 The example provides two architectures that are identi-
cal functionally but differ in the platforms they are deployed to: Integrated Modular Avionics (IMA) 
and Federated. The IMA version uses a single processor with four partitions (or virtual processors) to 
execute the software. The Federated version uses several processors interconnected through a bus. We 
selected the IMA version, though the analysis for the Federated version would be similar.3 Figure 1 
depicts the IMA version of the Wheel Brake System. 

____________________________________________________________________________ 

2  Available from the AADL Wiki at https://wiki.sei.cmu.edu/aadl/index.php/Simple_ver-
sion_of_the_ARP4761/AIR6110_example 

3  The Federated example is discussed briefly in Appendix B, Alternate Case: Federated System. 
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Figure 1: IMA Version of the Wheel Brake System 

2.2 Finding a More Complete Specification of the Example 

Figure 1 cannot be used as is for applying the formula for these reasons: 
1. The underlying fault model is not depicted; in particular, the figure by itself does not identify 

how many failure conditions can propagate out of which components to affect other components.  
2. The figure does not show how the Brake System Control Unit (BSCU) software is deployed onto 

the platform. The deployment determines how hardware and operating system-level failure con-
ditions propagate to the software.  

3. The figure appears to be missing a few interconnections.  
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To obtain a more complete model of the IMA version of the Wheel Brake System, we retrieved the 
AADL model (see Figure 2 for a short excerpt) from the SEI GitHub repository where it is maintained 
(identified at [Feiler 2014]) and analyzed that model to determine how best to manually apply the er-
ror propagation complexity formula.  

 
Figure 2: AADL Model of the Wheel Brake System 

3 Preparing to Apply the Error Propagation Complexity 
Formula  

3.1 Why Some Level of Preparation Is Needed  

Automating the error propagation complexity formula for direct application to an AADL model [Kon-
rad 2016, Section 5] is a nontrivial undertaking, so some up-front analysis is required to identify those 
model features addressed by (and that need to be input to) the error propagation complexity formula.  

Also, the model contains a lot of specification detail whose relevance to the error propagation com-
plexity formula can be difficult to determine unless the person applying the formula is fluent in AADL 
(including its Error Model Annex).4 Such detail can be confusing and distracting to the person apply-
ing the formula manually and can obscure the essential features of the design that contribute to its 

____________________________________________________________________________ 

4  The design and fault model specification for the Wheel Brake System encompasses about a dozen separate AADL 
packages. 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  6  
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited 

complexity. Of course, such detail is important if the goal is to have a model with sufficient detail that 
it can be analyzed for satisfaction of requirements, but not all such detail is needed when applying the 
error propagation complexity formula. 

This level of detail presented a challenge: How can we express the features of the Wheel Brake System 
design relevant to applying the formula in a succinct way so that the formula can be directly and 
straightforwardly applied by someone not familiar with a specific architecture description language? 
Though the approach we outline in this section specifically applies to AADL models, it should gener-
alize to models using other architecture description languages. Having a more succinct representation 
of the design also enables others to review how the formula was applied without having to be familiar 
with the original language that expressed the design. 

3.2 Some Observations That Help Simplify the Example 

Having asked ourselves what a more succinct, non-AADL depiction might look like, we reviewed the 
model in some detail. We observed several characteristics of this model: 
1. Most run-time components have only a single outbound propagation point. 
2. Most components have only a single failure condition that can propagate outward from that com-

ponent. 
3. None of the interconnections can experience failure conditions.  

Although these observations might have been violated if we had found a higher-fidelity, more fully 
specified model of the Wheel Brake System, we proceeded with the available model. We anticipate 
that during certification of a real system, a more extensive model will be developed that would cor-
rectly specify propagation points and error conditions.  

3.3 Steps for Simplifying the Model 

Figure 3 shows our simplified model. It was created by adding detail missing in Figure 1 that is essen-
tial to the error propagation complexity formula while eliminating the extraneous detail shown in that 
figure. This allows us to determine the complexity directly with only a minimum of off-the-figure in-
formation. Details of the simplification are described in the subsections that follow.  
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Figure 3: IMA Version of the Wheel Brake System Clarified for Application  
of the Error Propagation Complexity Formula 

Step 1. Characterize the Deployment of the Software to the Platform 

We redrew the model in Figure 1 using the AADL model for the IMA version as a guide, being care-
ful to explicitly characterize the deployment of the software to the platform. 

