

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY REV-03.18.2016.0
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

FAA RESEARCH PROJECT ON SYSTEM
COMPLEXITY EFFECTS ON AIRCRAFT SAFETY:
TESTING THE IDENTIFIED METRICS
Michael Konrad, Sarah Sheard, Chuck Weinstock, and William R. Nichols
May 2016

Executive Summary
The purpose of this report is to describe a test of the complexity algorithm that we developed and pre-
viously described in the report for Task 3.5: Estimating Complexity of a Safety Argument [Konrad
2016]. The algorithm did not measure every possible kind of complexity; rather it measured the com-
plexity resulting from errors propagating from component to component; thus we call it error propa-
gation complexity. The example used in this test was a Wheel Brake System that had an available
model in the Architecture Analysis & Design Language (AADL), a much more involved example than
the stepper used in the previous report. Its error propagation complexity turned out to be about twice
that of the Stepper Motor System.

The method used to assess error propagation complexity for the Wheel Brake System was to obtain
the architecture model of the entire Wheel Brake System, simplify the interconnections, then (as in
Konrad 2016) count the ways that errors could propagate from one element to another. The initial
model is shown in Figure 1 of this report, and the simplified model is Figure 3. The Wheel Brake Sys-
tem was chosen because it had a fairly complete model, including a description in a formal architec-
tural language (AADL) that noted system modes, identified components and their interconnections,
and had a reasonably complete error model (resulting from a hazard analysis).

The architecture was simplified to focus on aspects important to application of the error propagation
complexity formula, namely, modes (this system had only one), components, propagation points, fail-
ure conditions, and fan-out. As before, the error propagation complexity formula essentially estimates
the size of the safety case: assuming an average analysis time for the follow-through to determine
whether a failure can propagate in an unsafe manner, the estimate of total time for safety case analysis
can be created by multiplying this average time per failure propagation by the number of ways a fail-
ure can propagate, which is estimated by our formula for error propagation complexity.

From the diagram shown in Figure 3, a complexity value can be reliably computed, as validated in an
inter-rater test. The answer key in Section 5 shows how this is done. It consists of seven steps plus a
matrix organizing their answers.

In conclusion, this report shows that the formula for error propagation complexity can be applied con-
sistently to multiple well-defined architectures and results in reasonable answers.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

1 Introduction
This special report describes the results of Task 3.6, the fourth deliverable in a two-year project to in-
vestigate the impact of system and software complexity on aircraft safety and certifiability for the Fed-
eral Aviation Administration (FAA). The Statement of Work described this task as follows:

3.6 Test the Identified Metrics
Test the identified metrics on a jointly-agreed-to representative avionics system to prove the
applicability of the proposed approach. Analyze an existing avionics system, using either
existing source code or specifications, and highlight the complexity of the system using the
selected metrics. Depending on the selected system and the accuracy of the artifacts under
analysis, quantify the impact of the suggested approach.
Deliverables:
White paper reporting the relevance of selected metrics and demonstrating the applicability
of our methods to manage complexity.

Some work originally conceived of for this task was also reported in [Konrad 2016] when the com-
plexity of the stepper motor example was tested to proof the algorithm.

2 Selecting the Example

2.1 Wheel Brake System

We initially applied the error propagation complexity1 formula to a Stepper Motor System [Konrad
2016]. To further validate the formula and understand how it might be used in practice, we tried it on a
larger example. Section 3.1 of the previous report lists the assumptions and inputs that guided the se-
lection of our example:

The main assumption is that we have a system architectural design that may be preliminary
in component or interconnection details but is complete in the following ways:
1. All system modes are identified.
2. All components and their interconnections are identified.
3. A hazard analysis has been performed to identify all component failure conditions that

have the capability to propagate outward from a component. The failure conditions are
characterized using an error taxonomy. [Konrad 2016, emphasis added]

The team identified two examples that met most of these criteria (components, interconnections, and
failure conditions are identified—there were no modes specified): a Wheel Brake System for an aero-
space system [Feiler 2014, SAE 2011] and a Speed Regulation System for a car control system

__

1 Now called error propagation complexity; this quantity was just called complexity in the previous report.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

[Delange 2015]. Although the documentation of the architectural design for the speed regulation sys-
tem was more complete in some ways, we determined that this completeness would not affect our
analysis, and thus we chose the Wheel Brake System as being more relevant to the avionics domain.
We call the hazard analysis the “error model” in this work.

