
Refactoring for Software Isolation
©2022 1[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

©2022

RESEARCH REVIEW 2022

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Refactoring for Software Isolation

N O V E M B E R 1 6 , 2 0 2 2

James Ivers
Principal Engineer

Refactoring for Software Isolation
©2022 2[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Periodic Refactoring Is Key to Keeping Code Healthy

Our ability to work with software significantly influences project cost,
schedule, time to field, and other concerns. When the structure of
software inhibits development priorities, software needs to be refactored
to enable efficient, timely delivery of capabilities.

In this project, we are creating automation that dramatically accelerates
an important form of large-scale refactoring.

Refactoring for Software Isolation
©2022 3[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Software Is Never Done

Change is inevitable
• Requirements change
• Business priorities change
• Programming languages change
• Deployment environments change
• Technologies and platforms change
• Interacting systems change
• ...

Refactoring for Software Isolation
©2022 4[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Refactoring Gets Harder at Scale

“Floss Refactoring”
• Changes made by a single developer
• Intermingled with feature development
• Measured in minutes to hours of time
• Local affects

Large-Scale Refactoring
• Changes require substantial effort

and coordination among multiple
teams of developers

• Measured in staff months to years
• Architecture changes and non-local

affects

Refactoring Sprints
• Changes made by a single team
• Often time-boxed (e.g., a two-week sprint)
• Effects limited to a single service
• E.g., 20% reserve to remove technical debt

As scale increases,

cost and schedule
impacts increase

cross-team coordination
increases

technical risk increases

likelihood of securing
funding decreases

Refactoring for Software Isolation
©2022 5[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Large-Scale Refactoring (LSR) in Industry

• Most respondents had performed LSR multiple times
• Most systems on which they had performed LSR had
undergone LSR multiple times

• Mean of 1,500 staff days to perform LSR

We surveyed 107 industry
practitioners to understand
the state of the practice.

J. Ivers, R. Nord, I. Ozkaya, C. Seifried, C.
Timperley, M. Kessentini. Industry's Cry for Tools
That Support Large-Scale Refactoring. Intl.
Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). May 2022.

J. Ivers, R. Nord, I. Ozkaya, C. Seifried, C.
Timperley, M. Kessentini. Industry Experiences
with Large-Scale Refactoring. Foundations of
Software Engineering: Software Engineering in
Practice (ESEC/FSE). November 2022.

Refactoring for Software Isolation
©2022 6[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Tools Used in Large-Scale Refactoring

Refactoring tools are
not widely used in LSR
• < 10% reported using
tools designed for
refactoring

• Manual effort and custom
scripts were reported
more often than
refactoring tools

Refactoring for Software Isolation
©2022 7[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Our Solution: An Automated Refactoring Assistant

We have developed an automated refactoring assistant that
improves software structure for several common forms of
change that involve software isolation.

Project-Specific Goal

Source Code

Recommended
Refactorings

Refactoring
Assistant

J. Ivers, C. Seifried, I. Ozkaya. Untangling the Knot: Enabling Architecture Evolution with Search-Based
Refactoring. 19th IEEE International Conference on Software Architecture (ICSA 2022). March 2022.

Our goal: Complete
software isolation with
only 20% of the effort
it takes today.

Refactoring for Software Isolation
©2022 8[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Software Isolation Is a Recurring Challenge

A “simple” view of
only 68K LOC.

There is structure in this data, but that structure
doesn't always let us do what we need to do.

In software isolation, we seek to improve its modularity, reduce
future development costs, and enable its use in new contexts.

Examples include
• strategic reuse
• rehosting on new platforms
• moving to the cloud

Refactoring for Software Isolation
©2022 9[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Building on Search-Based Software Engineering

Algorithm 1: Summary of NGSA-II

Input: A dependency graph (G) of the software to
be refactored, marked with the isolation goal

Output: A Pareto front of individuals, each of which
contains a list of refactorings

1 Ρ = build_initial_pop(G)

2 A = ∅
3 while termination condition not reached do
4 assess_fitness(P)
5 Ρ = Ρ ∪ Α
6 sort_pop(Ρ)
7 Α = best_of(Ρ)
8 Ρ = make_new_pop(A)
9 end

Search-based software
engineering frames
software engineering
problems as optimization
problems.