The computational infrastructure is shown as five components in Figure 3:  
• cpu mem: the CPU and its memory and partition control software (also shown as cpu in Figure 1) 
• Par1..Par4: the four partitions that the CPU memory is divided into. The two command pro-

cesses (Cmd1 and Cmd2) and two monitor processes (Mon1 and Mon2) are assigned to different 
partitions; also shown as partition1...partition4 in Figure 1. However, Figure 1 does not show 
what software components are deployed to which partition. These relationships are shown by 
connections in Figure 3. 
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Examining the error model embedded within the AADL model, we see that the cpu mem can experi-
ence a hardware failure, which can propagate to one or more of these four partitions. The partitions 
can forward this failure condition to the software processes that are bound to them (Cmd1 and Cmd2; 
Mon1 and Mon2). In addition, the partitions can experience a software error and propagate this failure 
condition to the software processes bound to them. 

In Figure 3, the error model is shown as four propagation points on cpu mem, through which a single 
failure condition (hardware failure) can propagate out (one or more of them), and a single propagation 
point on each partition, through which two failure conditions (hardware failure and software failure) 
can propagate out to the software processes bound to them. 

Step 2. Remove All Higher-Level System Representations That Group Run-Time 
Components Together 

To reduce clutter in the figure, we removed all five of the higher-level system representations that 
group several related run-time components together. The result is shown in Figure 3. Further explana-
tion is given below: 
• These higher-level system representations impart no run-time information and thus slightly in-

flate the “score” returned by applying the error propagation complexity formula without signifi-
cantly affecting the effort expended in reasoning about system safety. We chose to eliminate all 
five of the higher-level system representations (platform, pedals, Wheel Brake System, BSCU 
system, and the two BSCU subsystems), while retaining the lower-level run-time components 
that they contained. 

• For example, the platform system serves to demarcate the computational infrastructure from the 
BSCU software that is deployed to it. Removing this demarcation decreases the number of hops 
that failure conditions propagating from the CPU and partitions must cross to affect the software 
running on them and thus clarifies what is actually happening. The computational infrastructure 
is not so complex that there is benefit to keeping the platform as an enclosing system, and there-
fore it was eliminated. 

• While it does not affect applying the error propagation complexity formula, the correct way to 
read Figure 3 is that cpu mem has four propagation points with a single failure condition associ-
ated with each, versus a single propagation point with four connections. 

Step 3. Remove Orphaned Inputs 

After some debate, we removed the battery pwr inputs from the figure. They were inputs to the BSCU 
system that were orphaned once we removed that system (and in any case were not carried further 
within that system). Thus there is no contribution to a safety-claim assurance case, assuming the error 
model and architecture are complete and correct. (A more complete model of the Wheel Brake System 
would more fully specify the distribution of power—after all, power can contribute additional failure 
conditions that we should care about. We chose not to second-guess what the architect might have de-
signed for power distribution to the Wheel Brake System. (For an example, see [Haskel 2016].) 
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Step 4. Introduce Fan-Outs to Replace Multiple Connections from the Same 
Propagation Point 

We introduced fan-out indicators (red dots serving as arc connectors in Figure 3) wherever, according 
to the AADL model, there are multiple connections from the same propagation point. In addition to 
removing some of the arc congestion, the introduction of fan-out indicators enables more direct use of 
the formula, which requires knowing how many failure conditions can propagate out through which 
propagation points on a component and the fan-out of each propagation point. There are three fan-out 
indicators in Figure 3: 
• Cmd1 (and Cmd2 likewise) has two propagation points: one propagation point positioned at the 

top of Cmd1 and one positioned at the right (bottom) edge of Cmd1 (and Cmd2). The one posi-
tioned at the top connects directly to Mon1 and corresponds to the brake outbound data port in 
the AADL model. The one positioned at the right (bottom) edge fans out directly toward three 
components via a fan-out indicator:  
a. the Mon1 process to enable skid monitoring—yes, there are two connections between Cmd1 

and Mon1 
b. the Green (and Blue) Skid valve for skid control 
c. the Selector valve. Thus, Cmd1 has two propagation points, one with a fan-out of 1, with no 

fan-out indicator, and one with a fan-out of 3, depicted by a fan-out indicator. 
• Cmd2 likewise has two propagation points, one with a fan-out of 1 with, of course, no fan-out 

indicator and one with a fan-out of 3, depicted by fan-out indicator. 
• Finally, there is the fan-out from the Select device to two components: the Shutoff valve and Se-

lector valve. The fan-out is 2. 