The Contiguous Aircraft/System Development Process Example describes the Wheel Break System as
follows:

This AIR [Aerospace Information Report] describes, in detail, a contiguous example of the
aircraft and systems development for a fictitious aircraft design. In order to present a clear
picture, an aircraft function was broken down into a single system. A function was chosen
which had sufficient complexity to allow use of all the methodologies, yet was simple
enough to present a clear picture of the flow through the process…the principles used at the
braking system level can be applied at the higher aircraft level...[SAE 2011]

The SEI’s AADL Wiki contains several architectural designs for the Wheel Brake System. We se-
lected one of the simpler ones [Feiler 2014].2 The example provides two architectures that are identi-
cal functionally but differ in the platforms they are deployed to: Integrated Modular Avionics (IMA)
and Federated. The IMA version uses a single processor with four partitions (or virtual processors) to
execute the software. The Federated version uses several processors interconnected through a bus. We
selected the IMA version, though the analysis for the Federated version would be similar.3 Figure 1
depicts the IMA version of the Wheel Brake System.

__

2 Available from the AADL Wiki at https://wiki.sei.cmu.edu/aadl/index.php/Simple_ver-
sion_of_the_ARP4761/AIR6110_example

3 The Federated example is discussed briefly in Appendix B, Alternate Case: Federated System.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Figure 1: IMA Version of the Wheel Brake System

2.2 Finding a More Complete Specification of the Example

Figure 1 cannot be used as is for applying the formula for these reasons:
1. The underlying fault model is not depicted; in particular, the figure by itself does not identify

how many failure conditions can propagate out of which components to affect other components.
2. The figure does not show how the Brake System Control Unit (BSCU) software is deployed onto

the platform. The deployment determines how hardware and operating system-level failure con-
ditions propagate to the software.

3. The figure appears to be missing a few interconnections.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

To obtain a more complete model of the IMA version of the Wheel Brake System, we retrieved the
AADL model (see Figure 2 for a short excerpt) from the SEI GitHub repository where it is maintained
(identified at [Feiler 2014]) and analyzed that model to determine how best to manually apply the er-
ror propagation complexity formula.

Figure 2: AADL Model of the Wheel Brake System

3 Preparing to Apply the Error Propagation Complexity
Formula

3.1 Why Some Level of Preparation Is Needed

Automating the error propagation complexity formula for direct application to an AADL model [Kon-
rad 2016, Section 5] is a nontrivial undertaking, so some up-front analysis is required to identify those
model features addressed by (and that need to be input to) the error propagation complexity formula.

Also, the model contains a lot of specification detail whose relevance to the error propagation com-
plexity formula can be difficult to determine unless the person applying the formula is fluent in AADL
(including its Error Model Annex).4 Such detail can be confusing and distracting to the person apply-
ing the formula manually and can obscure the essential features of the design that contribute to its

__

4 The design and fault model specification for the Wheel Brake System encompasses about a dozen separate AADL
packages.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

complexity. Of course, such detail is important if the goal is to have a model with sufficient detail that
it can be analyzed for satisfaction of requirements, but not all such detail is needed when applying the
error propagation complexity formula.

This level of detail presented a challenge: How can we express the features of the Wheel Brake System
design relevant to applying the formula in a succinct way so that the formula can be directly and
straightforwardly applied by someone not familiar with a specific architecture description language?
Though the approach we outline in this section specifically applies to AADL models, it should gener-
alize to models using other architecture description languages. Having a more succinct representation
of the design also enables others to review how the formula was applied without having to be familiar
with the original language that expressed the design.

3.2 Some Observations That Help Simplify the Example

Having asked ourselves what a more succinct, non-AADL depiction might look like, we reviewed the
model in some detail. We observed several characteristics of this model:
1. Most run-time components have only a single outbound propagation point.
2. Most components have only a single failure condition that can propagate outward from that com-

ponent.
3. None of the interconnections can experience failure conditions.