We defined a metric
for software isolation,
problematic couplings,
that enables automated
search for refactoring
recommendations.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002.

Refactoring for Software Isolation
©2022 10[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Building on Search-Based Software Engineering

1. Develop extensible
graph representation
for multiple languages

2. Formalize project-
specific refactoring goals

3. Align semantics with
changing nature of software
problem to be solved

4. Define a novel fitness function
to focus on modularity improvements

5. Formalize refactorings
for use in change operations

Algorithm 1: Summary of NGSA-II

Input: A dependency graph (G) of the software to
be refactored, marked with the isolation goal

Output: A Pareto front of individuals, each of which
contains a list of refactorings

1 Ρ = build_initial_pop(G)

2 A = ∅
3 while termination condition not reached do
4 assess_fitness(P)
5 Ρ = Ρ ∪ Α
6 sort_pop(Ρ)
7 Α = best_of(Ρ)
8 Ρ = make_new_pop(A)
9 end

Refactoring for Software Isolation
©2022 11[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Multi-objective Optimization

Our refactoring assistant generates a
collection of Pareto-optimal solutions that
represent trade-offs among competing
objectives.

Refactoring for Software Isolation
©2022 12[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Current Capabilities

We now support refactoring for two
programming languages: Java and C#.

Our refactoring assistant
• scales to at least 1.2M SLOC
• generates recommendations that solve
the majority of each software isolation
problem

Refactoring for Software Isolation
©2022 13[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Refactoring Criteria

Solving the right problem in a way that developers will accept is key to success.

We are studying the criteria that matter to developers when refactoring:

add chart

Refactoring for Software Isolation
©2022 14[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Looking Ahead

In the coming year, we will
• integrate a wider range of criteria through

- enhanced preference expression
- additional objectives
- algorithm integration via penalty mechanisms

and selection bias
• add refactorings and tune Java
performance

• pilots with production code

For more information, go to
https://www.sei.cmu.edu/go/knot

Contact us at sei-knot@sei.cmu.edu if
you are interested in partnering with us.

https://www.sei.cmu.edu/go/knot

Refactoring for Software Isolation
©2022 15[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Our Team

Chris Seifried
Associate Engineer,
Software Solutions Division

Jonny Loungani
Associate Software Engineer,
Software Solutions Division

Ipek Ozkaya
Tech. Director, Engineering
Intelligent Software Systems,
Software Solutions Division

Mario Benitez
Software Architect,
Software Solutions Division

Tamara Marshall-Keim
Team Lead of Technical
Communications, OCOS & CIO

Greg Such
Program Development
Manager, Software Solutions
Division

Andrew Kotov
Software Architect,
Software Solutions Division

James Ivers
Principal Investigator,
Principal Engineer, Software
Solutions Division

Collaborators
• Marouane Kessentini, Oakland University
• Khouloud Gaaloul, University of Michigan
• Esther Bae, Carnegie Mellon University
• Owen Donovan, Pennsylvania State University

Refactoring for Software Isolation
©2022 16[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Document Markings

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM22-0878

	Slide Number 1
	Periodic Refactoring Is Key to Keeping Code Healthy
	Software Is Never Done
	Refactoring Gets Harder at Scale
	Large-Scale Refactoring (LSR) in Industry
	Tools Used in Large-Scale Refactoring
	Our Solution: An Automated Refactoring Assistant
	Software Isolation Is a Recurring Challenge
	Building on Search-Based Software Engineering
	Building on Search-Based Software Engineering
	Multi-objective Optimization
	Current Capabilities
	Refactoring Criteria
	Looking Ahead
	Our Team
	Document Markings

