

# Anomaly Detection on Devices using DNS Queries

Prepared by: Fatemeh Riahi

#### **Problem Definition**

- IOT/ICS devices are more likely to get compromised.
  - According to a research by Forrester, 67% of enterprises have experienced IoT security incidents.
- Detect anomalous behaviour of IoT devices.
  - If we track DNS activities of devices and detect anomalous behaviours, we can quickly quarantine such devices.





## Solution

- Find devices that are autonomous using available information.
  - DNS Queries
  - Device Name
  - Device MAC address
- Make a profile for each device that belong to IoT category.
- Vectorize the DNS activities using NLP methods.
- Compare DNS activities of a device with its history and the history of devices with similar fingerprints if the fingerprint is available and detect anomalies.

#### DNS and DHCP

| Field Name   | Dynamic/Fixed | Source   | Example           |
|--------------|---------------|----------|-------------------|
| IP Address   | Dynamic       | DNS/DHCP | 192.168.17.23     |
| Device Name  | Fixed         | DHCP     | Vinods-Macbook    |
| MAC Address  | Fixed/Dynamic | DHCP     | aa:bb:cc:11:22:33 |
| Fingerprint* | Fixed         | DHCP     | MacOS             |
| qname        | NA            | DNS      | netflix.com       |

\* Fingerprint is a device identifier that is assigned to a device by DHCP server. It can be as general as HP device or as specific as Microsoft Windows 10.

## Solution Overview



#### EDAs

- Two billion DNS queries recorded daily.
- Device Identifier cannot be IP address.
  - Using MAC address as device identifier.
- 1.2 million devices in total.
- Some devices are being fingerprinted by DHCP service. But not all of them.



#### **Data Limitation**

- Some of the DNS queries are tagged by MAC address and Fingerprints but not all.
  - If MAC addresses are not available we don't have device identifier and we cannot do classification and anomaly detection.
  - For unknown devices we have to do a classification step first.



#### IoT/ non IoT devices query pattern in a month



# Feature Construction and Vectorization

#### Vectorizing and Word Embedding

- Word embedding is a vectorize representation of texts.
  - Each word will be transformed into numerical representation.
    - TFIDF
    - CountVectorizer
    - Word2Vec
- Convert daily DNS queries of each device to a vector.

#### **TFIDF** and Countvectorizer

- Term Frequency-Inverse Document Frequency.
  - Inverse document frequency is specially important here because we want to lower the effect of domains like google.com that are queried by most devices.

|   | mac_address       | domains_visited                                | fingerprint | count_vector    | tfidf                        |
|---|-------------------|------------------------------------------------|-------------|-----------------|------------------------------|
| 0 | aa:bb:cc:11:22:ff | google.com facebook.com google.com netflix.com | MS Windows  | [0, 1, 2, 0, 1] | [0.0, 0.39, 0.77, 0.0, 0.51] |
| 1 | gg:aa:aa:11:22:44 | hp.com                                         | HP Printer  | [0, 0, 0, 1, 0] | [0.0, 0.0, 0.0, 1.0, 0.0]    |
| 2 | ss:rr:33:22:11:er | google.com facebook.com apple.com              | Macbook     | [1, 1, 1, 0, 0] | [0.68, 0.52, 0.52, 0.0, 0.0] |

• Countvectorizer: simply counts the frequency of each domain in each device.

#### Problem of Vectorizers in our Data

Sparse vector space.
 Three million unique domains.
 Small percentage of domains occur most of the time.
 Too many domains occur
 Io<sup>1</sup>
 Io<sup>1</sup>



#### Word2Vec: How do you define word embedding?

- Word2vec is one of the most common methods of generating word embedding.
- We will define a set of features for describing the words and for each word it will learn the value to each of those features.