Although these observations might have been violated if we had found a higher-fidelity, more fully
specified model of the Wheel Brake System, we proceeded with the available model. We anticipate
that during certification of a real system, a more extensive model will be developed that would cor-
rectly specify propagation points and error conditions.

3.3 Steps for Simplifying the Model

Figure 3 shows our simplified model. It was created by adding detail missing in Figure 1 that is essen-
tial to the error propagation complexity formula while eliminating the extraneous detail shown in that
figure. This allows us to determine the complexity directly with only a minimum of off-the-figure in-
formation. Details of the simplification are described in the subsections that follow.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Figure 3: IMA Version of the Wheel Brake System Clarified for Application
of the Error Propagation Complexity Formula

Step 1. Characterize the Deployment of the Software to the Platform

We redrew the model in Figure 1 using the AADL model for the IMA version as a guide, being care-
ful to explicitly characterize the deployment of the software to the platform.

The computational infrastructure is shown as five components in Figure 3:
• cpu mem: the CPU and its memory and partition control software (also shown as cpu in Figure 1)
• Par1..Par4: the four partitions that the CPU memory is divided into. The two command pro-

cesses (Cmd1 and Cmd2) and two monitor processes (Mon1 and Mon2) are assigned to different
partitions; also shown as partition1...partition4 in Figure 1. However, Figure 1 does not show
what software components are deployed to which partition. These relationships are shown by
connections in Figure 3.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Examining the error model embedded within the AADL model, we see that the cpu mem can experi-
ence a hardware failure, which can propagate to one or more of these four partitions. The partitions
can forward this failure condition to the software processes that are bound to them (Cmd1 and Cmd2;
Mon1 and Mon2). In addition, the partitions can experience a software error and propagate this failure
condition to the software processes bound to them.

In Figure 3, the error model is shown as four propagation points on cpu mem, through which a single
failure condition (hardware failure) can propagate out (one or more of them), and a single propagation
point on each partition, through which two failure conditions (hardware failure and software failure)
can propagate out to the software processes bound to them.

Step 2. Remove All Higher-Level System Representations That Group Run-Time
Components Together

To reduce clutter in the figure, we removed all five of the higher-level system representations that
group several related run-time components together. The result is shown in Figure 3. Further explana-
tion is given below:
• These higher-level system representations impart no run-time information and thus slightly in-

flate the “score” returned by applying the error propagation complexity formula without signifi-
cantly affecting the effort expended in reasoning about system safety. We chose to eliminate all
five of the higher-level system representations (platform, pedals, Wheel Brake System, BSCU
system, and the two BSCU subsystems), while retaining the lower-level run-time components
that they contained.

• For example, the platform system serves to demarcate the computational infrastructure from the
BSCU software that is deployed to it. Removing this demarcation decreases the number of hops
that failure conditions propagating from the CPU and partitions must cross to affect the software
running on them and thus clarifies what is actually happening. The computational infrastructure
is not so complex that there is benefit to keeping the platform as an enclosing system, and there-
fore it was eliminated.

• While it does not affect applying the error propagation complexity formula, the correct way to
read Figure 3 is that cpu mem has four propagation points with a single failure condition associ-
ated with each, versus a single propagation point with four connections.

Step 3. Remove Orphaned Inputs

After some debate, we removed the battery pwr inputs from the figure. They were inputs to the BSCU
system that were orphaned once we removed that system (and in any case were not carried further
within that system). Thus there is no contribution to a safety-claim assurance case, assuming the error
model and architecture are complete and correct. (A more complete model of the Wheel Brake System
would more fully specify the distribution of power—after all, power can contribute additional failure
conditions that we should care about. We chose not to second-guess what the architect might have de-
signed for power distribution to the Wheel Brake System. (For an example, see [Haskel 2016].)

