

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY REV-03.18.2016.0
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

FAA RESEARCH PROJECT ON SYSTEM
COMPLEXITY EFFECTS ON AIRCRAFT SAFETY:
CANDIDATE COMPLEXITY METRICS
William R. Nichols and Sarah Sheard
May 2015

Abstract
This special report describes the results from the second task of a two-year project to investigate the
impact of system and software complexity on aircraft safety and certification for the Federal Aviation
Administration. The first task focused on a literature review of what is known about complexity, defi-
nitions of complexity, and the causes and impacts of complexity. This second task focused on identi-
fying candidate measures of complexity for systems with embedded software that relate to safety, as-
surability, or both.

This report begins with the task specification, motivation, and definition of complexity. The second
section provides general thoughts about measuring complexity, and then the primary outcome of this
research task: the candidate metrics for complexity that could relate to aircraft safety and assurance,
including descriptions, sources, and strengths and weaknesses of each measure. Additional infor-
mation about some of these measures is included in the appendix.

Section 3 discusses the relationship of complexity, and complexity measures, to system safety. It re-
ports on conclusions from attempting to analyze impacts of complexity from reported accidents and
then from incidents. A brief discussion of consequences of the growth of complexity follows.

Executive Summary
In this report, the second of a series, we describe the results of a task to identify a substantial number
of candidate complexity metrics for the Federal Aviation Administration.

This special report describes the results from the second task of a two-year project to investigate the
impact of system and software complexity on aircraft safety and certification for the Federal Aviation
Administration. The first task focused on a literature review of what is known about complexity, defi-
nitions of complexity, and the causes and impacts of complexity. This second task has focused on
identifying candidate measures of complexity for systems with embedded software that relate to
safety, assurability, or both.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

This report begins with the task specification, motivation, and the following definition of complexity:

Complexity is a state or quality of being composed of many intricately interconnected
parts, in a manner that exceeds the ability of humans, supplemented by tools, to under-
stand, analyze, or predict behavior.

Section 2 provides general thoughts about measuring complexity and criteria for selection of metrics
from the list of candidates. Then it presents the primary outcome of this research task: the candidate
metrics for complexity that could relate to aircraft safety and assurance, as shown below. The table’s
35 candidate metrics are described briefly (description, source, and strengths and weaknesses) in Sec-
tion 2.2, and some are explained in more detail in the appendix.

Candidate Metric Notes

Cyclomatic complexity (McCabe) Well studied, internal to module

Halstead complexity Similar to cyclomatic complexity

Henry and Kafura metrics

Troy and Zweben metrics Focus is on identifying problem points

Lines of code Easy to count, tends to correlate with cyclomatic complexity

Token counts Easy to calculate

Number of components Easy to calculate

Function points Available early, applicability to IMA not as clear

Number of interfaces

Coupling

Fan-in and fan-out Direct, easy to count, used in many derived measures

Regularity Hard to count

Part counting (inflows, outflows, weights) Easy to count

Uncertainty in achieving functional require-

ments

No direct measures provided

Perceived complexity No direct measures provided

Requirements complexity Available early

Depends upon subjective factors

Product complexity Related to requirements complexity

Number of requirements Countable early

Number of operational scenarios Countable early

Number of critical algorithms Countable early

Other COSYSMO cost multipliers Must be calibrated

Average nesting

NPath complexity

Data flow Graph theoretical approach requires completed code

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Candidate Metric Notes

Test coverage Correlated with effort and ability to thoroughly verify, challenging to cal-

culate

Number unit test cases Correlates to test effort, necessary but not sufficient for safety

Number of safety control case test cases Directly countable

Number of user path test cases Directly countable

Number of requirements tests Directly countable

Reuse Evidence is ambiguous

Code churn A known negative indictor, lagging

Requirements churn A known negative indictor for quality, lagging

Development effort Lagging indicator

Development cost Lagging indicator

Architectural metrics Not established or verified

Section 3 provides some initial thoughts on the relationship of complexity to system safety. A system
has an architecture of many levels, with software components at the lowest level. Each element
throughout the hierarchy has complexity related to the complexities of its pieces and the complexity of
the interrelationships among the pieces. Identifying the complexity of a system will involve identify-
ing many of the complexities of the layered elements and their relationships.

Section 3 continues with reporting our research findings about what causes of safety issues that are
related to software can be generalized from incidents and accidents. The number of accidents with
clear software contribution is miniscule; even the number of incidents is only a handful. In addition,
incidents are more often related to poor expression of safety concerns during the understanding and
requirements phase than to defects in code. A brief discussion of consequences of the growth of com-
plexity follows.

1 Introduction
This special report describes the results from the second task of a two-year project to investigate the
impact of system and software complexity on aircraft safety and certifiability for the Federal Aviation
Administration (FAA). This task focused on identifying candidate measures of complexity that could
apply to systems with embedded software and relate to safety, certification, or both. This section pro-
vides the details on this task from the work plan, the motivation for this work, and the definition of
complexity being used on this project.

1.1 Task Specification

The work plan described the task as follows:
Identify candidate measures of complexity that apply to systems with embedded soft-
ware and relate to safety, certification, or both. The task will:

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

a. Identify complexity measures that have been used for systems and software, along
with general rules for measuring complexity in practice (e.g., number of global
variables, uses of inadequate data types, and uses of concurrency mechanisms).

b. Propose a list of common failures in the context of IMA systems (e.g., use of inap-
propriate design patterns) and how to cope with them (e.g., code analysis, archi-
tecture analysis).

c. Use available data sources to determine whether values of these potential
measures can be known or estimated for complex systems.

d. Identify the criteria by which complexity metrics will be chosen from the list of
potential metrics.

Deliverables:
White paper that lists root causes of avionics system complexity and proposes potential
metrics to measure software and system complexity relevant to software system safety,
including their origin, strengths and weaknesses, potential for use as metrics for the
purpose of system safety and certification, and criteria for selection... [SEI 2014]

This report meets the requirements suggested above.

1.2 Motivation: Complexity and IMA Systems

Much of the work on complexity of software systems has used structural metrics at the component
level. Integrated modular avionics (IMA) systems, however, are dynamic systems consisting of soft-
ware combined with physical components. Scaling issues may include the number of components, het-
erogeneity of components, messaging and sensitivity to latency, the number of components through
which messages must pass, amount of new or reused software components, total number of interfaces,
and so forth.

RTCA DO-178C [RTCA 2011] is the recognized assurance standard for developing software used in
airborne systems and equipment. Although use of DO-178C (and previous versions) has been success-
ful to date, three problems are apparent:
1. Larger total inventories of software suggest more total latent defects, challenging quality levels

achieved by DO-178C.
2. Larger systems containing more heterogeneous components introduce more opportunity for inter-

action or system defects beyond the scope addressed by DO-178C.
3. Software often absorbs the complexity of the system by collecting the data, rules, and logic that

can seemingly be encoded into the software inexpensively.

The NASA study on flight software complexity [Dvorak 2009] notes that most defects in software are
benign, but approximately 1% of all defects may be fatal (a conjecture consistent with other published
data) and that best-in-class defect density was achieved on the Space Shuttle program with an esti-
mated residual defect level of 0.1 per 1,000 lines of code (KLOC). The shuttle contained roughly 500
KLOC; thus, assuming a comparable error rate (an assumption for which there is no evidence; there-
fore this is optimistic), a rough order-of-magnitude estimate would be 50 residual defects and an ex-
pectation of <1 fatal defects. In contrast, the Joint Strike fighter contains 5.7 million lines of code

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

(MLOC), and the Boeing 787 contains 7 MLOC. The estimates for similarly assured software (0.1 de-
fects/KLOC) would then be 700 residual defects with perhaps 7 fatal defects. We should not accept
that DO-178C quality will remain adequate as systems continue to grow.

The second problem is that DO-178C focuses on the performance of individual components; interac-
tions of components are beyond its scope. The experience with the Ariane 5 explosion illustrates the
hazards of system effects [Lions et al. 2015]. Although a chain of failures conspired to cause the catas-
trophe, the root cause was that a reused component from Ariane 4 behaved inappropriately in the new
environment. The problem was not defective components, but components that were not suited to
work together in a specific environment (a larger and faster rocket). Not only do larger IMA systems
present more opportunities for such mismatches, the economics of development will push toward re-
use of components. Such reuse comes with risks.

Finally, software often becomes a “sponge” for complexity by collecting the data, rules, and logic that
can seemingly be encoded into the software inexpensively. However, Stein’s work with system insta-
bility suggests that complexity cannot be eliminated altogether, only moved to a different regime
[Stein 2003]. For example, removing complexity in the nominal regime by automating most decisions
may create significantly more complexity in the off-nominal regime, because now the operators have
to react quickly, in an unfamiliar situation, when they are not used to making those decisions since
that responsibility is now the system’s.

1.3 Definition of Complexity

We use and evolve the concept from [Konrad 2015] that “complexity is a state that is associated with
causes that produce effects.” For this broad concept, a dictionary definition of “complex” will suffice
(as complexity is “the quality or state of being complex”) [Dictionary.com, 2015]:

Complex [adj.]
1. Composed of many interconnected parts; compound; composite.
2. Characterized by a very complicated or involved arrangement of parts, units, etc.
3. So complicated or intricate as to be hard to understand or deal with.