Step 5. Eliminate Propagation Point Symbols and Labels 

In Figure 1, data ports are shown by a solid triangle; bus access points representing power connections 
and hydraulic pressure valve connections are shown as a clear chevron; and all are labeled. Such label-
ing is helpful in an architectural description; however, to apply the formula to a run-time depiction (ar-
chitectural view) of the system, it is necessary to determine only the number of failure conditions 
associated with each propagation point and how many places such associated failure conditions can 
propagate to. The former can be visually depicted by having separate arcs emerge from a component, 
one for each propagation point (we will visually show only outbound propagation points), and by 
placing a small positive integer next to the outbound arcs to indicate the number of failure conditions 
associated with each propagation point.5 The latter can be visually depicted by simply connecting the 
arc to the appropriate components, using a fan-out indicator (Step 4) when the propagation point prop-
agates to more than one component.  

We can therefore eliminate from a visual run-time depiction (architectural view) of the system all data 
port (and access point) symbols and labels, replacing them with visually distinct propagation points on 

____________________________________________________________________________ 

5  We adopt the convention of not showing the number of failure conditions when the number is 1. 
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the component’s surface and integer indicating the number of failure conditions associated with each 
propagation point. This method allows us to simplify the depiction of the design and does not require 
any additional off-figure information to apply the formula.  

Below, we identify every component in the Wheel Brake System that has more than one propagation 
point and what, if any, further simplifications were taken (only the depiction of pedals was further 
simplified): 
• cpu mem: See Step 1. 
• Pedals: We replaced the pedals component in Figure 1, which had two outbound data ports, sig-

nal1 and signal2 (and would have been another exception to Observation 1), with two separate 
run-time components, Pdl1 and Pdl2, each having a single propagation point. This simplification 
has no impact on the complexity score and better portrays what happens at run-time. 

• Command processes: In the AADL model, each Command process has two outbound data ports: 
brake and skid. We described how we addressed these components and their propagation points 
above and in Step 4.  

• Selector valve: In the AADL model, the Selector valve has two ports from which an arc leaves 
and connects to either the Green Skid valve or the Blue Skid valve. There is no ambiguity in the 
visual depiction. 

Step 6. Eliminate Failure Condition Names 

When applying the error propagation complexity formula, there is no need to have a detailed account-
ing of the error model. It is not even necessary to provide any off-the-figure information as long as we 
maintain the convention described in Step 5: distinguish propagation points that have more than one 
failure condition associated with them by labeling the associated arc with a count of the number of 
failure conditions associated with that propagation point. Propagation points that have zero associated 
failure conditions have no reason to be shown in the figure, if our only intent is to apply the error 
propagation complexity formula (unless we expect that number to change, in which case the propaga-
tion point or its arc should be labeled with a 0). Thus, the convention is sufficient for correct applica-
tion of the error propagation complexity formula. 

Step 7. Depict the Run-Time System Visually (for the General Case) 

In the general case (i.e., for examples other than the Wheel Brake System), there may be connections 
that can themselves experience failure conditions. How to modify the model used to address such con-
nections in preparation for applying the error propagation complexity formula is described in Appen-
dix B of our previous report [Konrad 2016]. In the case of the Wheel Brake System, there are no such 
connections. 

 In the general case, there may be multiple system modes. Both the Stepper Motor System and Wheel 
Brake System have only a single system mode specified (implicitly). In the general case, there can be 
one visual depiction of the run-time view per system mode. In this case, we apply the formula to each 
mode separately and then sum the individual mode-specific scores to provide an overall complexity 
score for the system design. 
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Step 8. Examine the Error Model for the Components of the Wheel Brake System 

As described in previous sections, there is no need to consider at a detailed level the error model for 
the system prior to applying the formula; only some counts are needed. Nevertheless, to give some 
idea of the complexity inherent in the error model for the Wheel Brake System as summarized in Fig-
ure 3, we present a detailed accounting of all components appearing in Figure 3 (or omitted from Fig-
ure 3 per Sections 3.3.2 and 3.3.3) and their status relative to Observation 2 of Section 3.2: 
• Buses: Power and hydraulic pressure buses (declared as power, power.generic; pwm, pwm.ge-

neric; and pressure, pressure.i in the AADL model) introduce no additional failure conditions 
(Section 3.2). 

