
Semantic Equivalence Checking of Decompiled Binaries
©2022

1[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

©2022

RESEARCH REVIEW 2022

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Semantic Equivalence Checking
of Decompiled Binaries

N O V E M B E R 1 4 – 1 6 , 2 0 2 2

Will Klieber
Software Security Researcher

Semantic Equivalence Checking of Decompiled Binaries
©2022

2[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Document Markings

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM22-0822

Semantic Equivalence Checking of Decompiled Binaries
©2022

3[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Introduction

• Goal: Increase software assurance of binary components.
- Enable the DoD to find and fix potential vulnerabilities

• We estimate that the equivalent of at least 100 million LOC of binary-only software is
in use by DoD.
- Old legacy code
- Code from contractors

• Protect against cyberattacks that hijack the build process (e.g., SolarWinds attack).
- Analysis of the binary executable can find injected malware not present in the source code.

• It’s much easier to work with decompiled code than machine code.
• But can the decompilation be trusted? We investigate!

Semantic Equivalence Checking of Decompiled Binaries
©2022

4[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Overview

• Main technical challenge: Determine which functions in a binary are decompiled to a
semantically equivalent form.

• We work with an existing open-source decompiler (Ghidra):
- Existing decompilers were developed for aiding manual reverse engineering.
- They were not designed to produce recompilable code.
- Gap: Decompiled code often has semantic inaccuracies and syntactic errors.

• By “semantically equivalent”, we mean: On all possible executions, if the two functions (original
and decompiled) are given the same input, they produce the same output and side effects.

• Two ways of evaluating semantic equivalence:
- Randomized testing (works for all functions, but can miss counterexamples)
- Formal verification with SeaHorn (cannot handle certain constructs, e.g., floating-point comparisons)

Semantic Equivalence Checking of Decompiled Binaries
©2022

5[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Previous State of the Art

• Zhibo Liu and Shuai Wang. “How far we have come: testing decompilation correctness of C
decompilers.” ACM Int’l Symposium on Software Testing & Analysis (ISSTA), July 2020.

- Out of 2504 test cases, 93% were correctly decompiled by Ghidra.

- Tested synthetic test cases without input or nondeterminism, averaging 243 LoC each.

- Only unoptimized code. No structs, unions, arrays, or pointers.

Semantic Equivalence Checking of Decompiled Binaries
©2022

6[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Pipeline for Measurement and Evaluation

Clang
Original
source Semantic equivalence checker

Clang Decompiler
Binary Decompiled

Source

Clang LLVM IR

LLVM IR

Error messages
for syntactically
invalid functions

Semantic Equivalence Checking of Decompiled Binaries
©2022

7[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Syntactic Validity of Decompiled Code – SPEC2006

This table shows the
percentage of decompiled
functions that are recompilable
(i.e., syntactically valid) C code.

Codebase
Source

Functions
Recompilation
Success Rate

lbm 21 71%

mcf 24 88%

libquantum 94 52%

bzip2 120 84%

sjeng 144 67%

milc 235 78%

sphinx3 370 65%

hmmer 657 61%

gobmk 2,693 76%

Average 71%

Semantic Equivalence Checking of Decompiled Binaries
©2022

8[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Semantic Equivalence Checking of Ghidra on SPEC2006
• Tested 1157 functions from SPEC2006 that decompiled to syntactically valid code.

- Excludes 1500 autogenerated functions from gobmk
- Excludes functions that were non-testable:

• Multiple functions with the same name.

• Ran 1000 trials of each function.

• Results:
- 35% of functions behaved equivalently on all runs.

- 30% of functions behaved non-equivalently on all runs.
- 31% of functions had some runs that behaved equivalently and some that didn’t.

(Of course, a single non-equivalent run suffices to prove that the functions aren’t equivalent.)
- On 3% functions, our tool failed on at least one run.