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Step 4. Introduce Fan-Outs to Replace Multiple Connections from the Same
Propagation Point

We introduced fan-out indicators (red dots serving as arc connectors in Figure 3) wherever, according
to the AADL model, there are multiple connections from the same propagation point. In addition to
removing some of the arc congestion, the introduction of fan-out indicators enables more direct use of
the formula, which requires knowing how many failure conditions can propagate out through which
propagation points on a component and the fan-out of each propagation point. There are three fan-out
indicators in Figure 3:
• Cmd1 (and Cmd2 likewise) has two propagation points: one propagation point positioned at the

top of Cmd1 and one positioned at the right (bottom) edge of Cmd1 (and Cmd2). The one posi-
tioned at the top connects directly to Mon1 and corresponds to the brake outbound data port in
the AADL model. The one positioned at the right (bottom) edge fans out directly toward three
components via a fan-out indicator:
a. the Mon1 process to enable skid monitoring—yes, there are two connections between Cmd1

and Mon1
b. the Green (and Blue) Skid valve for skid control
c. the Selector valve. Thus, Cmd1 has two propagation points, one with a fan-out of 1, with no

fan-out indicator, and one with a fan-out of 3, depicted by a fan-out indicator.
• Cmd2 likewise has two propagation points, one with a fan-out of 1 with, of course, no fan-out

indicator and one with a fan-out of 3, depicted by fan-out indicator.
• Finally, there is the fan-out from the Select device to two components: the Shutoff valve and Se-

lector valve. The fan-out is 2.

Step 5. Eliminate Propagation Point Symbols and Labels

In Figure 1, data ports are shown by a solid triangle; bus access points representing power connections
and hydraulic pressure valve connections are shown as a clear chevron; and all are labeled. Such label-
ing is helpful in an architectural description; however, to apply the formula to a run-time depiction (ar-
chitectural view) of the system, it is necessary to determine only the number of failure conditions
associated with each propagation point and how many places such associated failure conditions can
propagate to. The former can be visually depicted by having separate arcs emerge from a component,
one for each propagation point (we will visually show only outbound propagation points), and by
placing a small positive integer next to the outbound arcs to indicate the number of failure conditions
associated with each propagation point.5 The latter can be visually depicted by simply connecting the
arc to the appropriate components, using a fan-out indicator (Step 4) when the propagation point prop-
agates to more than one component.

We can therefore eliminate from a visual run-time depiction (architectural view) of the system all data
port (and access point) symbols and labels, replacing them with visually distinct propagation points on

__

5 We adopt the convention of not showing the number of failure conditions when the number is 1.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

the component’s surface and integer indicating the number of failure conditions associated with each
propagation point. This method allows us to simplify the depiction of the design and does not require
any additional off-figure information to apply the formula.

Below, we identify every component in the Wheel Brake System that has more than one propagation
point and what, if any, further simplifications were taken (only the depiction of pedals was further
simplified):
• cpu mem: See Step 1.
• Pedals: We replaced the pedals component in Figure 1, which had two outbound data ports, sig-

nal1 and signal2 (and would have been another exception to Observation 1), with two separate
run-time components, Pdl1 and Pdl2, each having a single propagation point. This simplification
has no impact on the complexity score and better portrays what happens at run-time.

• Command processes: In the AADL model, each Command process has two outbound data ports:
brake and skid. We described how we addressed these components and their propagation points
above and in Step 4.

• Selector valve: In the AADL model, the Selector valve has two ports from which an arc leaves
and connects to either the Green Skid valve or the Blue Skid valve. There is no ambiguity in the
visual depiction.

Step 6. Eliminate Failure Condition Names

When applying the error propagation complexity formula, there is no need to have a detailed account-
ing of the error model. It is not even necessary to provide any off-the-figure information as long as we
maintain the convention described in Step 5: distinguish propagation points that have more than one
failure condition associated with them by labeling the associated arc with a count of the number of
failure conditions associated with that propagation point. Propagation points that have zero associated
failure conditions have no reason to be shown in the figure, if our only intent is to apply the error
propagation complexity formula (unless we expect that number to change, in which case the propaga-
tion point or its arc should be labeled with a 0). Thus, the convention is sufficient for correct applica-
tion of the error propagation complexity formula.