| King                                    | Queen                                  | Man |                                           | Woman                                    |  | Horse                                  |  |
|-----------------------------------------|----------------------------------------|-----|-------------------------------------------|------------------------------------------|--|----------------------------------------|--|
| Authority=1<br>Gender= -1<br>Has_tail=0 | Authority=1<br>Gender= 1<br>Has_tail=0 |     | Authority=0.5<br>Gender= -1<br>Has_tail=0 | Authority=0.5<br>Gender= 1<br>Has_tail=0 |  | Authority=0<br>Gender= 0<br>Has_tail=1 |  |

```
King - Man + Woman= Queen
[1,-1,0]-[0.5,-1,0]+[0.5,1,0]= [1,1,0]
```

#### Word2Vec

- Sentence-> list of sorted dns queries from one device in a day.
- Word->domain
- corpus->all unique domain
- document -> collection of all the sentences



```
1
2 model.wv.most_similar('wholefoodsmarket.com
```

```
Out[28]: [('acx.com', 0.9595616459846497),
('ring.com', 0.9560766816139221),
('comixology.com', 0.9559093117713928),
('eero.com', 0.9522551894187927),
('carbontrust.com', 0.9482857584953308),
('boxofficemojo.com', 0.9432862997055054),
('blinkforhome.com', 0.9390537142753601),
('fabric.com', 0.937058687210083),
('fountain.com', 0.9350566864013672),
Amazon (Distriction Company)
```

## **Device Classification**

## Classifier

- We need a classifier to label the unknown devices for us.
  - Vectorized DNS Queries
  - Use Device Name

#### DNS based classifier

- We combine different vectorizers with different well known classifiers.
  - Best performing classifier: Histogram Gradient Boosting.
- TFIIDF vocab size=10000
- While building the vectors with TFIDF only took few seconds, the word2vec took 25 minutes to build the vector for our data.

#### Name based Classifier



#### Different classifier performance

- Recall is more important for our use case(anomaly detection)
- We can only use the Name-based classifier for small portion of our data(28%).

| Method                     | Precision | Recall | Caveats                                                                                                                                       |
|----------------------------|-----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Name-based Classifier      | 1         | 0.99   | Only 28% of devices have names                                                                                                                |
| DNS-based with TFIDF       | 0.92      | 0.83   | Quick to train, we have to limit the vector<br>size to fit the memory and that means<br>majority of domains will be treated as out<br>of bags |
| DNS based with<br>Word2Vec | 0.81      | 0.92   | Slow to train.                                                                                                                                |

## **Anomaly Detection**

#### Anomaly detection

When an event is considered as anomaly?

- Compare the DNS queries of a device to all the similarly fingerprinted devices on the same customer
- Compare a devices traffic with itself over a period of time

Anomaly Models:

- Create TFIDF, Word2Vec vectors
  - Apply a one class SVM and Isolation forest.
  - Compute cosine similarities between different dates and anything above three standard deviation away from the mean is considered anomalies.

#### Validation of Anomaly Detectors

- We don't have labels to show us actual anomalous events in the past.
- The only way for us to validate the models is to evaluate the anomalous events and see if they make sense.
- Low false positive is critical for us here.

#### **Anomaly Results**

- Any increase in frequency of known domains was returned as anomalies.
- We take one month of DNS queries for five fingerprints.
  - "Polycom Conference IP Phone","Avaya IP Phone","HP Printer","Cisco IP Phone","Lexmark Printer"
  - 1652 events returned in total, too many!

|              | domains_queried                  | mac_address       |   |
|--------------|----------------------------------|-------------------|---|
| ×            | '{lexmark.com:200,time.com:300}' | aa:bb:cc:11:22:33 | 0 |
| $\bigotimes$ | '{airbnb.com:6,jerrysfoods.com}' | dd:ee:ff:44:55:66 | 1 |

- Stop word removal with regard of each known fingerprints.
- 41 anomalous events that they all looked anomalous and needed investigation.

#### Example 1 – Anomalous events detected for certain HP printers

#### Anomalous HP printer

Median number of unique domains

Median number of unique domains

Anomaly device - 976

Anomaly device - 115

HP Printer - 3

HP Printer - 3

.

