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PHITE: Enabling Al for Decision-Making Advantage
at the Tactical Edge

Problem: Today’s Al software is computationally expensive and requires
extensive knowledge, skill, and effort to adopt on low-power devices at
the tactical edge.

Solution: Develop an open-source library of machine learning (ML)
algorithms optimized for low-power (100’'s mW—0’s W) embedded
devices.

DoD Benefit

* Aid deployment of ML across a spectrum of edge-based applications.

» Enable rapid adoption of new/novel embedded hardware architectures.

* Provide efficient use of limited hardware for performance gains in AI/ML

applications. Areas of Opportunity
- Enable a wider range of applications at the tactical edge through * Soldier-borne sensors * Unattended sensors
portable and more capable software foundations. « Predictive maintenance  + loT/lo(B)T devices

Longer operational times - Increased situational awareness/force protection ¢ Less weight 2Increased mobility

PHITE [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 3
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ATLAS Initiative

Al Algorithms :
Infrared Camera (object detection and image classification) Targetmg SyStem

t |

The Advanced Targeting and Lethality Aided System (ATLAS) is an
emerging targeting technology being developed by DEVCOM’s C5ISR
and Armaments Centers. ATLAS uses cutting-edge sensing technologies
and machine-learning algorithms to automate manual tasks during
passive target acquisition, allowing crews to engage three targets in
the time it would normally take for them to engage one.

“Advancements from the PHITE project will improve mission critical
parameters in current edge systems and make possible new edge
systems.”

— Forrest Bussler, Chief, Embedded Hardware and Processing Branch,
US Army DEVCOM C5ISR Center Photo: U.S. Army

PHITE
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Dataset: Automatic Target Recognition (ATR)

300 GB of full-motion video clips at

multiple ranges and aspects (moving in

circles, walking in figure eights):

* Tanks

* Armored vehicles
* Trucks

* People

PHITE
©2022

405/1600; 640x512 pixels; 16-bit; 1.1GB

b 1] i

https:/Ldéc.orq/databases/atr-alqorithm-deveIopment-imaqe-database/

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
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Our goal is to maximize analytic capability

oo R

Cost $399,000

1TB system/512GB GPU

M TLEET I Intel Platinum (24 cores) x 2 +
NVIDIA Tesla V100 x 16

[ [T CI/STrZ- 0 BiT-M(ResNet) / 900M parameters

PHITE
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at the smallest scales.

TR
S

<30W 330mwW

$999 $4

32GB 256-bit LPDDR4x 264KB RAM (2MB flash)

512-core Volta GPU w/ 64 Tensor Cores RP2040: ARM Cortex-MO0+ (dual core)
(8 Volta SMs)

1.41 teraFLOPS 266 megaFLOPS

AlexNet / 60M parameters MobileNet V2 / 3M parameters

Push analytics capability to the right.

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
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Approach: Extend and Apply CMU’s Research
on Direct Convolutions

High Performance Zero-Memory Overhead Direct Convolutions

Jiyuan Zhang' Franz Franchetti' Tze Meng Low !

Abstract Performance normalized to OpenBLAS GEMM on AMD PileDriver
. ) . ) 4.0 GHz, 4/4 cores/threads
The computation of convolution layers in deep Normalized Performance [Gflop/s]
. . - 18
neural networks typically rely on high perfor- 16 u OpenBLAS+Packing Direct CNN
mance routines that trade space for time by using 14
additional memory (either for packing purposes or 12
required as part of the algorithm) to improve per- ! 'P; “““““““““““““““““““
c . 08 cking
formance. The problems with such an approach ng Overheads
are two-fold. First, these routines incur additional 04
memory overhead which reduces the overall size 02
3 ork that can fi FEpR—. 0
ot. thel ne.rwmk that can fit p[] embedded dev 1%6:.\ comnt coma2 o3 comea comes
with limited memory capacity. Second, these high Alexnet Layers

performance routines were not optimized for per-

‘.'g‘ N '.W.\ ans ths . . . ) . . )
forming convolution, which means that the per Figure |. High performance direct convolution implementation

formance obtained is usually less than conven- achieves higher performance than a high performance matrix multi-
tionally expected. In this paper, we demonstrate plication routine, whereas matrix-multiplication based convolution
that direct convolution, when implemented cor- implementations suffers from packing overheads and is limited by
rectly, eliminates all memory overhead, and yields the performance of the matrix multiplication routine
performance that is between 10% to 400% times

In International Conference on Machine Learning, pp. 5776-5785. PMLR, 2018.
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Our Team
CMU / SEI