Step 7. Depict the Run-Time System Visually (for the General Case)

In the general case (i.e., for examples other than the Wheel Brake System), there may be connections
that can themselves experience failure conditions. How to modify the model used to address such con-
nections in preparation for applying the error propagation complexity formula is described in Appen-
dix B of our previous report [Konrad 2016]. In the case of the Wheel Brake System, there are no such
connections.

 In the general case, there may be multiple system modes. Both the Stepper Motor System and Wheel
Brake System have only a single system mode specified (implicitly). In the general case, there can be
one visual depiction of the run-time view per system mode. In this case, we apply the formula to each
mode separately and then sum the individual mode-specific scores to provide an overall complexity
score for the system design.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Step 8. Examine the Error Model for the Components of the Wheel Brake System

As described in previous sections, there is no need to consider at a detailed level the error model for
the system prior to applying the formula; only some counts are needed. Nevertheless, to give some
idea of the complexity inherent in the error model for the Wheel Brake System as summarized in Fig-
ure 3, we present a detailed accounting of all components appearing in Figure 3 (or omitted from Fig-
ure 3 per Sections 3.3.2 and 3.3.3) and their status relative to Observation 2 of Section 3.2:
• Buses: Power and hydraulic pressure buses (declared as power, power.generic; pwm, pwm.ge-

neric; and pressure, pressure.i in the AADL model) introduce no additional failure conditions
(Section 3.2).

• Power batteries (pwr1, pwr2) comply with Observation 2 of Section 3.2 (a propagation point has
a single failure condition); they can only propagate NoPower. A detailed look at a battery’s error
model reveals two error events: battery depleted and the catastrophic battery explodes.6 Regard-
less of which event happens, with respect to the portion of the aircraft being modeled, the battery
state transitions from Operational to Failed, and NoPower propagates out. These inputs were
eliminated as described in Step 3.

• Pedal signals (Pdl1, Pdl2) comply with Observation 2; they propagate only NoService.
• Command processes comply with Observation 2 because when any failure condition propagates

in, the Command process goes into a Failed state and outputs (only) NoValue on both ports
(brake and skid).

• Monitor processes comply with Observation 2; they propagate only NoValue through the one
outbound port.

• BSCU system was eliminated as a component per Step 2.
• BSCU subsystems: As mentioned in Step 2, components that are actually just containers—high-

level system or subsystem representations decomposed into internal components—really have no
functional role in a safety argument and thus can be removed before applying the formula.

• Select: The select_alternate system, which is how the Select component is declared in the AADL
model, complies with Observation 2 of Section 3.2, propagating out only NoValue through its
one output port.

• Platform was eliminated as a component by Step 2. A review of its declaration indicates that it
introduces no new failure conditions to the two mentioned in Partitions (one of which is origi-
nally propagated out of the CPU).

• Partitions does not comply with Observation 2 of Section 3.2. Each of the four partition compo-
nents (Par1..Par4 in Figure 3) can propagate two failure conditions outward. In the AADL
model, these are labeled HardwareFailure and SoftwareFailure. To apply the formula correctly,
we do not need to know anything more about these failure conditions or the propagation points
other than that there are two of them. This fact is depicted in Figure 3 by the small label 2 on the
arcs exiting the partition components.

__

6 Battery Open Circuit was not included in the error model; in any case, the result would be the same “no power.”

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

• CPU complies with Observation 2. The CPU (cpu.ima in the AADL model) has only one failure
condition, HardwareFailure, and according to the associated component error behavior model, it
propagates that failure condition through its bindings when it occurs. Thus, the CPU complies.

• The pumps Green Pump, Blue Pump, and Accumulator and the valves Green Skid and Blue Skid)
all comply with Observation 2. Pumps have a single failure condition, NoService, that they po-
tentially propagate out the single propagation point when an internal hydraulic failure occurs.
Some valves simply propagate out the failure condition (NoService) when it propagates into the
valve; for example, a type of valve named boolean_shutoff does this. Another type of valve
named cmd_shutoff in the AADL model likewise permits NoService failure conditions to flow
through, but when its additional input data port cmd_input receives a NoValue failure propaga-
tion, it propagates outward a NoService failure condition. Thus, in this case, too, there is compli-
ance with Observation 2.