'1rx.io', '2mdn.net', '33across.com', '360vield.com', '3lift.com', '4dex.io', 'None', 'a-mo.net', 'a-mx.com', 'a3cloud.net', 'acuityplatform.com', 'ad-m.asia', 'ad-stir.com', 'addthis.com', 'adentifi.com', 'adform.net', 'adgrx.com', 'adigo.jp', 'adition.com', 'adkernel.com', 'admanmedia.com', 'admedo.com', 'admixer.net', 'adnxs-simple.com', 'adnxs.com', 'adobe.com', 'adobe.io', 'adotmob.com', 'adpone.com', 'adrta.com', 'adsafeprotected.com', 'adscience.nl', 'adsrvr.org', 'adsymptotic.com', 'adtdp.com', 'advancelists.com', 'adventori.com', 'advertising.com', 'affec.tv', 'ackn.com', 'amazon-adsvstem.com', 'amazonaws.com', 'analyticssystems.net', 'appier.net', 'aralego.com', 'aspnetcdn.com', 'audiencemanager.de', 'audrte.com', 'avct.cloud', 'azureedge.net', 'backblaze.com', 'baiss.net', 'betrad.com', 'betweendigital.com', 'bidr.io', 'bidswitch.net', 'bidtheatre.com', 'bing.com', 'bkrtx.com', 'bliink.io', 'blismedia.com', 'bluekai.com', 'bluevoox.com', 'bnmla.com', 'boldchat.com', 'brand-display.com', 'bttrack.com', 'bumlam.com', 'casalemedia.com', 'chocolateplatform.com', 'ck-ie.com', 'clarium.io', 'clean.ag', 'clickagy.com', 'clickcertain.com', 'cloudflare.com', 'cognitivlabs.com', 'colossusssp.com', 'company-target.com', 'connectwise.com', 'contextweb.com', 'cookieless-data.com', 'cox.com', 'cox.net', 'cpmstar.com', 'cpx.to', 'createjs.com', 'createjs.com', 'cookieless-data.com', 'cox.net', 'constar.com', 'contextweb.com', 'cookieless-data.com', 'cox.net', 'constar.com', 'cox.net', 'cox.ne 'creativecdn.com', 'criteo.com', 'crwdcntrl.net', 'datablocks.net', 'de17a.com', 'deepintent.com', 'deliverimp.com', 'demdex.net', 'deployads.com', 'digicert.com', 'digitaleast.mobi', 'disaus.com', 'dmxleo.com', 'dotomi.com', 'doubleclick.net', 'doubleverify.com', 'dyntrk.com', 'e-planning.net', 'e-volution.ai', 'emxdgt.com', 'egads.com', 'erne.co', 'everesttech.net', 'evidon.com', 'exelator.com', 'extend.tv', 'eveota.net', 'ezoic.com', 'facebook.com', 'fastly.net', 'fiftyt.com', 'fashtalking.com', 'fout.jp', 'fwmrm.net', 'gamoshi.io', 'getgo.com', 'getpublica.com', 'gfx.ms', 'google-analytics.com', 'google.com', 'googleapis.com', 'googlesyndication.com', 'googletagservices.com', 'aoogleusercontent.com', 'aotomeetina.com', 'astatic.com', 'aumaum.com', 'avt1.com', 'avt2.com', 'hostedrmm.com', 'hp.com', 'ib-ibi.com', 'id5-sync.com', 'impact-ad.ip', impactify.media', 'imrworldwide.com', 'includemodal.com', 'infolinks.com', 'inmobi.com', 'insightexpressai.com', 'intentig.com', 'ipredictive.com', 'ijvox.com', 'jixie.io', 'is7k.com', 'kargo.com', 'krxd.net', 'ladsp.com', 'lencr.org', 'liadm.com', 'liiit.com', 'linkedin.com', 'live.com', 'lkgd.net', 'lmassp.com', 'loopme.me', 'marphezis.com', 'mathtag.com', 'media.net', 'media6degrees.com', 'mediawallahscript.com', 'mfadsrvr.com', 'mgid.com', 'microsoft.com', 'microsoftonline.com', 'microsoftusercontent.com', 'mmi360.net', 'moatads.com', 'mookie1.com', 'mpeasylink.com', 'mrtnsvr.com', 'msauth.net', 'msedge.net', 'msftauth.net', 