

Practical GAN-based Synthetic IP Header Trace Generation using NetShare

Yucheng Yin CMU

Zinan Lin CMU, MSR

Minhao Jin CMU

Giulia Fanti CMU

Vyas Sekar CMU

Many Applications of Network Trace Analysis

Pain point for academia: Reproducibility crisis

Bad outcomes: Research is not reproducible

Pain point for academia: Collaboration

Bad outcomes: Collaborative opportunities go untapped

Pain point for product vendors

Our Vision: NetShare

(e.g., PCAP, NetFlow)

Ļ

Outline

- Motivation
- Background
- Challenges & Ideas
- Implementation & Evaluation
- Limitations and Future Work

Taxonomy of Synthetic Trace Generation

Generative Adversarial Networks (GANs)

Real training images Generated synthetic images Generated synthetic images

Learn high-dimensional correlations with potentially less human expertise

Motivating question

Can we use GANs to generate synthetic header traces with good fidelity-scalability-privacy tradeoffs?

Outline

- Motivation
- Background
- Challenges & Ideas
- Implementation & Evaluation
- Limitations and Future Work

Seemingly natural stramwan

Idea: Model the trace as a "table" or "CSV" with simple headers of ints, bits etc

Challenges

- C1: Header field correlations
- C2: Modeling fields with large support
- C3: Scalability
- C4: Privacy-fidelity tradeoffs

NetShare Summary of Key Ideas

- Reformulate as a timeseries problem to capture correlations
- Domain knowledge to improve data encodings
- Use "incremental" fine tuning by chunking the trace
- Using public data to improve Differential Privacy vs. Fidelity tradeoff

NetShare: End-to-end view

Ē

Outline

- Motivation
- Background
- Challenges & Ideas
- Implementation & Evaluation
- Limitations and Future Work

Evaluation – field distribution

NetShare achieves 46% better fidelity than baselines on feature distribution metrics across traces.

App #1: flow-based traffic type prediction

NetShare achieves the best accuracy compared with real data across different classifiers

Table 4: Rank correlation of prediction algorithms on CIDDS and TON. Higher is better.

	NetShare	CTGAN	STAN	E-WGAN-GP
CIDDS	0.90	0.60	0.60	0.70
TON	0.70	0.10	0.60	-0.60

NetShare preserves rankings of different classifiers best among all baselines

App #2: sketch-based network telemetry

Heavy-hitter detection using different sketching algorithms

Table 3: Rank correlation of sketching algorithms on heavy hitter estimation of PCAP datasets. Higher is better.

	CAIDA (Dst IP)	DC (Src IP)	CA (Five tuple)
NetShare	1.00	1.00	1.00
CTGAN	0.80	0.40	N/A

NetShare achieves 48% smaller relative error rate compared with baselines on average

NetShare preserves rankings of different sketching algorithms across different datasets/heavy hitters of interest

App #3: Header-based anomaly detection (NetML)

NetShare achieves a lower relative error on most datasets and modes of NetML

Table 4: Rank correlat	ion (↑) of modes	of NetML f	for PCAP
anomaly detection.			

	NetShare	CTGAN	PAC-GAN	PacketCGAN	Flow-WGAN
CAIDA	1.00	N/A	N/A	N/A	N/A
DC	0.94	0.43	N/A	N/A	N/A
CA	0.88	-0.26	0.37	-0.26	N/A

NetShare preserves rankings of different modes of NetML best among all baselines

NetShare as a Python package

- Installation is easy (one-line): pip3 install -e .
- Example usage

Driver code (~10 lines)

Configuration files (~10 lines)

https://github.com/netsharecmu/NetShare

NetShare as a (prototype) web service

https://www.pcapshare.com

Limitations and Future Work

- Extending NetShare to support more features
 - E.g., stateful, session-oriented protocols, payload data
- More downstream tasks
 - E.g., QoE inference, device/application fingerprinting
- Improving scalability further?
- What are the relevant privacy properties for our domain?

- Academic and industry pain points in trace-driven analysis in networking:
 Data-driven workflows are stymied by data access, retention policies, data silos
- New Opportunity: Synthetic Network Trace Data Generation via GANs
- NetShare: Feasibility and promise of GANs
 - Robust across datasets, domains, and downstream tasks
- Join us and contribute $\ensuremath{\textcircled{\sc only}}$

https://users.ece.cmu.edu/~vsekar/projects/datafuel/ https://github.com/projectdatafuel/ https://github.com/netsharecmu/NetShare