• Selector system (not to be confused with the Select component that takes inputs from both BSCU
subsystems), called selector_detailed in the AADL model, is the component with the highest to-
tal fan-in and fan-out in the entire Wheel Brake System. There are
− three input data ports: two from the command processes and one from the Select component
− five hydraulic access points: from the Green Pump, Blue Pump, and Accumulator as inputs

and to the Green Skid and Blue Skid as outputs
− two types of failure conditions that can propagate in: NoValue (from the three input data

ports) and NoService (from the pumps)
− only one failure condition that can propagate out (NoService)
Thus, the Selector also complies with Observation 2 of Section 3.2.

• Wheel: All variants of the wheel system declared in the AADL model propagate out 0 failure
conditions. Essentially, the Wheel marks the external system interface with the environment.

• Annunciation: The Annunciator displays (“announces”) recent status of the multiple systems on
which safe operation of the aircraft depends. The Annunciator can experience a LossAnnuncia-
tion error event that propagates NoService out through its sole output data port, and thus it com-
plies with Observation 2 of Section 3.2. However, because the Annunciator is not directly
connected to anything in the figure, it is not shown. (There is 0 fan-out from the Annunciator’s
only output data port; thus there’s no reason to include it in the error propagation complexity for-
mula because its contribution to the total score would be 0.)

• Wheel Brake System: The Wheel Brake System is composed of all the above systems and was
eliminated as a separate component in Step 2. A review of its declaration indicates that it intro-
duces no new failure conditions. It does, however, have a more complex error behavior model
with multiple states, reflecting the state of the wheel brake and whether or not its state is being
correctly annunciated to the pilot, but such a consideration is tangential to our purpose and does
not enter directly into the application of the error propagation complexity formula.

• Environment: We have no explicit single environment component in the Wheel Brake System
example, unlike the Stepper Motor System. We varied somewhat from the guidance in our previ-
ous report [Konrad 2016] by choosing to represent the interfaces of the Wheel Brake System

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

with the environment explicitly as distinct components (Pld1, Pdl2, the three pumps, and Wheel).
This has no effect on the score returned by the error propagation complexity formula.

3.4 The Clarified Run-Time Model for the Wheel Brake System

After pursuing the approach outlined in Section 3.3, we have a simplified (clarified), single-page vis-
ual depiction of the system, shown in Figure 3. It is sufficient for applying the formula without addi-
tional off-the-figure information, as long as the person applying the formula is familiar with
conventions such as arc labeling and fan-out indicators (Steps 5 and 6). As described in Step 7, the ap-
proach can be generalized to architectures specified in other architecture description languages, multi-
ple modes, and connections that can fail.

4 Applying the Error Propagation Complexity Formula to the
Wheel Brake System

In the previous section, we discussed how we developed Figure 3, a simplified version of the Wheel
Brake System architecture that is sufficiently detailed for application of the error propagation com-
plexity formula.

Recall that the potential size of a safety argument (number of distinct cases that may need to be con-
sidered) is

Sum over all system modes (i in 1..m),
 Sum over all components (j in 1..n),
 Sum over all P points of C[j] (k in 1..q[j]), of
 [OutPropagateFailureCount(i,j,k) ∙ FanOut(i,j,k)]

We now have enough information to calculate the complexity of the Wheel Brake System.

Steps to calculate the value of the error propagation complexity formula from the simplified
model

1. Count the number of system modes. Consider each mode separately in the following steps.
2. Determine how many components there are (C).
3. Determine how many propagation points there are for each component (PP).
4. Determine how many failure conditions can propagate from each propagation point (FC).
5. Determine the fan-out from each propagation point (FO).
6. For each propagation point, calculate the value of FC ∙ FO.
7. Add the values obtained from this calculation for each propagation point.

The resulting number is the complexity value for the mode under consideration. If there are multiple
modes, add the values obtained for each mode to obtain the system complexity value.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

In the next section, we show our calculation for the Wheel Brake System, but interested readers are
invited to make their own calculation before proceeding.