Dvorak [2009] described aspects of complexity that apply to flight software by quoting Dörner
[1997]:

“Complexity is the label we give to the existence of many interdependent variables in a
given system. The more variables and the greater their interdependence, the greater that
system’s complexity. Great complexity places high demands on a planner’s capacities to
gather information, integrate findings, and design effective actions. The links between the
variables oblige us to attend to a great many features simultaneously, and that, concomi-
tantly, makes it impossible for us to undertake only one action in a complex system. . . . A
system of variables is “interrelated” if an action that affects or is meant to affect one part of
the system will also affect other parts of it. Interrelatedness guarantees that an action aimed
at one variable will have side effects and long-term repercussions. [Dörner 1997, cited in
Dvorak 2009]

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

We are using a practical definition of our own crafting for this project, in order to relate complexity to
concepts of safety and assurance:

Complexity is a state or quality of being composed of many intricately interconnected parts,
in a manner that makes it difficult for humans, supplemented by tools, to understand, ana-
lyze, or predict behavior.

We introduce the concept of human ability as supplemented by tools because it has become clear that
we use tools in order to deal with complexity. This definition allows for the fact that systems are ob-
jectively more complex every year because they have more parts, functions, purposes, and intercon-
nections, yet any given system becomes subjectively less complex over time as we become familiar
with it and able to understand, analyze, or predict its behavior.

At this point, we are looking to measure the objective aspects of complexity, those implied by “many
parts,” “intricate,” and “interconnected.” We do not address the concept of humans understanding, an-
alyzing, or predicting behavior—or the concept of tools being used to reduce the human perception of
complexity—in this report.

2 Candidate Complexity Metrics
The goal of this task was to create a list of candidate complexity metrics that would be used in future
tasks to determine which metrics might be most useful. This list is shown in Table 2 in Section 2.2.
Each of these metrics is then described, by description, origin, and strengths and weaknesses. Where
there is additional clarifying information, an asterisk appears after the name of the metric. The appen-
dix provides information about the candidate metrics indicated by an asterisk, as well as about the
methodology for creating this list.

2.1 General Rules for Measuring Complexity in Practice

2.1.1 Measurement Goals

The goal is to determine whether a specific aircraft using avionics software can be certified as safe.
Translated into language specific to the avionics system, the goal is to determine whether the system
and software can be assured. This suggests that sub-goals might include the following:

1. Demonstrate through test or verification that the software components function correctly and as
expected within the system. This goal implies that the verification will have a quantified com-
pleteness, provide quantified assurance of correct operation, and be completed with acceptable
cost and duration.

2. Assure that the software system functions as specified. Because the correct function of compo-
nents does not assure the correctness of the overall system, a quantifiable assurance of system
correctness must also be possible with acceptable cost and duration.

3. Assure that the software system is correctly specified. We want to know if the system specifica-
tion can be made sufficiently complete to assure safe operation.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

We are concerned with complexity insofar as that complexity either (1) causes us to be uncertain
about achieving these goals or (2) requires excessive cost to reduce the uncertainty to an acceptable
level. The problem can be thus separated into three distinct parts:

1. measuring complexity in some objective way
2. estimating the consequences of various sources of complexity
1. estimating the effectiveness of approaches that reduce complexity, contain complexity, or deal

with complexity

2.1.2 Criteria for Selecting Good Metrics

Criteria for a measurement are described by the IEEE-SA Standards Board and summarized as follows
[IEEE-SA Standard Board 2009, cited in Kaner 2004]:

1. Correlation. The metric should be linearly related to the quality factor as measured by
the statistical correlation between the metric and the corresponding quality factor.

2. Consistency. Let F be the quality factor variable and Y be the output of the metrics func-
tion, M: F->Y. M must be a monotonic function. That is, if f1 > f2 > f3, then we must ob-
tain y1 > y2 > y3.

3. Tracking. For metrics function, M: F->Y. As F changes from f1 to f2 in real time, M(f)
should change promptly from y1 to y2.

4. Predictability. For metrics function, M: F->Y. If we know the value of Y at some point in
time, we should be able to predict the value of F.

5. Discriminative power. “A metric shall be able to discriminate between high-quality soft-
ware components (e.g. high MTTF) and low-quality software components (e.g. low
MTTF). The set of metric values associated with the former should be significantly higher
(or lower) than those associated with the latter.”

6. Reliability. “A metric shall demonstrate the correlation, tracking, consistency, predicta-
bility, and discriminative power properties for at least P% of the application of the met-
ric.”

In addition to these characteristics, we propose additional criteria to make the final selection of
measures of complexity from those created during this task. Table 1 shows these additional criteria.
Not all are required criteria, rather they will be used to distinguish between better and less-good
metrics.

Table 1: Desirable Characteristics for Metrics

ID Criterion

1 Objective

2 Mathematically rigorous (satisfies criteria for measurement)

3 Obtainable directly or through a proxy

4 Already available or available with minimal cost

5 Related to the effort to integrate the design

6 Related to the effort to test the design

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

ID Criterion

7 Related to the effort to comprehend the design

8 Related to the effort to comprehend system behavior

9 Helpful in generating the test plan

10 Attainable; must avoid extensive or expensive data collection

11 Automatable

12 Timely; describe current status or useful for predictions rather than lagging

13 Allow for comparisons of alternatives

14 Directly countable or measureable

2.2 Metrics

Various different metrics have been used as software has grown in size and in breadth of application.
This section describes some of these metrics and how they have been collected and applied. Table 2
lists the metrics.

Table 2: Candidate Complexity Metrics

Candidate Metric Notes

Cyclomatic complexity (McCabe)* Well studied, internal to module

Halstead complexity* Similar to cyclomatic complexity

Henry and Kafura metrics*

Troy and Zweben metrics* Focus is on identifying problem points

Lines of code* Easy to count, tends to correlate with cyclomatic complexity

Token counts* Easy to calculate

Number of components* Easy to calculate

Function points* Available early, applicability to IMA not as clear

Number of interfaces*

Coupling*

Fan-in and fan-out* Direct, easy to count, used in many derived measures

Regularity Hard to count

Part counting (inflows, outflows, weights) Easy to count

Uncertainty in achieving functional require-

ments

No direct measures provided

Perceived complexity* No direct measures provided

Requirements complexity* Available early

Depends upon subjective factors

Product complexity* Related to requirements complexity

Number of requirements* Countable early

Number of operational scenarios* Countable early

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Candidate Metric Notes

Number of critical algorithms* Countable early

Other COSYSMO cost multipliers* Must be calibrated

Average nesting

NPath complexity

Data flow* Graph theoretical approach requires completed code

Test coverage* Correlated with effort and ability to thoroughly verify, challenging to cal-

culate

Number unit test cases Correlates to test effort, necessary but not sufficient for safety

Number of safety control case test cases Directly countable

Number of user path test cases Directly countable

Number of requirements tests Directly countable

Reuse* Evidence is ambiguous

Code churn* A known negative indictor, lagging

Requirements churn* A known negative indictor for quality, lagging

Development effort Lagging indicator

Development cost Lagging indicator

Architectural metrics* Not established or verified

Note that there is duplication and overlap among the metrics shown in Table 2. Many are highly de-
rived values; for example, Troy and Zweben metrics combine numbers of modules, average number of
interconnections, and fan in/fan out, adding other direct measures. Because these are candidate metrics
from which ultimate metrics may be chosen, it was not appropriate at this time to reduce the overlap.
The reader is referred to the appendix for more elaboration about some of the measures.

Each description includes the measure name, formula or other description, strengths and weaknesses.
All in this section are considered to have potential for use as metrics for the purpose of system safety
and assurance.

An asterisk indicates that the measure is discussed in more detail in the appendix.

Cyclomatic complexity (McCabe)*

Description: The number of linearly independent paths through a program module; strong indicator
of testing effort.’’’

Origin: [Dvorak 2009]

Strengths and weaknesses: Advantages are that it is widely used, straightforward to compute con-
sistently and that it correlates with effort and defect proneness. Disadvantages include that it is only
for one module or program, it is only available after implementation and, because it correlates with
other measures, it may not be orthogonal to them.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Halstead complexity*

Description: A kind of algorithmic complexity, measured by counting operators and operands; a
measure of maintainability.

Origin: [Dvorak 2009], [Halstead 1977]

Strengths and weaknesses: Similar to Cyclomatic complexity.

Henry and Kafura metrics*

Description: Coupling between modules (parameters, global variables, calls) using graph theory,
lines of code, number of procedures, fan-in, fan-out, direct coupling, indirect coupling, and other
measures of information flow. An example of one of the metrics is length*(fan-in*fan-out)2, where
length is the source lines of code.

Origin: [Dvorak 2009], [Henry and Kafura 1981]

Strengths and weaknesses: Advantages include a solid theoretical basis and a number of creative
potential metrics. The use of global variables in derived measures of coupling is supported by the
now common practice of checking for globals statically. Disadvantages include a lack of historical
data on such measures.

Troy and Zweben metrics*

Description: Modularity or coupling; complexity of structure (maximum depth of structure chart);
calls-to and called-by. Include size, cohesion, and coupling. Their inputs require graphs of the mod-
ules and connections, design documents, fan-in, fan-out, average number of interconnections, num-
ber of component effects, and possible return values, among others

Origin: [Dvorak 2009], [Troy and Zweben 1981].