• Power batteries (pwr1, pwr2) comply with Observation 2 of Section 3.2 (a propagation point has 
a single failure condition); they can only propagate NoPower. A detailed look at a battery’s error 
model reveals two error events: battery depleted and the catastrophic battery explodes.6 Regard-
less of which event happens, with respect to the portion of the aircraft being modeled, the battery 
state transitions from Operational to Failed, and NoPower propagates out. These inputs were 
eliminated as described in Step 3. 

• Pedal signals (Pdl1, Pdl2) comply with Observation 2; they propagate only NoService. 
• Command processes comply with Observation 2 because when any failure condition propagates 

in, the Command process goes into a Failed state and outputs (only) NoValue on both ports 
(brake and skid). 

• Monitor processes comply with Observation 2; they propagate only NoValue through the one 
outbound port. 

• BSCU system was eliminated as a component per Step 2. 
• BSCU subsystems: As mentioned in Step 2, components that are actually just containers—high-

level system or subsystem representations decomposed into internal components—really have no 
functional role in a safety argument and thus can be removed before applying the formula. 

• Select: The select_alternate system, which is how the Select component is declared in the AADL 
model, complies with Observation 2 of Section 3.2, propagating out only NoValue through its 
one output port.  

• Platform was eliminated as a component by Step 2. A review of its declaration indicates that it 
introduces no new failure conditions to the two mentioned in Partitions (one of which is origi-
nally propagated out of the CPU). 

• Partitions does not comply with Observation 2 of Section 3.2. Each of the four partition compo-
nents (Par1..Par4 in Figure 3) can propagate two failure conditions outward. In the AADL 
model, these are labeled HardwareFailure and SoftwareFailure. To apply the formula correctly, 
we do not need to know anything more about these failure conditions or the propagation points 
other than that there are two of them. This fact is depicted in Figure 3 by the small label 2 on the 
arcs exiting the partition components. 

____________________________________________________________________________ 

6  Battery Open Circuit was not included in the error model; in any case, the result would be the same “no power.” 
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• CPU complies with Observation 2. The CPU (cpu.ima in the AADL model) has only one failure 
condition, HardwareFailure, and according to the associated component error behavior model, it 
propagates that failure condition through its bindings when it occurs. Thus, the CPU complies. 

• The pumps Green Pump, Blue Pump, and Accumulator and the valves Green Skid and Blue Skid) 
all comply with Observation 2. Pumps have a single failure condition, NoService, that they po-
tentially propagate out the single propagation point when an internal hydraulic failure occurs. 
Some valves simply propagate out the failure condition (NoService) when it propagates into the 
valve; for example, a type of valve named boolean_shutoff does this. Another type of valve 
named cmd_shutoff in the AADL model likewise permits NoService failure conditions to flow 
through, but when its additional input data port cmd_input receives a NoValue failure propaga-
tion, it propagates outward a NoService failure condition. Thus, in this case, too, there is compli-
ance with Observation 2. 

• Selector system (not to be confused with the Select component that takes inputs from both BSCU 
subsystems), called selector_detailed in the AADL model, is the component with the highest to-
tal fan-in and fan-out in the entire Wheel Brake System. There are  
− three input data ports: two from the command processes and one from the Select component 
− five hydraulic access points: from the Green Pump, Blue Pump, and Accumulator as inputs 

and to the Green Skid and Blue Skid as outputs 
− two types of failure conditions that can propagate in: NoValue (from the three input data 

ports) and NoService (from the pumps) 
− only one failure condition that can propagate out (NoService) 
Thus, the Selector also complies with Observation 2 of Section 3.2.  

• Wheel: All variants of the wheel system declared in the AADL model propagate out 0 failure 
conditions. Essentially, the Wheel marks the external system interface with the environment. 

• Annunciation: The Annunciator displays (“announces”) recent status of the multiple systems on 
which safe operation of the aircraft depends. The Annunciator can experience a LossAnnuncia-
tion error event that propagates NoService out through its sole output data port, and thus it com-
plies with Observation 2 of Section 3.2. However, because the Annunciator is not directly 
connected to anything in the figure, it is not shown. (There is 0 fan-out from the Annunciator’s 
only output data port; thus there’s no reason to include it in the error propagation complexity for-
mula because its contribution to the total score would be 0.) 

• Wheel Brake System: The Wheel Brake System is composed of all the above systems and was 
eliminated as a separate component in Step 2. A review of its declaration indicates that it intro-
duces no new failure conditions. It does, however, have a more complex error behavior model 
with multiple states, reflecting the state of the wheel brake and whether or not its state is being 
correctly annunciated to the pilot, but such a consideration is tangential to our purpose and does 
not enter directly into the application of the error propagation complexity formula. 