Dr. Scott McMillan, Principal Investigator

Principal Engineer — MTS,
Al Division, SEI

Jay Palat Oren Wright

Senior Engineer, Senior Researcher — MTS,
Al Division, SEI Al Division, SEI

PHITE
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CMU / ECE

Prof. Tze Meng Low, Co-Principal Investigator
Assistant Research Professor, Electrical and Computer

Engineering, CMU

Upasana Sridhar

PhD, Electrical and Computer
Engineering, CMU

Pankti Rajesh Shah
ECE master’s student

Nicolai Tukanov Navya Chandra
PhD, Electrical and Computer ECE master’s independent study:

Engineering, CMU “Fused convolution on Pi Pico”
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SMalLl.: Software for Machine Learning Libraries

Applications &

Benchmarks
(reference models,
data, validation)

Approach: Two APIs:

CNN API }  Usability: A high-level CNN API provides
Orchestration: common functionality for machine learning

data layout developers.

and

loop structure

WKernel API } * Performance-portability: A low-level micro-
VieralEinEs kernel API defines a small number of primitives

(HW-specific) to be hand-optimized by hardware experts for

Hardware specific hardware.

PHITE
©2022
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SMalLl.: Software for Machine Learning Libraries

Applications &

Benchmarks
(reference models,
data, validation)

CNN API

Orchestration:
data layout
and
loop structure

pMKernel API

Microkernels
(HW-specific)

Hardware

PHITE
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—

Approach: Prioritizing support for object
detection and image classification models

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
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SMalLl.: Software for Machine Learning Libraries

Applications & Neural network layers currently implemented
Benchmarks in the high-level SMaLL Library API:

(reference models,
data, validation)

CNN API } » Convolution, partial and group
Orchestration: * 1x1 Convolution
dataaLadyO”t - Depth-wise Convolution
loop structure * Max Pooling
uKernel API * Activation (ReLU)
VeralerE s * Fully Connected (FC)—implemented as GEMM
(HW-specific) (or MMM) or 1x1 direct convolution

Hardware

PHITE
©2022



Coverage of MLPerf ‘Tiny’ and ‘Mobile’ Benchmarks

Approach: Prioritizing the
object detection and image
classification models

* Yellow — some layers not yet
supported (e.g., Upsampling
Convolution)

- Red — model type requires
more study (e.g., Embedding
Layers, Attention)

PHITE
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Task Models Dataset

Keyword Spotting DS-CNN Speech Commands

Visual Wake Words MobileNet Visual Wake Words Dataset
Image Classification ResNet Cifar10

Anomaly Detection Deep AutoEncoder ToyADMOS

Image classification MobileNetEdgeTPU ImageNet

Object detection MobileDETs MS-COCO 2017

Segmentation DeeplLabV3+ ADE20K (32 classes, 512x512)
Segmentation MOSAIC (U-Net) ADEZ20K (32 classes, 512x512)
Language processing Mobile-BERT SQUAD 1.1

https://mlcommons.org

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution



https://github.com/mlcommons/tiny/blob/master/benchmark/training/keyword_spotting/keras_model.py
https://github.com/mlcommons/tiny/blob/master/benchmark/training/visual_wake_words/vww_model.py
https://github.com/mlcommons/tiny/blob/master/benchmark/training/image_classification/keras_model.py
https://github.com/mlcommons/tiny/blob/master/benchmark/training/anomaly_detection/keras_model.py
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SMalLlL.: Software for Machine Learning Libraries

Applications &

Benchmarks
(reference models,
data, validation)

CNN API

Orchestration:
data layout
and
loop structure

MKernel API

Microkernels
(HW-specific)

Hardware

PHITE
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Approach: applying recent research
advances in optimized computation

- “managing” the data

- “orchestrating” the computation

Weights Tensor (G,G,)

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
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Convolution Operation—End to End sotare
Institute
X

A
v

Y
out_tensor
! for j: 0 to K
in_tensor for 1: 0 to ¥
N o for k: 0 to X
for i: 0 to C
for n: 0 to H;
Hy for m: 0 to W;
output_tensor[j] [1] [k] +=
W; (in_tensor[i][1 * s + n][k * s + m]
* filter[j]l[i] [n] [m])
filter
PHITE
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Orchestration: Data Layout and Loop Structure

High Performance Zero-Memory Overhead Direct Convolutions

Jivuan Zhang' Franz Franchetti! Tze Meng Low '