Strengths and weaknesses: Focus is on identifying problem points. These metrics have been used
with some success in the past on programs of relatively small size, but we have found no recent ci-
tations for larger modern systems.

Lines of code*

Description: Size measure based on counting source lines of code.

Origin: Historical

Strengths and weaknesses: Lines of code tends to correlate within a domain with Cyclomatic
complexity of a module.

As with other size measures, advantages include that the measure is easy to understand, generally
fast to count, independent of program language, and widely applicable. Using size measures does
not require deep analysis of a program’s logic structure, and the industry is familiar with these types
of measures. A disadvantage is that size alone does not necessarily capture the complexity from the

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

control flow or data flow, the strength of interface interactions that lead to emergent behavior, or
the number of test cases required to provide an accurate measurement.

Token counts*

Description: Size measure

Origin: [Halstead 1977]

Strengths and weaknesses: (see Lines of Code and Halstead)

Number of components*

Description: Size measure, based on counting components

Origin: Historic

Strengths and weaknesses: Unlike lines of code, this helps to measure the system decomposition.
It is easy to count, but fails to account for complexity of component interactions. This seems more
promising when combined with other metrics such as fan-in and fan-out and is often a component
of derived metrics such as those of Henry and Kafura [1981].

Function points*

Description: Function points counts use a structured approach to estimate software size early in the
development. Counts typically use external elements, external inquiry, internal logical files, and ex-
ternal file interfaces. Weights, including subjective measures of complexity, can be applied.

Origin: [Albrecht 1979]

Strengths and weaknesses: (see Lines of Code). Function points are available early, prior to code.
Traditionally they have been used on data processing systems, and usefulness for IMA is not as
clear without developing adaptations to the domain.

Number of interfaces*

Description:

Origin: [Cataldo 2010]

Strengths and weaknesses: (see Lines of Code)

Coupling dependency (and other coupling metrics)*

Description: Coupling dependency metric (CDM), fan-in*fan-out, (fan-in*fan-out)2 and size*(fan-
in*fan-out)2, count of modules that use resources, intramodule metrics, cyclomatic complexity, and
lines of code using ordinal ranking of failures in operation. Also Data coupling, Stamp coupling,
Control coupling, Common coupling, and Content coupling.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Origin: [Binkley and Schach 1997], [Briand 1996], [Kazman et al. 1996]

Strengths and weaknesses: Composite measure, plausible and not otherwise accounted for. Disad-
vantages are that it (and other coupling measures) are not readily available (although tools could be
developed to recognize and count the incidences), and they have not been thoroughly studied, so
their actual effect is not known at this time.

Fan-in and fan-out and information flow complexity*

Description: Fan-in is the number of incoming connections to a component, and fan-out is the
number of outgoing connections. Information flow complexity IFC is (fan-in + fan-out)2 and
Weighted IFC is (fan-in + fan-out)2.

Origin: [Henry and Kafura 1981]

Strengths and weaknesses: Advantages are that they include accessible measures of information
flow among modules or components. Moreover, in avionic systems many related measures use
some form of this metric. Disadvantages are that correlation with problematic components is not
good, and [Kazman 1998] shows this is unsatisfactory for estimating architectural complexity.

Regularity

Description: A method based on chunking and matching a set of known patterns. The more pat-
terns necessary to describe the system, the more complex the architecture.

Origin: [Kazman 1998]

Strengths and weaknesses: An advantage of a regularity approach is that it captures the incidence
of known patterns. However, this method suffers from two disadvantages. First, the problems is that
patterns must first be described, in order to have a catalogue of patterns from which to pick. Sec-
ond, it is possible that two systems may, in combination, require fewer patterns than either of the
two individual systems alone.

Part counting (inflows, outflows, weights)

Description: Complexity is (Np ∗ Nt ∗ Ni)1/3 where, Nt is the number of types of parts; Np is the
actual number of parts; and Ni is the number of interfaces of each of the parts. Alternately,
De = e1(inflows*outflows) + e2(fan-in*fan-out) where e1 and e2 are weighting factors, inflows is the
number of data entities passed to the module, outflows is the number of data entities passed from
the module, and fan-in and fan-out are the number of superordinate and subordinate modules

Origin: [Meyer 1997], [Zage 1995], [Li 2015]

Strengths and weaknesses: The complete system is easily measureable, and the measures should
also be available at design time and before implementation. On the other hand, the weighting fac-
tors are difficult to determine from first principles and often are just guessed. Also, the specific met-
rics overlap with other metrics suggested.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Uncertainty in achieving functional requirements

Description: Suh describes complexity as “a measure of uncertainty in achieving the specified FRs
(functional requirements).”

Origin: [Suh 1999]

Strengths and weaknesses: While a measure of uncertainty could be a powerful measure of com-
plexity, this concept does not suggest a specific measure.

Perceived complexity*

Description: Complexity as perceived by an observer

Origin: [Kinnunen 2006]

Strengths and weaknesses: Sources are not helpful on how to measure this.

Requirements complexity*

Description: Number of functional requirements plus number of non-functional requirements, with
weights added

Origin: [Keshavarz et al., 2011]

Strengths and weaknesses:

Product complexity*

Description: This is a form of requirements complexity based on summing requirements weight by
factors and described in more detail in the appendix.

Origin: [Keshavarz 2011]

Strengths and weaknesses: This measure requires subjective assessments but also provides an al-
ternative approach to counting requirements in COSYSMO.

Number of requirements*

Description: The number of requirements for the system of interest at a given level of design. Re-
quirements may be functional, performance, feature, or service-oriented.

Origin: [Valerdi 2008a]

Strengths and weaknesses: One advantage of using COSYSMO measures [Valerdi 2008a] is that
some are included that are not otherwise captured, for example, the degree of understanding of the
requirements and architecture. The approach also has been validated in other domains. However,
COSYSMO measures carry several disadvantages. First, COSYSMO is not designed to measure
complexity per se but to predict system development cost, duration, and effort. Second, COSYSMO

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

mixes process and product measures. Third, many of the measures can be determined only by sub-
jective expert judgement. Some of the measures (such as stakeholder cohesion) may be relevant but
are beyond the scope of this document.

Number of operational scenarios*

Description: This is a subset of requirements and design describing an external view of the system
as it responds to a stimulus, typically in an end-to-end test scenario.

Origin: [Valerdi 2008a]

Strengths and weaknesses: (See Number of requirements) This helps to characterize the volume
of external interaction of the system and the number of potential responses.

Number of critical algorithms*

Description: This represents the number of newly or significantly changed functions that require
unique mathematical algorithms to be developed in order to achieve the system performance re-
quirements. An example would be a brand-new discrimination algorithm being derived to identify a
friend or foe function in space-based applications.

Origin: [Valerdi 2008a]

Strengths and weaknesses: (See Number of requirements)

Other COSYSMO cost multipliers*

Description: Requirements understanding, architecture understanding, level-of-service require-
ments, migration complexity, technology risk, documentation to match lifecycle, number and diver-
sity of installations, platforms, or both, number of recursive levels of design, stakeholder team co-
hesion, personnel and team capability, process capability, multisite coordination, tool support

Origin: [Valerdi 2008]

Strengths and weaknesses: (See Number of requirements)

Average nesting

Description: A measure based on structural topology describing the mean or median depth of mod-
ule call path structure.

Origin: [Conte et al. 1986]

Strengths and weaknesses: Control flow measures have several advantages for measuring com-
plexity. As with size metrics, control flow metrics derived from the source code are fairly easy to
compute. These metrics also tend to be relevant to the building of white box test cases and therefore
can predict testability attributes. Disadvantages include that these measures are not available until
the software has been built, or at least until the design is described in some detail. These do not ac-
count for complexity from data flow and do not distinguish different types of control flow.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

NPath complexity

Description: A measure based on structural topology describing number of paths

Origin: [Nejmeh and Sibley 1988]

Strengths and weaknesses: See Average Nesting

Data flow*

Description: Data flow metrics are based on the use, dependency, and interaction of data within the
program. Chung defined size related to data flow. The measure uses graph theory in its specific def-
inition, though we have not yet identified the specific formulation used.

Origin: [Chung and Yang 1988]

Strengths and weaknesses: These are difficult or impractical to calculate without the aid of tools.
With automated support, data flow can help to characterize the interactions among modules and
identify a number of opportunities to introduce error, latency, race conditions, and so forth.

Test coverage*

Description: Test coverage includes the percentage of lines of code executed, the percentage of
paths executed, the percentage of safety control paths tested and so forth.

Origin: [Hayhurst et al. 2001], [DO-178B Industry Group 2015]

Strengths and weaknesses: The advantage of code coverage metrics is that they correlate with the
ability to test or verify the system. A disadvantage of code coverage metrics is that they are the fo-
cus of DO-178; therefore, code coverage is not new and may not provide enough additional insight.
A second disadvantage is uncertainty about how much code is being covered.

Number unit test cases

Description: A count of unit test performed

Origin: Historic

Strengths and weaknesses: This measure focuses narrowly upon the internal module. Without
careful design analysis, test cases are likely to be redundant or lack coverage. A measure of code or
path coverage should be preferred.

Number of safety control test cases

Description: This is a subset of control cases specific to design for safety considerations, for exam-
ple, that a component failure will not cause a safety-critical event.

