
Automated Design Conformance during Continuous Integration
©2022 1[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

©2022

RESEARCH REVIEW 2022

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Automated Design Conformance
During Continuous Integration

N O V E M B E R 1 4 – 1 6 , 2 0 2 2

Robert Nord
Principal Researcher

Automated Design Conformance during Continuous Integration
©2022 2[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Introduction

Software architecture enables our ability to innovate through extensible design.
The end goal–to build systems that provide timely and cost-effective capability
to users–is achieved only if the code conforms to the architecture.

This project developed an automated conformance checker prototype that can
be used in a continuous integration workflow to discover nonconformances
within minutes, instead of the months or years it takes today.

This work helps teams detect problems as they are introduced, allowing faster
and more economical realignment of code and architecture and increasing
confidence that sustainable code is being delivered.

Automated Design Conformance during Continuous Integration
©2022 3[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

RESEARCH REVIEW 2022

Why Conformance Matters for
Open Software Systems

Automated Design Conformance during Continuous Integration

Automated Design Conformance during Continuous Integration
©2022 4[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Software Architecture Enables Our Ability to Innovate

Software architecture
is an abstraction that
helps organizations
satisfy mission goals
and capability needs.

For the implementation
to exhibit the desired
system qualities, it must
conform to the
architecture.

Lifecycle View of Software Acquisition https://aaf.dau.edu/aaf/software/

Automated Design Conformance during Continuous Integration
©2022 5[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Challenges in Conformance Checking

Conformance Checks
• Inter-construct communication relations originate

from a construct and end at infrastructure.
• The intended specification allows communication

between construct A and construct B.
• The implemented design has all constructs listed

in the intended specification.

State of the Practice
• Component-level manual inspection
• ISO code quality standards, maintainability
• Modularity, dependencies, design paradigms

Challenges
• Automated inspection checks
• System-level checks: constructs and relations
• Conformance to architecture stylesThe Open Group (2017). Example Inter- and Intra-UoC

Communication, FACE (Future Airborne Capability
Environment) Technical Standard, Edition 3.0.

Automated Design Conformance during Continuous Integration
©2022 6[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Automated Conformance Checking during CI

Conformance is the
practice of keeping the
architecture and code
aligned.
Development teams check
during continuous
integration that
implementation and
architecture are aligned.

Automating conformance checking and feeding back updates
to maintain alignment

Automated Design Conformance during Continuous Integration
©2022 7[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

RESEARCH REVIEW 2022

Automating Conformance Checking
Automated Design Conformance during Continuous Integration

Automated Design Conformance during Continuous Integration
©2022 8[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Infer Design from Code

The key to this work is new
research inferring design
information from source code.
Detecting design constructs is
challenging due to
• imprecise definitions of

abstractions
• variation in implementation
• limits of fact gathering

analyses

Conformance checker design

Automated Design Conformance during Continuous Integration
©2022 9[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Using Frameworks to Infer Design

Choosing a framework to realize an architecture style
• constrains code to use framework’s interfaces to realize the style
• supplies structure for implementing the styles chosen for an application

Concept FACE ROS
Publish
Intent to generate messages

FACE::Create_Connection
(*name, pattern, direction, conn_id);

NodeHandle::advertise
<msg_type>(topic)

Update
Dissemination of messages

FACE::Send_Message
(conn_id, data);

M_statusPub.publish

Subscribe
Interest receiving messages

FACE::Create_Connection
(*name, pattern, direction, conn_id);

NodeHandle::subscribe
(topic)

Reflect
Reception of messages

FACE::Receive_Message
(conn_id, data);

not explicit in code

Publish-subscribe communication style Publish-subscribe concept to framework map

Automated Design Conformance during Continuous Integration
©2022 10[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Prototype Conformance Checker