• Environment: We have no explicit single environment component in the Wheel Brake System 
example, unlike the Stepper Motor System. We varied somewhat from the guidance in our previ-
ous report [Konrad 2016] by choosing to represent the interfaces of the Wheel Brake System 
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with the environment explicitly as distinct components (Pld1, Pdl2, the three pumps, and Wheel). 
This has no effect on the score returned by the error propagation complexity formula. 

3.4 The Clarified Run-Time Model for the Wheel Brake System 

After pursuing the approach outlined in Section 3.3, we have a simplified (clarified), single-page vis-
ual depiction of the system, shown in Figure 3. It is sufficient for applying the formula without addi-
tional off-the-figure information, as long as the person applying the formula is familiar with 
conventions such as arc labeling and fan-out indicators (Steps 5 and 6). As described in Step 7, the ap-
proach can be generalized to architectures specified in other architecture description languages, multi-
ple modes, and connections that can fail. 

4 Applying the Error Propagation Complexity Formula to the 
Wheel Brake System 

In the previous section, we discussed how we developed Figure 3, a simplified version of the Wheel 
Brake System architecture that is sufficiently detailed for application of the error propagation com-
plexity formula. 

Recall that the potential size of a safety argument (number of distinct cases that may need to be con-
sidered) is 

Sum over all system modes (i in 1..m), 
 Sum over all components (j in 1..n), 
  Sum over all P points of C[j] (k in 1..q[j]), of 
   [ OutPropagateFailureCount(i,j,k) ∙ FanOut(i,j,k) ] 

We now have enough information to calculate the complexity of the Wheel Brake System.  

Steps to calculate the value of the error propagation complexity formula from the simplified 
model 

1. Count the number of system modes. Consider each mode separately in the following steps. 
2. Determine how many components there are (C). 
3. Determine how many propagation points there are for each component (PP). 
4. Determine how many failure conditions can propagate from each propagation point (FC). 
5. Determine the fan-out from each propagation point (FO). 
6. For each propagation point, calculate the value of FC ∙ FO. 
7. Add the values obtained from this calculation for each propagation point. 

The resulting number is the complexity value for the mode under consideration. If there are multiple 
modes, add the values obtained for each mode to obtain the system complexity value. 
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In the next section, we show our calculation for the Wheel Brake System, but interested readers are 
invited to make their own calculation before proceeding. 

5 Answer Key 
In this section, we determine the value of the error propagation complexity formula for the Wheel 
Brake System example shown in Figure 3 using the steps outlined in the previous section. 
1. In this example, there is only a single mode to consider. 
2. Counting the number of components in the Figure, C = 20. 
3. Each of the 20 components has a single propagation point, except for cpu/mem (4), Selector (2), 

Wheel (0), and Cmd1 and Cmd2 (2 each). 
4. Each of the propagation points can propagate a single failure condition, except for the partitions 

(Par1 to Par4), which each can propagate 2. 
5. Each of the propagation points has a fan-out of 1 except as follows: 

a. One of the two propagation points in each of Cmd1 and Cmd2 has a fan-out of 3. 
b. The propagation point in Select has a fan-out of 2. 

With this information, we can easily calculate the value of FC ∙ FO for each propagation point. 

Summing the values from the previous step gives an error propagation complexity value of 34. Thus 
the estimated number of potential safety issues due to error propagation is 34. All of these cases will 
have to be examined separately in order to determine that this system is safe. This number is not terri-
bly useful in itself, but the comparison to other systems is useful. So it is fair to say that the Wheel 
Brake System is about twice as complex (from a safety standpoint) as the Stepper Motor system was, 
since that had an error propagation complexity of 16.  

The following table summarizes the calculations (P = propagation; FC = failure conditions, FO = fan 
out). 
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Component Type Number of 
Components 

Number of P 
Points per 
Component 

#FC Fan-Out 
#Components * 
#P points * #FC 
* FO 

cpu mem 1 4 1 1 4 

Par1..Par4 4 1 2 1 8 

Mon1..Mon2 2 1 1 1 2 

Cmd1..Cmd2 2 
1 1 1 2 

1 1 3 6 

Pdl1..Pdl2 2 1 1 1 2 

Select 1 1 1 2 2 

Green Pump, Blue Pump, Accum 3 1 1 1 3 

Shutoff 1 1 1 1 1 

Selector  1 2 1 1 2 

Green Skid, Blue Skid 2 1 1 1 2 

Wheel 1 0 n/a n/a 0 

Components: 20 Error Propagation Complexity:  34 

6 Conclusion 
We have developed a formula for estimating the potential size of a safety case for a system, based on 
the number of modes, fan-out, and number of propagating failure conditions that can be identified in a 
run-time design view of the system.  