• Failure in loop bounding

Semantic Equivalence Checking of Decompiled Binaries
©2022

9[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Semantic Equivalence – Results by Benchmark Suite

All equiv All differ Mixed Tool fail
libquantum 54% 34% 9% 3%

milc 49% 33% 16% 6%
sphinx3 48% 31% 19% 2%

bzip2 43% 30% 25% 4%
lbm 40% 47% 7% 7%

sjeng 29% 48% 14% 10%
mcf 26% 47% 21% 5%

gobmk 26% 15% 56% 1%
hmmer 22% 61% 13% 4%

OVERALL 35% 30% 31% 3%

Semantic Equivalence Checking of Decompiled Binaries
©2022

10[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Pipeline for Use on Binaries without Original Source

Decompiler
(Ghidra)

Clang

Original
binary Analysis

and/or
Repair

Semantic equivalence checker

Decompiled
code

LLVM

Repaired source

Analysis results

Filter
Correctly

decompiled
functionsLifter (RetDec)

LLVM

Semantic Equivalence Checking of Decompiled Binaries
©2022

11[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Combining Ghidra and RetDec
• Original hypothesis: We were expecting that a binary lifter such as RetDec would be able to

serve as a reasonably good proxy for semantic ground truth.

• However, it turns out that RetDec isn’t any better than Ghidra at semantic fidelity.

• New hypothesis: When Ghidra and RetDec agree with each other on the semantics of a
function, they are more likely to also agree with the original source.

• We successfully tested this hypothesis on the NASA Core Flight System (cFS)
(https://github.com/nasa/cFS).

• Technical note: Although we use the term “equivalence,” the relation that our implementation
computes actually is not symmetric:
- If the function from RetDec returns a value but the original function does not, we still count the RetDec

function as equivalent to the original source.
- But if the original-source function returns a value, then for equivalence we require that RetDec also return

the same value.

Semantic Equivalence Checking of Decompiled Binaries
©2022

12[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Results on NASA cFS (total source functions: 1268)
Ghidra RetDec

Number of decompiled functions checkable for semantic equivalence: 520 952

Number of functions semantically equivalent to source: 124 229

Percentage of original source functions for which decompiled function is
semantically equivalent: 9.8% 18.1%

Probability that a checkable decompiled function is semantically equivalent
to original source: 23.8% 24.1%

Number of source functions for which both Ghidra and RetDec produce
checkable decompiled functions: 519

Number of functions on which Ghidra and RetDec agree with each other: 115

Number of functions on which Ghidra and RetDec agree with each other and
with the original source: 88

Probability that a checkable decompiled function is semantically equivalent
to original source when Ghidra and RetDec agree on it: 77%

“Checkable for
semantic
equivalence”
means: the
decompiled function
is syntactically valid
and there is a
matched function
from the original
source.

This analysis was
performed on cFS
git commit 753ed54
(Apr 25, 2022)

Semantic Equivalence Checking of Decompiled Binaries
©2022

13[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

RESEARCH REVIEW 2022

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Details of Technical Approach
Semantic Fidelity of Decompilers

Semantic Equivalence Checking of Decompiled Binaries
©2022

14[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Problem: Semantic Equivalence with Unavailable Callees

void vithist_frame_windup (vithist_t *vh, int32 frm, ...) {
...
vh->frame_start[vh->n_frm] = vh->n_entry;
...
vithist_lmstate_reset(vh);
...

}

• In the decompiled code, there might be a function call where:
- the callee is unavailable, and
- the callee might write to memory

• This complicates our attempts to establish an equivalence between the memories.
Example:

Semantic Equivalence Checking of Decompiled Binaries
©2022

15[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Solution: Stricter Notion of Equivalence
• Look for a structural equivalence:

- Check that the sequence of operations with side effects is the same.
• Memory reads, memory writes, function calls

- Some semantically equivalent pairs are flagged.
- But every semantically non-equivalent pair is flagged.

• Replace memory reads, memory writes, and function calls with logging.
- Reads and function calls return a nondeterministic value.

(Same order of nondeterministic values for original and decompiled)

- Also log the return value of the original and decompiled functions.

• Execute original and decompiled functions and compare their logs for
equivalence.

Semantic Equivalence Checking of Decompiled Binaries
©2022

16[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Transformation to Test for Structural Equivalence
1. ulong lmclass_get_nclass(long *param_1) {

2. long lVar1;

3. ulong uVar2;

4.

5. lVar1 = *param_1;

6. uVar2 = 0;

7. while (lVar1 != 0) {

8. uVar2 = (ulong)((int)uVar2 + 1);

9. lVar1 = *(long *)(lVar1 + 0x10);

10. }

11. return uVar2;

12. }

1. ulong lmclass_get_nclass(long *param_1) {

2. long lVar1;

3. ulong uVar2;

4.