Origin: [Armin Beer 2011]

Strengths and weaknesses:

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Number of user path test cases

Description: A count of test cases for independent test paths tests. This is usually compared to the
total number of requirements.

Origin: See Test Coverage

Strengths and weaknesses: See Test Coverage,

Number of requirements tests

Description: A count of requirements

Origin: See Test Coverage

Strengths and weaknesses: The measure is easily accessible. However, a test per requirement is
not normally sufficient for safety critical systems because of the need to cover multiple conditions
and inputs.

Reuse*

Description: Measure of the amount of code reused from previous systems.

Origin: [Jones 2009]

Strengths and weaknesses: Advantages are that this measure is somewhat straightforward to ob-
tain from revision control systems, though it requires tracing code to its origin. Disadvantages are
that

Code churn*

Description: Number of cumulative new, modified, and deleted lines of code.

Origin: [Jones 2009], [Nagappan and Ball 2005]

Strengths and weaknesses: This is easy to count using revision control systems, though auto-
mation of code generation may introduce unintended signals. The approach could be applied to
design representations such as AADL. Although easy to count, the measure might be subject to
manipulation.

Requirements churn*

Description: Number of cumulative new, added, and deleted requirements.

Origin: [Jones 2009]

Strengths and weaknesses: Advantages are that this is straight forward to obtain from revision
control, that it is indicative of uncertainty or emerging understanding of needs, and suggests re-
maining uncertainty. A disadvantage is that this number may not relate closely to safety.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Development effort

Description: Effort to specify, design, and implement a system

Origin: [Jones 2009]

Strengths and weaknesses: Effort after the fact is straight forward to compute and can be esti-
mated from financial data. A disadvantage is that effort estimation is not a mature field and may not
be indicative of complexity or safety.

Development cost

Description: The total cost, usually in dollars, spent developing the system, or in some phase of de-
velopment.

Origin: [Jones 2009]

Strengths and weaknesses: Cost is readily available from financial data. Cost will correlate with
complexity and verification and validation effort. The strength of the correlation has not been docu-
mented, and cost may not correlate to safety.

Architectural metrics*

Description: Metrics can be created related to software architecture (patterns and styles, e.g.)

Origin: [Nord et al. 2014]

Strengths and weaknesses: If there were architectural metrics, the hope is that these would be
available early and would relate directly both to complexity and to safety. However, the field of ar-
chitectural measurement is not yet mature.

3 Relationship of Complexity to System Safety
This section, per the work plan, was originally going to propose a list of common failures in the con-
text of IMA systems and how to cope with them. Per discussion with the FAA sponsor, that topic is
deferred to task 3.4.

Instead, in the interest of becoming clearer about what the metrics are measuring, we are addressing
the relationship of complexity, as it may be measured, to system and software safety. This section pro-
vides some initial thoughts on the subject.

3.1 Complexity Measures and System Safety

Figure 1 shows several of the factors that are important to consider regarding complex systems and
safety. At the lowest level are software components, which are small and cohesive programs and
which can be expressed in terms of inputs (upper dark box), outputs (lower dark box), and the trans-
formation that the component performs in between them. Component complexity has been measured

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

for decades, with the method of McCabe [1976] evolving into a National Institute of Standards and
Technology standard [Watson 1996].

Figure 1: Elements of Safety-Critical Complex Systems

Multiple components link together to form a larger software piece (subsystem or release or other
word). Both the complexity of the modules and the complexity of their interactions must be consid-
ered when evaluating the complexity of the subsystem.

A software system might have a number of these subsystems, and there may be more than one soft-
ware system in a complex system. The complexity of the relationships at any level should be consid-
ered in addition to the complexities of the elements on that level.

IMA systems include this software as the logic of the Automated Controllers shown in Figure 2
[Leveson 2013]. Also included are actuators and sensors, which receive commands and provide data,
respectively. These have physical reality, as do other parts of the system (e.g., the fuselage and struc-
tures connecting the actuators and the sensors). There is also a human (pilot, for an aircraft) who has
access to at least some of the sensor data and can override some of the automated controller com-
mands.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Figure 2: Control Process in Systems Theoretic Process Analysis [Leveson 2013]

Thus the complexity of the system should also address the complexity of the hardware and the inter-
faces between the hardware parts and the software parts, as well as among hardware parts, and be-
tween all of these and the pilot. For aircraft design purposes, complexity between the external environ-
ment, namely air and ground, and the aircraft is usually not considered in the same breath as
complexity of aircraft hardware and software, possibly because these interfaces don’t differ much
from year to year or between proposed designs.

At the system level, inputs to the largest box in Figure 2 include operating assumptions, operating pro-
cedures, replacements to code and to hardware, and work instructions. Only if the system as a whole is
safe can the system be certified. This is one reason the FAA cannot assure software by itself, only as
implemented in a specific system.

3.1.1 Internal Component Complexity

Several of the metrics in Table 2 may become measures of internal component complexity. DO-178C
focuses on the internal complexity and testability of software components [RTCA 2012]. This section
summarizes some of the considerations that can make software components complex.

One aspect of complexity of software components is the number of independent paths through the
source code. McCabe complexity [McCabe and Butler 1989] is used to estimate the number of paths
and to perform basis path testing [Watson 1996]. A more complex program, therefore, will require
more test cases to cover all program branches (including line of code coverage plus each path within
the control structures) and be more difficult to test.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Requiring test of not only each condition (the atomic Boolean expression that returns a value of true or
false) but also each decision (a composition of conditions and Boolean operators) results in condi-
tion/decision coverage. The more stringent requirement to independently test each condition that af-
fects a decision is known as modified condition decision coverage (MC/DC).

3.1.2 System Design Complexity

We are also interested in identifying the operational properties that we might later measure. The com-
plexity of the system design has many aspects in common with McCabe complexity (Section 3.3), in-
cluding the following:

• Component internal complexity

− Algorithmic
− Control structure
− Numeric
− Data structure
− Operations at input/output level

• Component structural complexity

• Dynamic behavior (operational behavior)

− Operational modes/state machine transitions
− Number and variability of policies or rules governing system behavior; non-holonomic con-

straints
• Configuration

− Number of normal system configurations
− Off-design configurations

• Functional coupling complexity (how system components interact to achieve requirements)

− Coupling to other software components
− Coupling to hardware components
− Coupling between subsystems
− Data flow complexity
− Emergent behaviors
− Feedback loops
− Nonlinearity
− Instability

• Representational Complexity

3.2 Root Causes of Avionics System Complexity

This section addresses the issue of root causes of avionics system complexity, particularly as they re-
late to safety. We intend to continue working on these concepts during the next task.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Causes of complexity were laboriously investigated in [Konrad and Sheard 2015]. The next big ques-
tion is “In what ways does complexity cause safety to be reduced?” We explored the nature of soft-
ware failures under current development practice.

3.2.1 Relevant Standards

Some relevant regulatory and guidance documents for IMA systems include DO-178C/ED-12C
[RTCA 2012], its precursor DO-178B/ED-12B, and ARP4754A/ED-79A. DO-178C updates DO-
178B but retains the focus on IMA components. Requirements validation is in the scope of
ARP4754A/ED-79A. Additional documents provide guidance for formal methods of IMA develop-
ment, software tool qualification, and object-oriented technology [RTCA 2011a, 2011b, 2011c].

3.2.2 Incidents and Accidents

We conducted a preliminary search for aircraft accidents and incidents in which software failure was a
cause. The purpose of this search was to identify trends or weaknesses in current approaches. We
found no hull-loss accidents that could be attributed to software developed to DO-178B or DO-
178C.1 We therefore expanded our inquiry to include incidents and accidents in which such software
was a contributing factor [Daniels 2011].

Ladkin compiled a compendium of computer-related incidents in commercial software [Ladkin 2011].
From this, Daniels culled a list of incidents involving software developed to DO-178B/ ED-12B
[Daniels 2011], including the following (original British spellings retained):

“1. TAM A320 runway overrun accident, Sao Paolo Congonhas airport, Brazil, July 2007.
A contributing factor was that a software interlock might have prevented the ground spoil-
ers from deploying.
2. B777, anomalous flight behaviour and partial loss of Control, off Perth, W. Australia,
August 2005. This was caused by a software fault in the Air Data Inertial Reference Unit
(ADIRU).
3. A320, runway overrun on landing, Taipei-Sungshan airport, Taiwan, October 2004.
Thrust lever left near the Climb detent.
4. Unknown FBW aircraft type, Byzantine failures in Flight Control System (FCS), no date.
5. A320, braking problem on touchdown. Cardiff, August 2003. The AAIB report stated that
the initiating factor in this incident was the behaviour of the Brake and Steering Control
Unit (BSCU).
6. Singapore Airlines, B747-400, Primary Flight Display information loss, January 2003.
7. B717, in-flight engine shutdown due to electronic fault, Launceston, Australia, October
2002.