5 Answer Key
In this section, we determine the value of the error propagation complexity formula for the Wheel
Brake System example shown in Figure 3 using the steps outlined in the previous section.
1. In this example, there is only a single mode to consider.
2. Counting the number of components in the Figure, C = 20.
3. Each of the 20 components has a single propagation point, except for cpu/mem (4), Selector (2),

Wheel (0), and Cmd1 and Cmd2 (2 each).
4. Each of the propagation points can propagate a single failure condition, except for the partitions

(Par1 to Par4), which each can propagate 2.
5. Each of the propagation points has a fan-out of 1 except as follows:

a. One of the two propagation points in each of Cmd1 and Cmd2 has a fan-out of 3.
b. The propagation point in Select has a fan-out of 2.

With this information, we can easily calculate the value of FC ∙ FO for each propagation point.

Summing the values from the previous step gives an error propagation complexity value of 34. Thus
the estimated number of potential safety issues due to error propagation is 34. All of these cases will
have to be examined separately in order to determine that this system is safe. This number is not terri-
bly useful in itself, but the comparison to other systems is useful. So it is fair to say that the Wheel
Brake System is about twice as complex (from a safety standpoint) as the Stepper Motor system was,
since that had an error propagation complexity of 16.

The following table summarizes the calculations (P = propagation; FC = failure conditions, FO = fan
out).

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Component Type Number of
Components

Number of P
Points per
Component

#FC Fan-Out
#Components *
#P points * #FC
* FO

cpu mem 1 4 1 1 4

Par1..Par4 4 1 2 1 8

Mon1..Mon2 2 1 1 1 2

Cmd1..Cmd2 2
1 1 1 2

1 1 3 6

Pdl1..Pdl2 2 1 1 1 2

Select 1 1 1 2 2

Green Pump, Blue Pump, Accum 3 1 1 1 3

Shutoff 1 1 1 1 1

Selector 1 2 1 1 2

Green Skid, Blue Skid 2 1 1 1 2

Wheel 1 0 n/a n/a 0

Components: 20 Error Propagation Complexity: 34

6 Conclusion
We have developed a formula for estimating the potential size of a safety case for a system, based on
the number of modes, fan-out, and number of propagating failure conditions that can be identified in a
run-time design view of the system.

The formula has been applied to two nontrivial examples and tested. In the first example, three out of
four team members applied the formula correctly; the fourth made an error that was found and easily
corrected after a review. In the second example, once the model was simplified, all team members
came up with the same value.

Based on our experiences, we conclude that although the formula can be applied manually, automa-
tion would improve use of the formula and would be possible once a suitable diagram has been devel-
oped manually.

We considered how the formula would be used, both as a guide to developing the system architecture
and in estimating the effort required to review a claim of system safety.

We also explored why the formula might not have detected a difference in complexity between an
original design and a new design of the same system. Primarily, this is because the formula was devel-
oped to use system design or fault model parameters that are available early, and thus drive effort as
designs grow more complex. It is our view that the formula succeeds as it identifies complexity inde-
pendent of detailed-design.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

So that the formula may be used to detect the impact of small changes in design that can nevertheless
have a disproportionate impact on effort, the formula should be expanded to include another parame-
ter, one that reflects the number of inter-component dependencies (constraints) that arise from system
design choices. In the original stepper motor example, an architect made an assumption in the original
design that one component “knew” the position of another component, which results in a cascade of
possible failure conditions that need to be checked. This assumption was removed from the new, sim-
pler design that we analyzed had an error propagation complexity of 16.

