
CERT'S PODCASTS: SECURITY FOR BUSINESS LEADERS: SHOW
NOTES

Building More Secure Software

Key Message: Software security is about building better, more defect-free software to reduce vulnerabilities that are
targeted by attackers.

Executive Summary

In addition to computer, network, IT, and information security, software security (which includes application security)
is starting to emerge as the next area to tackle. Software security means building better, defect-free software that is
more able to resist, tolerate, and recover from attacks. As the security community deploys more effective solutions to
address IT and information security vulnerabilities, attackers are targeting vulnerable application software with much
greater frequency.

In this podcast, Julia Allen, a senior researcher with CERT, discusses why business leaders need to start paying
attention to software security. Julia, along with several CERT and Cigital authors, has written a new book in the
Addison-Wesley SEI/CERT and Software Security Series titled Software Security Engineering: A Guide for Project
Managers. This book and the Department of Homeland Security Software Assurance Program's Build Security In web
site serve as the basis for this conversation.

PART 1: SOFTWARE SECURITY IS JUST GOOD BUSINESS

Defining Software Security

Typically, when organizations think about security, they think about physical, IT, computer, network, and information
security; or they think about protecting sensitive and personal information.

Software security is:

building better, defect-free software to reduce the number of software vulnerabilities that show up in operational
production systems
developing software to be more resistant to attack and, if attacked, the software is better able to tolerate the
attack and recover quickly
promoting more preventive and proactive measures, by addressing security issues much earlier in the life cycle,
where they are often first introduced

Software that is built with security in mind is less vulnerable to attack and a bit more bulletproof.

Attackers Are Getting Smarter

Attackers:

are getting much smarter and more sophisticated in their approaches. There is a robust underground economy
where information is bought and sold.
are moving their focus from networks and IT infrastructures to applications and information. For example, web-
facing applications serve as one primary gateway to desirable information.
only require one entry point for success, whereas software and IT developers need to protect all entry points.

Software Security Is Good Business

http://www.sei.cmu.edu/publications/books/cert/software-security-engineering.html
http://www.sei.cmu.edu/publications/books/cert/software-security-engineering.html
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html


The marketplace is starting to demand more secure software products.

The total cost of ownership for software can be upwards of 50-80% during the operations and maintenance phases, due
to poor software quality.

Upwards of 50% of software vulnerabilities are design flaws that could have been detected much earlier in the life
cycle.

It can be anywhere from 100 to 1000 times more cost and schedule effective to identify a software defect earlier in the
life cycle versus finding it during operations.

We just can't keep up by addressing software security solely as an operational concern.

Why Is Software So Complex?

Software complexity stems from:

customers wanting new features, new functions, and new services faster
the growth in the amount of software
Internet connectivity that facilitates global software development
new software being added to existing systems
the increasing use of third party software

Addressing security in the face of this increasing complexity is a daunting undertaking.

PART 2: DEVELOP SOFTWARE WITH A SECURITY MIND-SET

How To Think About Software Security

Tackle security as a software development life cycle issue:

Understand that software security is not just an operational IT issue and an add-on or afterthought - it is a
software engineering issue.
Address security during acquisition, requirements specification, design, architecture – and all the way through
implementation, test, and deployment.
Think about security in the same way that you think about software performance and reliability.

Think like an attacker:

Involve all roles – software project managers, architects, designers, software engineers.
Think about what the software should NOT do (not just what it should do) and how it should behave when under
attack.

Address software security as a risk management issue, assessing risk continuously during each life cycle phase. Risks
will change over time.

Some Useful Software Security Practices

First of all, integrate software security practices into your organization's software development life cycle. Don't make it
something new or distinct from your normal process.

Examples of good practices include:

defining misuse and abuse cases, thinking about how new features could be unintentionally misused or



intentionally abused by an attacker. An example is challenging the assumption that the interface between a user-
facing web server and a database server can be trusted.
capturing attack patterns which describe a class of vulnerability, how that vulnerability can be exploited, and the
level of attacker skill required. Attack patterns can be used to better understand weaknesses during all
development phases.
secure coding practices, code scanning, and code analysis
security testing to include white box testing, black box testing, threat modeling, and penetration testing.

Getting Started

Useful first steps include:

evaluating the skills and competencies of your software development team. Add security expertise to the team
where needed.
inserting security practices as early in the life cycle as possible for the greatest return on investment. Keep in
mind that early life cycle software security practices are the least mature.

That said, most organizations today start with secure coding practices along with code analysis, peer reviews, and
lower-level testing. These practices are in broader use and thus more mature.

For any improvement initiative, we recommend:

understanding what you are trying to do and why, and what you want to accomplish. Make sure the incentives
are clear.
obtaining active, visible buy-in from executive sponsors for a sustainable initiative
selecting early pilot opportunities that can demonstrate early results (quick wins)
making sure that people understand this is going to take time
communicate, communicate, communicate
provide ongoing awareness training and education

Tackling the tough issue of legacy systems and third-party software, while challenging, can result in high payoff.

Resources

The Department of Homeland Security Software Assurance Program's Build Security In web site

Allen, Julia; Barnum, Sean; Ellison, Robert; McGraw, Gary; Mead, Nancy. Software Security Engineering: A Guide
for Project Managers, Addison-Wesley, 2008.

CERT podcast: How to Start a Secure Software Development Program

CERT podcast: Identifying Software Security Requirements Early, Not After the Fact

Copyright 2008 by Carnegie Mellon University

https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
http://www.sei.cmu.edu/publications/books/cert/software-security-engineering.html
http://www.sei.cmu.edu/publications/books/cert/software-security-engineering.html
http://www.sei.cmu.edu/library/abstracts/books/032150917X.cfm
http://www.cert.org/podcast/show/20080820mcgraw.html
http://www.cert.org/podcast/show/20080708mead.html