__

1 On May 9, 2015, an Airbus NV military transport plane crashed near Seville in Spain, killing four of the six people on
board, during a test flight. Whether software was a cause has not been determined, although as of May 20, investi-
gators thought that the electronic control units may have been at fault, either in design or in installation [Agence
France-Presse 2015, Kelion 2015].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

8. Tu154m and B757, Midair Collision, Überlingen, Lake Constance, Germany, July 2002.
Professor Ladkin claims that TCAS was a causal factor.
9. B717, dual electronic Flight Management System failure, nr. Launceston, Australia, De-
cember 2001.
10. A330, landing difficulties, Melbourne, Australia, August 2001.
11. Comair, Embraer Brasilia turboprop, Primary Flight Display information loss, 19
March 2001.
12. Iberia A320, hard landing, Bilbao, Spain, February 2001.
13. Various aircraft; airprox caused by TCAS RA manoeuvring, Trasadingen, September
2000.
14. Air UK Leisure A320 braking problem and runway overrun, Ibiza, May 1998.
15. Philippine Airlines A320 braking problem and runway overrun, Bacolod, Philippines,
March 1998. Thrust lever not at idle.” [Daniels 2011]

No similar compendium has yet been prepared for DO-178C. Additional incidents were associated
with software developed under the significantly different standards DO-178/ED-12 or DO-178A/ED-
12A. Also, an Airbus 330 crashed prior to certification on that version of the A330.

3.3 Analysis of Incidents

The majority of incidents were attributed not to software defects per se, but to requirements defects.

In the majority of these cases, the author’s understanding is that the incident occurred, not
because the software failed to meet its requirements, but because the requirements did not
specify safe behaviour in all circumstances. This is not to say that airborne software devel-
oped to DO-178B/ED-12B is defect-free (this is far from being the case). Nevertheless, the
in-service incidents suggest that aircraft safety could best be improved by an increased fo-
cus on requirements validation (determining that the requirements are the right require-
ments and that they are complete), and particularly on the interaction between flight crew
and software-intensive systems. [Daniels 2011]

From this work we can infer the following:
1. Operational loss of aircraft hull are thankfully rare, so we must increase the investigation sample

by including non-loss incidents.
2. Greater numbers for statistical analysis will require expanding the search to test and develop-

ment.
3. Operational data for DO-178B is limited, and data for incidents from 178C is not yet available.
4. Despite the presence of defects in the software, incidents currently appear to be dominated by re-

quirements gaps rather than software implementation or design defects.
5. Certification separately addresses modules and system behavior.

System issues predominate the incidents that have occurred by today; however, complexity of compo-
nents should not be ignored. As Figure 3 illustrates, software doubles in size approximately every two
years [Feiler et al. 2013], while component defect density is more or less constant. Moreover, much of

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

the new code will be used to integrate components or systems. While mere integration may cause
emergent behavior, the increased size implies more opportunities for operational defects. Certification
will be challenged by increasing the scale of either module size or the number and heterogeneity of
components. This document will, therefore, address complexity metrics at both the module and system
levels.

Figure 3: Increasing Size of Onboard Avionic Software [Feiler et al. 2013]

3.4 Complexity Growth

The current practice appears to have been effective—so far. Nonetheless, the increasing reliance upon
software and the increasing sophistication of software systems suggest concerns for future certifica-
tion as component size, number of components, and scope of software responsibility grow. These con-
cerns include the following:

1. Increasing size of components challenges the assurance of individual components.
2. Individual components that behave correctly may still receive and process bad data, thus causing

the system to malfunction.
3. Excessive component CPU time could lead to synchronization or race conditions.
4. Increasing numbers of components increases the overall complexity of the system, thus making

system behavior more difficult to understand and certify.
5. The increasing scope of software use increases system complexity by expanding the number of

requirements and external interfaces.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Therefore, the concern is that the scale and scope of future IMA systems may exceed the capacity to
use the currently accepted certification approach. Unless alternatives are found, the systems may not
be certifiable as safe.

While software has not yet been blamed for causing catastrophic accidents, there are reasons to sug-
gest that this track record might not persist in the future. A number of incidents have occurred, many
of which were not foreseen, in part due to the complexity of requirements. The ability to assure soft-
ware and be compromised by ever-increasing system size and complexity.

3.5 Summary

This section described some preliminary thoughts about the relationship of a system’s composition to
complexity metrics and the relationship of both to safety. This section also provided more information
about internal complexity of components and system complexity, which includes interface relation-
ship complexity. It then offered some analysis of incidents in which software failure was a cause and
some considerations of how the growth of complexity will affect software assurance.

4 Conclusion and Next Steps
This report reviewed the metrics that may be used to evaluate the complexity of aircraft systems that
include software and computer hardware, such as IMA systems. The list, shown in Table 2, is inten-
tionally broad but has been filtered to some extent by scope of this project (subjective and user-inter-
face considerations are out of scope) and by maturity of the measure (we have not created new archi-
tectural metrics when a 2014 conference was unable to, for example). These metrics will be inputs
into our next task, “Task 3.4, Identify the Impact of Complexity on Safety,” and later tasks.

The work plan describes Task 3.4 as follows:
Identify the impact of complexity on aircraft certification, V&V, and flight safety margins,
including reductions in margin occurring because complex system V&V is more problem-
atic. Through interaction with FAA technical staff members, determine top-level impacts
that complexity has on issues of concern to FAA.
Deliverables
A draft working paper that begins to prioritize issues of certification, V&V, and flight safety
as relates to the problems that are caused by complexity. [SEI 2014]

This draft report is due by August 1, but the work of Task 3.4 will continue through the rest of
FY2015. A final working paper is not a deliverable. The information created in Task 3.4 will help in
creating the deliverables for Tasks 3.5 and 3.6, namely,

White paper containing final selection of complexity and safety measures as well as analysis
and quantified contributions of the various types of complexity to system safety [SEI 2014]

and

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

White paper reporting the relevance of selected metrics and demonstrating the applicability
of our methods to manage complexity [SEI 2014]

which are due March 1, 2016, and July 1, 2016, respectively.

Appendix A Details: Candidate Complexity Metrics

Here we capture some of the thought processes that went into analyzing and selecting the metrics
listed in Table 2. The first discussion is of metrics have been applied in avionics, and second discus-
sion is of metrics that have been associated with software complexity.

A.1 NASA study on Avionics Software Complexity

A NASA study on flight software complexity [Dvorak 2009] explicitly addresses complexity in its
Chapter 4. Table 3 lists the metrics identified in the NASA report. The same table appears in an earlier
SEI handbook [Bray et al. 1997], indicating that these metrics have been used for some time.

Table 3: Complexity Metrics from NASA Study of Flight Software (FSW)

Complexity Metric Primary Measure

Cyclomatic complexity

(McCabe)

Soundness and confidence; measures the number of linearly independent paths

through a program module; strong indicator of testing effort

Halstead complexity Algorithmic complexity, measured by counting operators and operands; a measure

of maintainability

Henry and Kafura metrics Coupling between modules (parameters, global variables, calls)

Bowles metrics Module and system complexity; coupling via parameters and global variables

Troy and Zweben metrics Modularity or coupling; complexity of structure (maximum depth of structure chart);

calls-to and called-by

Ligier metrics Modularity of the structure chart

In the NASA study, Dvorak discusses tight coupling, complex interactions (Section 4.1.3), and inter-
dependence:

Dvorak lists the characteristics of complexity as follows [Dvorak 2009, p. 37]:
• How difficult [is it] for a programmer to implement the requirements the code must sat-

isfy?
• How difficult [is it] for a tester to verify that the code satisfies the requirements and oper-

ates in an error-free fashion?
• How difficult [is it] for a lead developer to manage the development of the FSW within

cost and schedule?
• How difficult [is it] for a FSW maintenance programmer to understand the original pro-

grammer’s work if the software must be modified after launch?
• How difficult [is it] for a new programmer on a later mission to adapt the original FSW

as heritage for the new mission?

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

• From a risk standpoint, how difficult [is it] to predict the FSW’s behavior, which in turn
can drive much more extensive testing and more operational “hand-holding” along with
their associated higher labor costs?

Dvorak recommends the following ways to address complexity [Dvorak 2009]:

1. Enforce effective software requirements development and management practices.
2. Institutionalize the integration and participation of software engineering in all system ac-

tivities.
3. Establish a culture of quantitative planning and management.
4. Collaborate on approaches to attract, develop, and retain qualified talent to meet current

and future needs in government and industry.
5. Develop guidance and training to improve effectiveness in ensuring product quality

across the life cycle.
6. Develop approaches, standards, and tools addressing system assurance issues through-

out the acquisition life cycle and supply chain.
7. Improve and expand guidelines for addressing total life cycle COTS/NDI issues.

Concerns with identifying and measuring complexity are not new, and previous attempts have been
made to identify and measure the causes. In the remainder of this section, we discuss more specific
measures. An advantage of these metrics is that they have been successfully used to identify problem-
atic components. A potential disadvantage is that it is unknown whether comparing complexity com-
ponents and software systems will bear fruit more broadly.

A.2 Product Metrics – Size

Size-based metrics characterize the size of the software in a way that may correlate with complexity,
at least within a domain, and not necessarily linearly. Specific measures of size include
• lines of code (LOC)

• token counts (TC)

• Halstead software science (HSS) [Halstead 1977]

• number of components

• function points [Albrecht 1979]

• number of interfaces

The advantages of size measures include that they are easy to understand, generally fast to count, in-
dependent of program language, and widely applicable. Using size measures does not require deep
analysis of a program’s logic structure, and the industry is familiar with these types of measures. A
disadvantage is that size alone does not necessarily capture the complexity from the control flow or
data flow, the strength of interface interactions that lead to emergent behavior, or the number of test
cases required to provide an accurate measurement.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

A.3 Algorithmic Complexity

Kinnunen [Kinnunen 2006] defines algorithmic complexity as follows:

Given a system S and a coding c : S → L of system S in a language L, we call cL(S) the
model of system S in L. Given a Turing machine T, the complexity of cL(S), KT(cL(S)), is
defined by min{l(p) : T(p) = cL(S)}.