Abstract

The computation of convolution layers in deep
neural networks typically rely on high perfor-
mance routines that trade space for time by using
additional memory (either for packing purposes or
required as part of the algorithm) to improve per-
formance. The problems with such an approach
are two-fold. First, these routines incur additional
memory overhead which reduces the overall size
of the network that can fit on embedded devices
with limited memory capacity. Second, these high
performance routines were not optimized for per-
forming convolution, which means that the per-
formance obtained is usually less than conven-
tionally expected. In this paper, we demonstrate
that direct convolution, when implemented cor-
rectly, eliminates all memory overhead, and yields
performance that is between 10% to 400% times

Performance normalized to OpenBLAS GEMM on AMD PileDriver
4.0 GHz, 4/4 cores/threads

Normalized Performance [Gflop/s]
18 "
e » OpenBLAS+Packing Direct CNN
14
12

1 ——— e e B BN
0.8 Packing
06 overheads
04
0.2

o

Comvl Conv2 Conv3 Conva Comvs

Alexnet Layers

Figure 1. High performance direct convolution implementation
achieves higher performance than a high performance matrix multi-
plication routine, whereas matrix-multiplication based convolution
implementations suffers from packing overheads and is limited by
the performance of the matrix multiplication routine

In International Conference on Machine Learning, pp. 5776-5785. PMLR, 2018.

PHITE
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Much of our efforts are targeted at
extending CMU’s 2018 research on
direct convolutions.
« Custom data layout instead of
packing
- Saves memory
- Blocks data for memory hierarchy
* Direct convolution loop nest is more
computationally efficient

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
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Orchestration: Data Layout and Loop Structure

High Performance Zero-Memory Overhead Direct Convolutions

Jivuan Zhang' Franz Franchetti! Tze Meng Low '

Abstract

The computation of convolution layers in deep
neural networks typically rely on high perfor-
mance routines that trade space for time by using
additional memory (either for packing purposes or
required as part of the algorithm) to improve per-
formance. The problems with such an approach
are two-fold. First, these routines incur additional
memory overhead which reduces the overall size
of the network that can fit on embedded devices
with limited memory capacity. Second, these high
performance routines were not optimized for per-
forming convolution, which means that the per-
formance obtained is usually less than conven-
tionally expected. In this paper, we demonstrate
that direct convolution, when implemented cor-
rectly, eliminates all memory overhead, and yields
performance that is between 10% to 400% times

Performance normalized to OpenBLAS GEMM on AMD PileDriver
4.0 GHz, 4/4 cores/threads

Normalized Performance [Gflop/s]
18 -
16  OpenBLAS+Packing  u Direct CNN
14
12

1 ——[ B s 0 BN BN
08 Packing
06 Overheads
04
02

0

Convl Convz Conv3 Conva Convs

Alexnet Layers

Figure 1. High performance direct convolution implementation
achieves higher performance than a high performance matrix multi-
plication routine, whereas matrix-multiplication based convolution
implementations suffers from packing overheads and is limited by
the performance of the matrix multiplication routine

In International Conference on Machine Learning, pp. 5776-5785. PMLR, 2018.

PHITE
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for j’: 0 to C,/C_,, in parallel
for i’: 0 to C,/C,y

for 1: 0 to Ho
for k’: 0 to W, /W,
for n: 0 to H,
for m: 0 to W,
for ii: 0 to C;,
for kk: 0 to W
for jj: 0 to C_
out_tensor[]j’'*C_+]j]]
[k’ *W_+kk] [1] +=
(in_tensor[i’ *C;, + ii]
[s*k’ *W_, + kk + m]
[1*s + n] *
filter[i’ *C;, + ii]
[3’*Cq + 331[m] [n])

Now 9 loops; outer loop is parallelized

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
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Orchestration: Data Layout and Loop Structure

High Performance Zero-Memory Overhead Direct Convolutions

Jivuan Zhang' Franz Franchetti! Tze Meng Low '

Abstract Performance normalized to OpenBLAS GEMM on AMD PileDriver
. . . 4.0 GHz, 4/4 cores/threads
The computation of convolution layers in deep Normalized Performance [Gfiop/s]
. . - 18
neural networks typically rely on high perfor- e ® OpenBLAS+Packing  « Direct CNN
mance routines that trade space for time by using 14
additional memory (either for packing purposes or 12
required as part of the algorithm) to improve per- : PN B N B B
08 cking

formance. The problems with such an approach 06
are two-fold. First, these routines incur additional 04
memory overhead which reduces the overall size 02
ok that can JEP. o
of.thel ne.twmk that can fit on embedded dev ices com coma o3 comea coms
with limited memery capacity. Second, these high Alexnet Layers

performance routines were not optimized for per-
forming convolution, which means that the per-

3 . . Figure 1. High performance direct convolution implementation
formance obtained is usually less than conven- achieves higher performance than a high performance matrix multi-
tionally expected. In this paper. we demonstrate plication routine, whereas matrix-multiplication based convolution
that direct convolution, when implemented cor- implementations suffers from packing overheads and is limited by
rectly, eliminates all memory overhead, and yields the performance of the matrix multiplication routine
performance that is between 10% to 400% times

In International Conference on Machine Learning, pp. 5776-5785. PMLR, 2018.