The formula has been applied to two nontrivial examples and tested. In the first example, three out of 
four team members applied the formula correctly; the fourth made an error that was found and easily 
corrected after a review. In the second example, once the model was simplified, all team members 
came up with the same value. 

Based on our experiences, we conclude that although the formula can be applied manually, automa-
tion would improve use of the formula and would be possible once a suitable diagram has been devel-
oped manually. 

We considered how the formula would be used, both as a guide to developing the system architecture 
and in estimating the effort required to review a claim of system safety. 

We also explored why the formula might not have detected a difference in complexity between an 
original design and a new design of the same system. Primarily, this is because the formula was devel-
oped to use system design or fault model parameters that are available early, and thus drive effort as 
designs grow more complex. It is our view that the formula succeeds as it identifies complexity inde-
pendent of detailed-design.  
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So that the formula may be used to detect the impact of small changes in design that can nevertheless 
have a disproportionate impact on effort, the formula should be expanded to include another parame-
ter, one that reflects the number of inter-component dependencies (constraints) that arise from system 
design choices. In the original stepper motor example, an architect made an assumption in the original 
design that one component “knew” the position of another component, which results in a cascade of 
possible failure conditions that need to be checked. This assumption was removed from the new, sim-
pler design that we analyzed had an error propagation complexity of 16. 

Appendix A Abbreviations  
Abbreviation Definition 
AADL Architecture Analysis & Design Language 
accum accumulator 
AIR Aerospace Information Report 
alt alternative (i.e., backup) 
ARP Aerospace Recommended Procedure 
bscu / BSCU Brake System Control Unit 
cmd command 
cpu central processing unit 
FAA Federal Aviation Administration 
FC failure condition 
FO fan out 
ima / IMA Integrated Modular Avionics 
mem memory 
mon monitor 
nor normal (i.e., primary) 
Par partition 
Pdl pedal 
PP propagation point 
pwr power 
SAE Society of Automotive Engineers 
skid anti-skid7 operation 
sub Wheel Brake Subsystem 
wbs Wheel Brake System 

 

____________________________________________________________________________ 

7  Anti-skid operation is achieved by regulating hydraulic pressure that is applied to the brakes in such a way that wheel 
rotation is maintained [Haskel 2016]. 
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Appendix B Alternate Case: Federated System 
The Federated Version of the Wheel Brake System is identical to the IMA Version except in two re-
spects: (1) the Federated version uses a double CPU configuration rather than a single CPU configura-
tion for its implementation infrastructure; and (2) the software is mapped (or deployed) to the 
computational infrastructure differently. Because of the similarity between the two versions, the sim-
plification described in Section 3 leads to almost the same figure for the two versions and almost the 
same error propagation complexity table. Compare Figure 4 to Figure 3, and the table below Figure 4 
with the table in Section 5. The only differences in the two figures are in the first two rows of compo-
nents that compose the computational infrastructure and their connections to the software underneath. 
Due to the operating system being modeled directly as part of the CPU (rather than in separate parti-
tion components as in the IMA version), the Federated Version has a smaller number of components 
and lesser error propagation complexity. 

 

Figure 4: Federated Version of the Wheel Brake System Clarified for Application  
of the Error Propagation Complexity Formula 
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The following table summarizes the calculations (P = propagation, FC = failure conditions, FO = fan 
out). 

Component Type Number of 
Components 

Number of P 
Points per 
Component 

#FC Fan-Out 
#Components 
* #P points * 
#FC * FO 

CPU1..CPU2 2 2 2 1 8 

Mon1..Mon2 2 1 1 1 2 

Cmd1..Cmd2 2 
1 1 1 2 

1 1 3 6 

Pdl1..Pdl2 2 1 1 1 2 

Select 1 1 1 2 2 

Green Pump, Blue Pump, Accum 3 1 1 1 3 

Shutoff 1 1 1 1 1 

Selector  1 2 1 1 2 

Green Skid, Blue Skid 2 1 1 1 2 

Wheel 1 0 n/a n/a 0 

Components: 17 Error Propagation Complexity:  30 
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