The advantage to algorithmic complexity is that it appears to cover a distinct aspect. The disadvantage
is that algorithmic complexity may not relevant to IMA systems.

A.4 Halstead

Halstead described some metrics of system complexity that include the following elements:
• ἠ1 = the number of distinct operators

• ἠ2 = the number of distinct operands

• N1 = the total number of operators

• N2 = the total number of operands

From these elements, one can calculate that
• the program vocabulary is ἠ = ἠ1 + ἠ2

• the program length is N = N1 + N2

• the volume is V = N * log2 ἠ

• the difficulty is D = (ἠ1 / 2) * (N2 / ἠ2)

• the effort E = D * V

These metrics were correlated to effort required to produce the program and defects delivered. Ad-
vantages include a history of usage and correlation to something important to a project manager. Dis-
advantages include a lack of history of usage with respect to software assurability.

A.5 Cyclomatic Complexity

McCabe [McCabe 1989] defines cyclomatic complexity, the number of independent paths through a
program, using graph theory as k = e − n + 2*p, where e is the number of edges, n is the number of
nodes, and p is the number of distinct connected components in the control flow. The complexity of
the design is the sum of complexity of the component modules.

Advantages of cyclomatic complexity are that it is widely used, straightforward to compute consist-
ently and that it correlates with effort and defect proneness. Disadvantages include that it is only for
one module or program, it is only available after implementation and, because it correlates with other
measures, it may not be orthogonal to them.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

A.6 Coupling

Kazman [Kazman 1996] addressed coupling and cohesion as an influence on testability. For example,
one design tactic is to limit structural complexity of the system to avoid cyclic dependencies, encapsu-
late dependencies on the external environment, and reduce dependencies among components in gen-
eral.

Briand and colleagues [Briand 1996] describe some structural measures of coupling theoretically, but
they do not provide specific usable measures.

Binkley [Binkley and Schach 1997] examined a coupling dependency metric (CDM), fan-in*fan-out,
(fan-in*fan-out)2 and size*(fan-in*fan-out)2, count of modules that use resources, intramodule metrics,
cyclomatic complexity, and lines of code using ordinal ranking of failures in operation. Figure 4
shows the results.

Figure 4: Coupling Metrics [Binkley and Schach 1997]

Schach identified five forms of coupling:
1. Data coupling exists when some construct C calls another construct A and passes it one

or more parameters, and each parameter is either a simple data type or a data structure
all of whose elements are used by A.

2. Stamp coupling exists when some construct C calls another construct A and passes it a
data structure as a parameter, and during the course of execution of A, only a portion of
the data structure is accessed.

3. Control coupling exists when some construct C sends another construct A some type of
control information which significantly alters the behavior of A.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

4. Common coupling exists when some construct C and another construct A have write ac-
cess to some shared common area in memory.

5. Content coupling exists when some construct C can access the internal address space of
another construct A and make changes to A’s code or data segment.

The advantages of the Binkley couplings are that they are easy to understand and compute. The forms
identified in the list by Schach have the benefit of being plausible and not otherwise accounted for.
The disadvantage of the couplings in the list is that they are not readily available, although tools could
be developed to recognize and count the incidences. They suffer from the further disadvantage of not
having been thoroughly studied, so despite plausibility, their actual effect is not known at this time.

A.7 Fan-in and Fan-out

Henry described the information flows using fan-in and fan-out from components [Henry and Kafura
1981]. Fan-in is the number of incoming connections to a component, and fan-out is the number of
outgoing connections. Derived values include the minimum, maximum, average, and sum of the prod-
ucts (fan-in*fan-out). Henry computed information flow complexity IFC = (fan-in + fan-out)2 and
Weighted IFC = (fan-in + fan-out)2.

According to Kazman [Kazman 1998], this measure is unsatisfactory because
These measures do not reliably correlate with architectural complexity for two reasons.
First, counter-examples abound: for instance typical utility routines and controllers have
high fan-in and fan-out respectively, but may be otherwise unproblematic. Second, and
more important, is that measures such as coupling/cohesion and fan-in/fan-out are not truly
architectural metrics. These measure the complexity of individual parts of an architecture,
but give no indication of the architecture’s overall complexity. [Kazman 1998]

An advantage of fan-in and fan-out measures is that they include accessible measures of information
flow among modules or components. Moreover, in avionic systems many related metrics use some
form of this one. The disadvantage is that correlation is not perfect with problematic components.
Some form of composite, or average, using graph theory may be more predictive of system problems.

A.8 Actual and Perceived Complexity

Kinnunen reports [Kinnunen 2006] that Crawley2 describes a system as composed of interrelated ele-
ments that perform a function and whose function is greater than the parts. If a system is more com-
plex, it will be more difficult to comprehend and therefore more error prone. Crawley begins with the
atomic “part” and a “module,” which is a collection of elements. Parts are interconnected by one of
four types: logical relational, topological, implementation, or operational. The essential complexity is
that which is necessary to fulfill the functionality. Perceived complexity is the complexity as per-
ceived by some observer. Actual complexity is the complexity within the system, which must be at
least as great as the essential complexity.

__

2 Edward Crawley. System Architecture: Course Notes. MIT, 2005.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Perceived complexity is an aspect of complexity that is otherwise difficult to describe. The disad-
vantage is that the sources are not very helpful on how to measure this complexity.

A.9 Requirements Complexity

The previous sections covered metrics in which complexity was measured from product implementa-
tion. In this section, we review prior work that attempts to measure product complexity from the prob-
lem requirements. The requirements also suggest the minimum (or essential) complexity required to
solve the problem. For FR = functional requirements, and NFR = of non-functional requirements,
Keshavarz and colleagues define the requirements complexity, RC, as FR + NFR. A formulation that
applied weight coefficients to requirements is as follows [Keshavarz et al. 2011]:

Table 4: Volatility Types and Its Coefficient [Keshavarz et al. 2011]

Type of Volatility Volatility Coefficient

Stable 1

Rarely 2

Often 3

In their Equation 16, Keshavarz and colleagues calculate

Table 5: Importance Factors [Keshavarz et al. 2011]

Importance Degree Importance Coefficient

Optional 1

Desirable 2

Essential 3

In their Equation 18, Keshavarz and colleagues calculate product complexity as

PC = (IOC × RC) + ∑ Cost Driver Product Attributes

Table 6: Requirements Factor Weightings [Keshavarz et al. 2011]

Attribute Very Low Low Nominal High Very High

Required software reliability 0.75 0.88 1.00 1.15 1.40

Size of application database 0.95 1.00 1.08 1.16

Complexity of the product 0.7 0.85 1.00 1.5 1.3

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

The advantage of requirements complexity is that it provides an early estimate of the essential com-
plexity in a solution. One disadvantage is that weighing factors are subjective. A second problem is
that the total complexity still depends upon the implementation complexity.

COSYSMO Factors

COSYSMO (COnstructive SYStems engineering cost MOdel) is a parametric cost estimator for sys-
tems development [Valerdi 2008]. COSYSMO was adapted to extend COCOMO ([software] COn-
structive COst MOdel) from the software to a systems environment.

Specific measures of system size in COSYSMO include
• number of system requirements

• number of operational scenarios

• number of critical algorithms

COSYSMO also includes cost multipliers, which are used to scale costs based on size as the following
factors increase:
• requirements understanding

• architecture understanding

• level-of-service requirements

• migration complexity – influence of legacy systems

• technology risk – maturity, readiness, and obsolescence of technology

• documentation to match lifecycle – breadth and depth of required documentation

• number and diversity of installations, platforms, or both

• number of recursive levels of design – number of levels of the work breakdown structure

• stakeholder team cohesion

• personnel and team capability

• process capability

• multisite coordination – location of stakeholders and coordination barriers

• tool support

One advantage of using COSYSMO measures is that some are included that are not otherwise cap-
tured, for example, the degree of understanding of the requirements and architecture. However,
COSYSMO measures carry several disadvantages. First, COSYSMO is not designed to measure com-
plexity per se but to predict system development cost, duration, and effort. Second, COSYSMO mixes
process and product measures. Third, many of the measures can be determined only by subjective ex-
pert judgement. Some of the measures (such as stakeholder cohesion) may be relevant but are beyond
the scope of this document.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Control Flow

Control flow measures of a program are based on its structural topology. Specific measures of soft-
ware component (or program) control flow size include
• McCabe’s cyclomatic complexity [McCabe 1976]

• average nesting level [Conte and Yang 1986]

• NPath complexity [Nejmeh and Sibley 1988]

Control flow measures have several advantages for measuring complexity. As with size metrics, con-
trol flow metrics derived from the source code are fairly easy to compute. These metrics also tend to
be relevant to the building of white box test cases and therefore can predict testability attributes. Fi-
nally, within a domain, complexity tends to correlate with size [Huang and Liu 2013, Jay 2009]. Dis-
advantages include that these measures are not available until the software has been built, or at least
until the design is described in some detail. These do not account for complexity from data flow and
do not distinguish different types of control flow.