Source
Code

Intended
Design

Nonconformance
violations

Fact extraction Synthesis

KEY Graph Database
(each stage reads from

the database, except for Ingest)Inference

Ingest Augment Chunk Infer Constructs Build Fragments Naming Check Conformance

Raw code
graph

Style
annotations

Construct
labels

Design fragment
graph Construct

names

Automated Design Conformance during Continuous Integration
©2022 11[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Example Input: Source Code and Intended Design

Source Code
• AutoRally Project
• Software for AutoRally Platform
• ~200K C++ code lines
• ROS-framework

Intended Design
• instances of publisher and
subscriber design constructs

• message publication and
subscription

Intended Design Excerpt

Automated Design Conformance during Continuous Integration
©2022 12[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Example Output: Nonconformances Found

Nonconformances Found

Tracing Nonconformance to Code Tracing Nonconformance to Intended Design

Automated Design Conformance during Continuous Integration
©2022 13[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

RESEARCH REVIEW 2022

Looking Forward
Automated Design Conformance during Continuous Integration

Automated Design Conformance during Continuous Integration
©2022 14[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

What Practical Problems Does the Approach Solve?

State of Practice
Design Conformance

Code Quality Architecture Quality
Design

concepts
Classes, packages, files Modules, dependencies Architecture communication

styles
Bridging code

and design
Logical and physical
element composition

Dependency clusters
(semi-automated)

Automated rules
(framework-based systems)

Conformance ISO standards,
maintainability

Modularity, dependencies,
design paradigms

Intended architecture and
canonical design knowledge

Conformance checking is feasible today using a rules-based approach to
extract design information from framework-based systems.
The approach recovers a broader range of architecture views and supports
checking a broader range of criteria under conformance.

Automated Design Conformance during Continuous Integration
©2022 15[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

What Is Involved in Applying the Approach

Graph Database

Source
Code

Ingest Augment Chunk Infer Constructs Build Fragments Naming Check Conformance

Intended
Design

Nonconformance
Violations

easier harderreusable
Degree of change to prototype

Variation:
Framework
Style

Variation:
Framework

Stage
1 2 3

1. New system for known framework
2. New framework for known style
3. New style

Type of Change to Prototype

KEY

1 2 3

We have learned how to customize the approach
for a particular framework-based system and
architecture communication style.

1 2 3 1 2 31 2 3 1 2 3 1 2 3 1 2 3

Automated Design Conformance during Continuous Integration
©2022 16[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Improve Conformance of Implementations to Architectures

An automated design conformance
checker integrated into a CI workflow
• exposes nonconformances at time of
commit instead of months later

• promotes conversation whether code
or architecture needs to change

• allows remediation before violations
become fixed in the implementation

• enables program managers to hold
developers accountable

DevOps practices:
continuous feedback
and continuous integration
and deployment

Automated Design Conformance during Continuous Integration
©2022 17[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Project Team Members

Robert Nord
Principal Member of
the Technical Staff,
CMU / SEI

James Ivers
Principal Engineer,
CMU / SEI

John Klein
Principal Member of
the Technical Staff,
CMU / SEI

Lena Pons
Software Architecture
and AI Researcher,
CMU / SEI

Chris Seifried
Associate Engineer,
CMU / SEI

Josh Fallon
Defense Network Analyst
CMU / SEI

Automated Design Conformance during Continuous Integration
©2022 18[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Document Markings

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM22-0796

	Slide Number 1
	Introduction
	Slide Number 3
	Software Architecture Enables Our Ability to Innovate
	Challenges in Conformance Checking
	Automated Conformance Checking during CI
	Slide Number 7
	Infer Design from Code
	Using Frameworks to Infer Design
	Prototype Conformance Checker
	Example Input: Source Code and Intended Design
	Example Output: Nonconformances Found
	Slide Number 13
	What Practical Problems Does the Approach Solve?
	What Is Involved in Applying the Approach
	Improve Conformance of Implementations to Architectures
	Project Team Members
	Document Markings