'msftrusi.com', 'mxptint.net', 'narrative.io', 'newrelic.com', 'nextmillmedia.com', 'ninthdecimal.com', 'nr-data.net', 'nrich.ai', 'octillion.tv', 'office.com', 'office.net', 'office365.com', 'ojrq.net', 'oktacdn.com', 'omnitagjs.com', 'onaudience.com', 'onetag-sys.com', 'penx.net', 'outbrain.com', 'outlook.com', 'ownerig.net', 'pippio.com', 'playground.xyz', 'postrelease.com', 'pswec.com', 'pubmatic.com', 'guantserve.com', 'quantumdex.io', 'realestate.com.au', 'researchnow.com', 'resetdigital.co', 'reson8.com', 'retargetly.com', 'rfihub.com', 'richaudience.com', 'rkdms.com', 'rlcdn.com', 'rgtrk.eu', 'rtactivate.com', 'rtbsrv.com', 'rubiconproject.com', 'scorecardresearch.com', 'screenconnect.com', 'sectigo.com', 'semasio.net', 'servenobid.com', 'sharepoint.com', 'sharethrough.com', 'simpli.fi', 'sitescout.com', 'smaato.net', 'smadex.com', 'smartadserver.com', 'smartclip.net', 'smrtb.com', 'socdm.com', 'soiern.com', 'sonobi.com', 'soundcast.fm', 'sportradarserving.com', 'spotim.market', 'spotxchange.com', 'springserve.com', 'stackadapt.com', 'stickyadstv.com', 'storygize.net', 'streamtheworld.com', 'sundavsky.com', 'svc.ms', 'svncedtool.com', 'taboola.com', 'tapad.com', 'tapax.com', 'teads.tv', 'technoratimedia.com', 'thebrighttag.com', 'thrtle.com', 'tigcdn.com', 'topsrvimp.com', 'tremorhub.com', 'trubalfusion.com', 'truoptik.com', 'trustarc.com', 'truste.com', 'turn.com', 'tynt.com', 'udmserve.net', 'unrulymedia.com', 'uplynk.com', 'userreport.com', 'vidoomv.com', visx.net', 'w55c.net', 'walkme.com', 'wayfair.com', 'windowsupdate.com', 'v-medialink.com', 'vahoo.co.ip', 'vahoo.com', 'vandex.ru', 'vieldmo.com', 'vimg.com', 'zemanta.com', 'zeotap.com'

HP printer

hpeprint.com, hp.com, hp10.us

#### Example 2 – Anomaly detected for a device fingerprinted incorrectly



date

#### Daily query count: Anomaly

- The first device is fingerprinted as HP printer but looking at Wireshark its mac address is marked with "Universal Global Scientific Industrial Co., Ltd" .
- Second device is an HP printer .

#### Why is first device marked as anomaly?

Median number of total queries

Median number of unique domains

Anomaly device - 64

HP Printer - 3

The domains queried by the anomalous device is too varied when comparing with most of the HP printers in the same customer

#### Conclusions

- DNS activity of a device can be used to identify device types.
- Passive DNS monitoring enable us to identify anomalous behavior of devices.
- Deep learning techniques can be used both for embedding DNS queries and can have several applications in the context of anomaly detection, application discovery and device classification.

#### References

6

[1] Efficient Estimation of Word Representations in Vector Space. Tomas Mikolov. Kai Chen, Gref Corrado, Heffrey Dean. 2013.

[2] Dns2Vec: Exploring Internet Domain Names Through Deep Learning. Amit Arora, scainet 2019.[3] Detection of DNS Traffic Anomalies in Large Networks, Milan Cermak, Pavel Celeda , Jan Vykopal, 2014.