5. lVar1 = read_mem_long(param_1);

6. uVar2 = 0;

7. while (lVar1 != 0) {

8. uVar2 = (ulong)((int)uVar2 + 1);

9. lVar1 = read_mem_long((long *)(lVar1 + 0x10));

10. }

11. return retval_ul(uVar2);

12. }

Semantic Equivalence Checking of Decompiled Binaries
©2022

17[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Example of Log

ORIGINAL | DECOMPILED

READ ADDR 0000270f | READ ADDR 0000270f

WRITE ADDR 0000270f | WRITE ADDR 0000270f

WRITE VALUE 0000008d | WRITE VALUE 0000008d

PASS

Original
static void setExit (Int32 v)
{

if (v > exitValue) exitValue = v;
}

Decompiled
void setExit(int param_1)
{

if (exitValue < param_1) {
exitValue = param_1;

}
return;

}

Semantic Equivalence Checking of Decompiled Binaries
©2022

18[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Bounded Semantic Equivalence Checking with Logging

• Comparing the logs is impractical for existing verification tools in the
unbounded case.
- (at least for the straightforward approach of non-interleaved execution)

• Bound the number of execution steps:
- Unroll loops for a fixed number of iterations.

- Problem: Loops can potentially be structured differently in decompiled vs. the original
==> can give false counterexamples to equivalence.

Semantic Equivalence Checking of Decompiled Binaries
©2022

19[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Details of Semantic Equivalence Checker

Whole program
LLVM Original

Whole program
LLVM Decomp

Perform
abstraction
and pair up

matched
functions

LLVM orig fnN

LLVM dcmp fnN

LLVM orig fn1

LLVM dcmp fn1

Make
combined
program

Random
testing or

formal
verif.

resultN

Make
combined
program

Random
testing or

formal
verif.

result1

...
...

...

Semantic Equivalence Checking of Decompiled Binaries
©2022

20[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Formal Verification and Randomized Testing

• SeaHorn can sometimes formally verify equivalence, but it can’t handle some
common constructs (e.g., branching on result of floating-point comparison).

• Our experiments in this project have mostly used randomized testing instead.
- We initialize an array of random values (biased toward small values) and run both the

original function and the decompiled function with this array.

- Arguments to functions are also chosen randomly.

Semantic Equivalence Checking of Decompiled Binaries
©2022

21[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Conclusion

• Decompilers have potential to greatly help with software assurance for binary code.

• But existing decompilers often aren’t semantically faithful.

• Requiring that two decompilers agree on semantics can greatly increase
confidence.
- (E.g., requiring RetDec and Ghidra to agree raises success rate from 24% to 77%

on NASA cFS.)

• Our tool can also help measure improvements to decompiler semantic accuracy.

• If you are interested in trying our tool, please contact us (info@sei.cmu.edu).
- Currently the tool is Distro D — it can be distributed only to DoD and contractors.

But we are seeking approval to distribute it more widely.

Semantic Equivalence Checking of Decompiled Binaries
©2022

22[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Team Photos

David Svoboda
Software Security Engineer

Mike McCall
Software Security Engineer

Lori Flynn
Software Security Engineer

Will Klieber
Software Security Engineer

Ruben Martins
Assistant Research
Professor, CMU

Contact us at info@sei.cmu.edu

	Slide Number 1
	Document Markings
	Introduction
	Overview
	Previous State of the Art
	Pipeline for Measurement and Evaluation
	Syntactic Validity of Decompiled Code – SPEC2006
	Semantic Equivalence Checking of Ghidra on SPEC2006
	Semantic Equivalence – Results by Benchmark Suite
	Pipeline for Use on Binaries without Original Source
	Combining Ghidra and RetDec
	Results on NASA cFS (total source functions: 1268)
	Slide Number 13
	Problem: Semantic Equivalence with Unavailable Callees
	Solution: Stricter Notion of Equivalence
	Transformation to Test for Structural Equivalence
	Example of Log
	Bounded Semantic Equivalence Checking with Logging
	Details of Semantic Equivalence Checker
	Formal Verification and Randomized Testing
	Conclusion
	Team Photos