Data Flow

Data flow metrics are based on the use, dependency, and interaction of data within the program.
Chung defined size related to data flow [Chung and Yang 1988]. The measure used graph theory in its
specific definition, though we have not yet identified the specific formulation used.

A.10 Test Coverage

This section focuses on code coverage. Other measures of test cases include requirements, use paths,
and safety control. Each of these types of test cases provide an indicator of complexity.

Complex systems are difficult to test because of a large state space and the larger number of
interconnections among elements of the system. The challenges are of scale—including number of
tests required, the effort required to build and evaluate test results, and time required to execute the
tests—and observabilty. Issues of scale are related to structural measures of program complexity.

The DO-178 Industry Group [DO-178B Industry Group 2015] estimates that 20% of avionic software
must satisfy Level C criteria, approximately 30% of avionic software must satisfy the stricter Level B
criteria (including DC coverage), and approximately 40% of avionic software must satisfy the strictest
Level A criteria (including MC/DC coverage). Christopher Ackerman reported [Ackermann 2010]
that an industry source claimed 7 weeks of duration to complete MC/DC tests on 20,000 lines of code,
which is effort-intensive, and becoming prohibitively so as code size reaches 1,000,000 lines or more.
The counterpoint is that MC/DC is more effective than alternative test strategies.

A separate criticism of MC/DC is that structural choices, for example, in-lining or decomposing a
module, can reduce the required coverage without effectively changing the code [Rajan et al. 2008].
The authors suggest creating a metric that is independent of code structure but do not propose a spe-
cific metric. The same authors report in a subsequent paper that rigorous coverage metrics (for exam-
ple, MC/DC [Hayhurst et al. 2001]) provide better fault finding than black box alternatives [Staats et
al. 2010].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Indeed, architectural decisions can affect a system’s testability by limiting complexity [Bass et al.
2003] to no more than the minimum complexity required to implement the system. (Complexity
beyond this minimum is sometimes referred to as accidental complexity.) The tactics recommended
are to add controllability and observability to the system.

Potential design approaches include “hide, shrink, and organize” [Kazman and Kruchten 2012]. Un-
fortunately, Kazman and Kruchten’s presentation provides no specific measures. Although use of or-
ganization as a tactic suggests design patterns, no general rules are yet available because the selection
of specific patterns depends upon multiple factors such as previous design decisions, the weighting of
competing or reinforcing quality attributes, and so forth.

The advantage of code coverage metrics is that they correlate with the ability to test or verify the sys-
tem. A disadvantage of code coverage metrics is that they are the focus of DO-178; therefore, code
coverage is not new and may not provide enough additional insight. The broader problem is that DO-
178 does not directly account for the complexity of interacting components and for tests of paths
through the entire system.

A.11 Development Process Metrics
Development process metrics are collected during development for management of the effort, for each
phase of the software development lifecycle. Some key metrics include [Jones 1996]

• reuse

• code churn

• requirements churn

• defects and defect density

• programming standards violations

• cost

• direct effort

• numbers of developers

• schedule durations

• schedule trends

• developer capability

• process and regulatory compliance

Advantages of process metrics include the following:
• capture the context of the development effort

• can be used to estimate defect potentials

• assist in trade-off of test and other verification techniques

• can be obtained with an instrumented development environment

• can be useful in calibrating and using predictive models of development cost, duration, and de-
fects (for example, see COSYSMO [Valerdi 2008])

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

A challenge to using process metrics is that the quality of the data depends upon the environment. In-
strumentation of development environments often leaves gaps. Quality of data recorded by hand de-
pends upon the skill of the data recorders. In addition, benefits and risks of reuse and relevance of
churn in requirements have been reported [Jones 2009] but have not specifically been linked to com-
plexity.

A.12 Architectural Metrics

The field of architectural measurement is not yet mature. It is hoped that in the future best practices
will be codified and complexity will be measured. A summary from the First International Workshop
on Software Architecture Metrics suggests future work to create a metrics catalogue, derive metrics
from patterns and styles, establish a common test bed for architecture metrics, and develop good met-
rics computation tools [Nord et al. 2014].

A.13 Summary

Complexity of a system results from the number of elements it has (its size), from the diversity of its
element types, and from the connectivity of the elements. The essential complexity of a system is nec-
essary for the system to function, to perform the complex task asked of it, to address a complex prob-
lem. Accidental complexity is not strictly required by the system, but has been introduced for other
reasons, and is therefore a candidate for reduction if possible. Various measures of complexity attempt
to characterize aspects of the size, diversity, or connectivity. Although these aspects are understanda-
ble one by one, it is not always clear how these aspects combine. The overarching goal is assurability,
which is related to verifiability or testability.

Among the metrics identified, the citation dates suggest that most have been in use for a long time.
Many of these metrics are structural. Some, including the number of test cases required for MC/DC
[Hayhurst et al. 2001] testing, have been criticized for producing significantly different results de-
pending on arbitrary decomposition decisions. The arbitrary nature should be addressed if robust met-
rics for optimizing cohesion and coupling are to be found.

Architectural metrics, though they appear promising, have not yet matured sufficiently for us to know
what metrics are reliable, much less how strongly they correlate with complexity. Development of ar-
chitectural metrics is a current field of research. Architectural metrics might better characterize global
structure and appropriate use of patterns and tactics.

Bibliography
Ackermann, Christopher. 2010. “MCDC_Coverage_02in a Nutshell.” Fraunhofer USA, Inc.

http://www.slidefinder.net/n/nutshell_christopher_ackermann/mcdc_coverage_02/7587078.

Albrecht, Allan. 1979. “Measuring Application Development Productivity.” In Proceedings of the
Joint SHARE, GUIDE, and IBM Application Development Symposium, 83–92. Monterey
California: IBM Corporation.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Armin Beer, Bernhard Peischl. 2010. “Testing of Safety-Critical Systems: A Structural Approach to
Test Case Design.” In Advances in Systems Safety. Springer, 187–211.

Basili, Victor, Gianluigi Caldiera, and H. Dieter Rombach. “The Goal Question Metric Approach,”
Encyclopedia of Software Engineering, Vol. 1, pp. 528–532, Wiley, 1994.
https://www.cs.umd.edu/~basili/publications/technical/T89.pdf.

Bass, Len, Paul Clements, and Rick Kazman. 2003. Software Architecture in Practice. 2nd edition.
Addison-Wesley.

Binkley, Aaron B., and Stephen R. Schach. 1997. “Metrics for Predicting Run-Time Failures.” TR 97–
03. Nashville, TN.

Bray, Michael, Kimberly Brune, David A. Fisher, John Foreman, Jon Gross, Gary Haines, William
Mills, and Robert Rosenstein. 1997. “C4 Software Technology Reference Guide: A Prototype.”
CMU/SEI-97-HB-001. Pittsburgh: Carnegie Mellon Software Engineering Institute.

Briand, L. C., S. Morasca, and V. R. Basili. 1996. “Property-Based Software Engineering
Meassurement.” IEEE Transactions on Software Engineering 22 (1): 68–86.
doi:10.1109/32.481535. http://dl.acm.org/citation.cfm?id=229713.229722.

Chung, C. M., and M. G. Yang. 1988. “A Software Maintainability Measurement.” In Proceedings of
the 1988 Science, Engineering and Technololgy, 12–16.

Conte, S. D., H. E. Dunsmore, and V. Y. Shen. 1986. Software Engineering Metrics and Models.
Benjamin/Cummings Publishing Company, Inc.

Daniels, D. 2011. “Thoughts from the DO-178C Committee.” In 6th IET International Conference on
System Safety 2011, C31–C31. IET. doi:10.1049/cp.2011.0266. http://digital-
library.theiet.org/content/conferences/10.1049/cp.2011.0266.

Dictionary.com, 2015. (From http://dictionary.reference.com/browse/complex, retrieved
5/26/2015)“DO-178B Q & A.” 2015. Accessed April 25.
http://www.do178site.com/do178b_questions.php.

DO-178 Industry Group. “DO-178B Q & A.” 2015. Accessed April 25.
http://www.do178site.com/do178b_questions.php.

Dörner, Dietrich. 1997. The Logic of Failure: Recognizing and Avoiding Error in Complex Situations.
New York, New York, USA: Basic Books. http://www.amazon.com/The-Logic-Failure-
Recognizing-Situations/dp/0201479486.

Dvorak, Daniel L. 2009. “NASA Study on Flight Software Complexity.” In AIAA
Infotech@Aerospace Conference and AIAA Unmanned...Unlimited Conference, 264 pp.
American Institute of Aeronautics and Astronautics.
http://oceexternal.nasa.gov/OCE_LIB/pdf/1021608main_FSWC_Final_Report.pdf\nhttp://arc.ai
aa.org/doi/pdf/10.2514/6.2009-1882\nhttp://arc.aiaa.org/doi/abs/10.2514/6.2009-1882.

http://dictionary.reference.com/browse/complex

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Feiler, Peter, John Goodenough, Arie Gurfinkel, Charles Weinstock, and Lutz Wrage. 2013. “Four
Pillars for Improving the Quality of Safety-Critical Software-Reliant Systems.” Pittsburgh.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=47791.

Halstead, Maurice H. 1977. Elements of Software Science (Operating and Programming Systems
Series). New York, New York, USA: Elsevier Science, Inc.
http://dl.acm.org/citation.cfm?id=540137.