Appendix A Abbreviations
Abbreviation Definition
AADL Architecture Analysis & Design Language
accum accumulator
AIR Aerospace Information Report
alt alternative (i.e., backup)
ARP Aerospace Recommended Procedure
bscu / BSCU Brake System Control Unit
cmd command
cpu central processing unit
FAA Federal Aviation Administration
FC failure condition
FO fan out
ima / IMA Integrated Modular Avionics
mem memory
mon monitor
nor normal (i.e., primary)
Par partition
Pdl pedal
PP propagation point
pwr power
SAE Society of Automotive Engineers
skid anti-skid7 operation
sub Wheel Brake Subsystem
wbs Wheel Brake System

__

7 Anti-skid operation is achieved by regulating hydraulic pressure that is applied to the brakes in such a way that wheel
rotation is maintained [Haskel 2016].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Appendix B Alternate Case: Federated System
The Federated Version of the Wheel Brake System is identical to the IMA Version except in two re-
spects: (1) the Federated version uses a double CPU configuration rather than a single CPU configura-
tion for its implementation infrastructure; and (2) the software is mapped (or deployed) to the
computational infrastructure differently. Because of the similarity between the two versions, the sim-
plification described in Section 3 leads to almost the same figure for the two versions and almost the
same error propagation complexity table. Compare Figure 4 to Figure 3, and the table below Figure 4
with the table in Section 5. The only differences in the two figures are in the first two rows of compo-
nents that compose the computational infrastructure and their connections to the software underneath.
Due to the operating system being modeled directly as part of the CPU (rather than in separate parti-
tion components as in the IMA version), the Federated Version has a smaller number of components
and lesser error propagation complexity.

Figure 4: Federated Version of the Wheel Brake System Clarified for Application
of the Error Propagation Complexity Formula

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

The following table summarizes the calculations (P = propagation, FC = failure conditions, FO = fan
out).

Component Type Number of
Components

Number of P
Points per
Component

#FC Fan-Out
#Components
* #P points *
#FC * FO

CPU1..CPU2 2 2 2 1 8

Mon1..Mon2 2 1 1 1 2

Cmd1..Cmd2 2
1 1 1 2

1 1 3 6

Pdl1..Pdl2 2 1 1 1 2

Select 1 1 1 2 2

Green Pump, Blue Pump, Accum 3 1 1 1 3

Shutoff 1 1 1 1 1

Selector 1 2 1 1 2

Green Skid, Blue Skid 2 1 1 1 2

Wheel 1 0 n/a n/a 0

Components: 17 Error Propagation Complexity: 30

References
URLs are valid as of the publication date of this document.

[Delange 2015]
Delange, Julien. “Speed Regulation.” AADL Wiki. Software Engineering Institute, Carnegie Mellon
University. 2015. https://wiki.sei.cmu.edu/aadl/index.php/SpeedRegulation

[Felier 2014]
Peter Feiler. “Wheel Brake System.” AADL Wiki. Software Engineering Institute, Carnegie Mellon
University. 2014. https://wiki.sei.cmu.edu/aadl/index.php/ARP4761_-
_Wheel_Brake_System_%28WBS%29_Example

[Haskel 2016]
Eddie Haskel. “G450 Systems.” Code 7700. 2016. http://code7700.com/g450_land-
ing_gear_wheels_and_brakes.html

[Konrad 2016]
Konrad, Michael; Sheard, Sarah; Weinstock, Chuck; & Nichols, William R. “FAA Research Project:
System Complexity Effects on Aircraft Safety. Task 3.5: Estimating Complexity of a Safety Argu-
ment.” CMU/SEI-2016-SR-007. Software Engineering Institute, Carnegie Mellon University. Febru-
ary 2016.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

[SAE 2011]
SAE International. “AIR 6110, Contiguous Aircraft/System Development Process Example.” 2011.
http://standards.sae.org/air6110/

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Contact Us
Software Engineering Institute
4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone: 412/268.5800 | 888.201.4479
Web: www.sei.cmu.edu | www.cert.org
Email: info@sei.cmu.edu

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by Federal Aviation Administratioin under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a feder-
ally funded research and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of Federal Aviation Administratioin or the United States Department of De-
fense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and deriv-
ative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other external and/or com-
mercial use. Requests for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM-0004273

http://www.sei.cmu.edu/
http://www.cert.org/

	Executive Summary
	1 Introduction
	2 Selecting the Example
	3 Preparing to Apply the Error Propagation Complexity Formula
	4 Applying the Error Propagation Complexity Formula to the Wheel Brake System
	5 Answer Key
	6 Conclusion
	Appendix A Abbreviations
	Appendix B Alternate Case: Federated System
	References