Hayhurst, Kelly J., Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson. 2001. “A Practical
Tutorial on Modified Condition / Decision Coverage.” NASA/TM-2001-210876. Hampton,
Virginia.

Henry, Sallie, and Dennis Kafura. 1981. “Software Structure Metrics Based on Information Flow.”
IEEE Transactions on Software Engineering SE-7 (5): 510–518. doi:10.1109/TSE.1981.231113.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1702877.

Huang, Fuquen, and Bin Liu. 2013. “Study on the Correlations Between Program Metrics and Defect
Rate by a Controlled Experiment.” Journal of Software Engineering 7 (3): 114-120.
doi:10.3923/jse.2013.

IEEE-SA Standard Board. 2009. “IEEE Standard for a Software Quality Metrics Methodology.” IEEE
Std 1061TM-1998 (R2009). Vol. 1998. New York: IEEE.

Jay, Graylin. 2009. “Cyclomatic Complexity and Lines of Code: Empirical Evidence of a Stable
Linear Relationship.” Journal of Software Engineering and Applications 2 (3): 137–143.
doi:10.4236/jsea.2009.23020.

Jones, Capers. 1996. Applied Software Measurement: Assuring Productivity and Quality. 2nd ed.
Hightstown, NJ, USA: McGraw-Hill.

———. 2009. Software Engineering Best Practices: Lessons from Successful Projects in the Top
Companies. 1st ed. New York: McGraw-Hill Osborne Media.

Kaner, Cem, and Walter P. Bond. 2004. “Software Egineering Metrics: What Do They Measure and
How Do We Know?” http://testingeducation.org/a/metrics2004.pdf.

Kazman, Rick. 1998. “Assessing Architectural Complexity.” In Proceedings of 2nd Euromicro
Working Conference on Software Maintenance And Reengineering (CSMR 98). IEEE Computer
Society Press, 1998. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.2559.

Kazman, Rick, G. Abowd, L. Bass, and P. Clements. 1996. “Scenario-Based Analysis of Software
Architecture.” IEEE Software 13 (6): 47–55. doi:10.1109/52.542294.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=542294.

Kazman, Rick, and Philippe Kruchten. 2012. “Design Approaches for Taming Complexity.” In
SysCon 2012 IEEE International Systems Conference, Proceedings, 519–524.
doi:10.1109/SysCon.2012.6189488.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Keshavarz, Ghazal. 2011. “Metric for Early Measurement of Software Complexity.” International
Journal on Computer Science and Engineering 3 (6): 2482–2490.

Kinnunen, Matti J. 2006. “Complexity Measures for System Architecture Models.” Massachusetts
Institute of Technology.

Konrad, M., and S. Sheard. 2015 “FAA Research Project: System Complexity Effects on Aircraft
Safety: Literature Review Task 3.2: Literature Search to Define Complexity for Avionics Sys-
tems.” Special Report CMU/SEI-2015-SR-006. Pittsburgh: Carnegie Mellon Software Engineer-
ing Institute.

Ladkin, L. B. 2011. “Computer Related Incidents with Commercial Aircraft.” http://www.rvs.uni-
bielefeld.de/publications/compendium/incidents_and_accidents/index.html.

Leveson, Nancy. 2013. An STPA Primer, Version 1, August 2013. http://sunnyday.mit.edu/STPA-
Primer-v0.pdf

Li, J. J., E. Wong, D. Zage, and W. Zage. 2015. “Validation of Design Metrics on a
Telecommunication Application.” Accessed April 2.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.930.

Lions, J. L., and the Inquiry Board. “ARIANE 5 Failure: Full Report.” 2015. Accessed May 17.
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html.

McCabe, Thomas J. 1976. “A Complexity Measure.” IEEE Transactions on Software Engineering
SE-2 (4): 308–320.

McCabe, Thomas J., and Charles W. Butler. 1989. “Design Complexity Measurement and Testing.”
Communications of the ACM 32 (12): 1415–1425. doi:10.1145/76380.76382.
http://portal.acm.org/citation.cfm?doid=76380.76382.

Meyer, Marc H., and Alvin P. Lehnerd. 1997. The Power of Product Platforms. Free Press.

Nagappan, N., and T. Ball. 2005. “Use of Relative Code Churn Measures to Predict System Defect
Density.” Proceedings. 27th International Conference on Software Engineering, 2005. ICSE
2005.: 284–292. doi:10.1109/ICSE.2005.1553571.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1553571.

Nejmeh, Brian A., and Edgar H. Sibley. 1988. “NPATH: A Measure of Execution Path Complexity
and Its Applications.” Communications of the ACM 31 (2): 188–200. doi:10.1145/42372.42379.
http://dl.acm.org/citation.cfm?id=42372.42379.

Nord, Robert L., Ipek Ozkaya, Heiko Koziolek, and Paris Avgeriou. 2014. “Quantifying Software
Architecture Quality Report on the First International Workshop on Software Architecture
Metrics.” ACM SIGSOFT Software Engineering Notes 39 (5): 32–34.
doi:10.1145/2659118.2659140. http://dl.acm.org/citation.cfm?id=2659118.2659140.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Park, Robert E., Wolfhart B. Goethert, and William A. Florac. 1996. “Goal-Driven Software
Measurement: A Guidebook.” CMU/SEI-96-HB-002. Pittsburgh: Carnegie Mellon Software
Engineering Institute.

Rajan, Ajitha, Michael W. Whalen, and Mats P. E. Heimdahl. 2008. “The Effect of Program and
Model Structure on MC/DC Test Adequacy Coverage.” In Proceedings of the 13th International
Conference on Software Engineering - ICSE ’08, 161. New York, New York, USA: ACM Press.
doi:10.1145/1368088.1368111. http://dl.acm.org/citation.cfm?id=1368088.1368111.

RTCA, Inc. “Integrated Modular Avionics (IMA) Development Guidance and Certification
Considerations.” DO-297. www.rtca.org.

———. 2011a. “Formal Methods Supplement to DO-178C and DO-278A.” DO-333. www.rtca.org.

———. 2011b. “Object-Oriented Technology and Related Techniques Supplement to DO-178C and
DO-278A.” DO-332. http://www.rtca.org/store_product.asp?prodid=848

———. 2011c. “Software Tool Qualification Considerations.” DO-330. http://www.rtca.org.

———. 2012. “Software Considerations in Airborne Systems and Equipment Certification.” DO-
178C/ED-12C. Washington, D.C. http://www.rtca.org/store_list.asp.

Software Engineering Institute. 2014-2016 Work Plan for the Federal Aviation Administration (FAA)
PWS 5-427 A1 Version 1.0, 2014.

Staats, Matt, Michael W. Whalen, Mats P. E. Heimdahl, and Ajitha Rajan. 2010. “Coverage Metrics
for Requirements-Based Testing: Evaluation of.” In Proceedings of NFM 2010, April 13-15,
2010, Washington D.C., USA., 161–170.

Stein, Gunter. 2003. “Respect the Unstable: The Practical, Physical (and Sometimes Dangerous)
Consequences of Control Must Be Respected, and the Underlying Principles Must Be Clearly
and Well Taught.” IEEE Control Systems Magazine (August): 12–25.

Suh, Nam P. 1999. “Engineering Design: A Theory of Complexity, Periodicity and the Design
Axioms.” Research in Engineering Design (11): 116–131.

Troy, Douglas A., and Stuart H. Zweben. 1981. “Measuring the Quality of Structured Designs.”
Journal of Systems and Software 2 (2): 113–120. doi:10.1016/0164-1212(81)90031-5.

Valerdi, Ricardo. 2008. The Constructive Systems Engineering Cost Model (COSYSMO): Quantifying
the Costs of Systems Engineering Effort in Complex Systems. Saarbrücken, Germay: VDM
Verlag.

Watson, Arthur H. 1996. “NIST Special Publication 500-235: Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric.” SP 500-235.
http://www.mccabe.com/pdf/mccabe-nist235r.pdf.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Zage, Wayne M., Dolores M. Zage, and Cathy Wilburn. 1995. “Avoiding Metric Monsters: A Design
Metrics Approach.” Annals of Software Engineering 1 (1): 43–55. doi:10.1007/BF02249045.
http://link.springer.com/10.1007/BF02249045.

Acknowledgments
The project team members, in addition to the authors, are Mike Konrad, Charles Weinstock, and Greg
Such. For this task they helped frame the discussion and review the ideas.

Maureen Brown and Dave Zubrow provided important review comments, making this report better.

Tamara Marshall-Keim provided patient, persistent, high-quality, and timely technical editing.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Contact Us
Software Engineering Institute
4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone: 412/268.5800 | 888.201.4479
Web: www.sei.cmu.edu | www.cert.org
Email: info@sei.cmu.edu

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by Federal Aviation Administration under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a feder-
ally funded research and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of Federal Aviation Administration or the United States Department of De-
fense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and deriv-
ative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other external and/or com-
mercial use. Requests for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM-0004270

http://www.sei.cmu.edu/
http://www.cert.org/

	Abstract
	Executive Summary
	1 Introduction
	2 Candidate Complexity Metrics
	3 Relationship of Complexity to System Safety
	4 Conclusion and Next Steps
	Appendix A Details: Candidate Complexity Metrics
	Bibliography