PHITE
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for j’: 0 to C,/C,, in parallel
for i’: 0 to C,/C,y

for 1: 0 to Ho
for k’: 0 to W /W
for n: 0 to H,
for m: 0 to W,
for ii: 0 to C;,
for kk: 0 to W
for jj: 0 to C,
out tensor[j’*C_+jJj]
[k’ *W_+kk] [1] +=
(in_tensor[i’*C, + ii]
[s*k’*W__ + kk + m]
[1*s + n] *
filter[i’ *C,, + ii]
[3'*Cop + 331[m][n])

Three tuning parameters to block data
for different hardware platforms

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
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Orchestration: Fusing Convolution Layers

Beyond Element-wise Fusion for Reducing Convolutional Neural
Nets Sizes

Upasana Sridhar*, Navya Chandra*, Martin Schatz", Scott McMillan®, Tze Meng Low*
*Meta, Inc. (Facebook)
" Software Engineering Institute, Carnegie Mellon University
* Dept. of Electrical and Computer Engineering, Carnegie Mellon University

ABSTRACT F———
Fusing multiple layers in a deep learning network is commeonly e i P e ey
recognized as an approach to improve performance and reduce Ny

the amount of memory required. However, current approaches e

hinnl= Lo
auter_dimension_paritionsa{1 4
GAL1I6116.51)

to fused layers are often limited to those that contain element-
wise operations, such as Activation and Batch Normalization. More
complicated layers are often not fused as the indexing overheads are
often considered to be more costly than the benefits of fused layers.
In this work, we show that fusing non-elementwise operations can DVine Couroktion

windose: 2x3,

DWist Filtees.
2336411

be beneficial. Fundamental to our approach is the ability to express
CNN layers using the same loop nest; simplifying the analysis and

thus making it easier to specify how to fuse layers together. We &t "J

show that this fusion produces a 1.5-10x reduction in the memory -wr

requirement. Moreover, we show that the fused implementations Figure 1: Post-fusion compute graph for Bottleneck (1 x 1)

also produce a runtime improvement on the order of 4.6x - 9.9x Convolution + ReLu Activation + Depthwise Convolution

compared to PyTorch and 1.2x - 20.2x compared to Tensorflow block using XLA demonstrating that fusion in XLA is limited.

compiled with XLA. The Relu layer has been fused with the Bottleneck convo-
PHITE
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Algorithm 2 Fused abstract deep learning layer loop structure

1: forg < G do
2 for j< K do
3:
4 fori < Fo do » Fusion in Last iteration
5:
& for k < Opdo v Transformation Req for Fusion
T: forl < 0,, do
8 forx < Fp do
% fory < F,, do
10: for ii < I}, do
11:
12: for Il < 0, do
1% for ji= ch do
14: ReductionOp(0, I, Fo)
15: end for
16: end for
17: > Single Element Reduction
18 forll < 0, do
19: for jj < Oyp do
200 ReductionOp(0, O, F1)
21 end for
22: end for
23; end for
4 end for
25; end for
26: » Channel Reduction
a7: forx < Fj,lr do
28: fory < Fl do
29: ii=1
0 forll <0 do
31 for ji= O(‘b do
32 ReductionOp(0, Og, F1)
33 end for
34 end for
35 end for
36 end for
37 end for
38 end for
39, end for
400 end for

41: end for=0

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
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Orchestration: Fusing Convolution Layers

New research results on
combining (or fusing)
neural network layers.

» Specifically targeting
convolution layers

* 1.5x—10x memory
reduction

* 1.2x — 20x performance
gains over pytorch and
Tensorflow

PHITE
©2022

MobileNet - 1x1 Convolution Fused with 3x3 Dwise Convolution, stride = 1

450 @
o~ =
i
o 1 400 »
E >
= S

350 £

=
L Al em NEE"mm NEEVER
56x56x128 28x28x256 14x14x512
(5+6) (9+10) (13+14)

Intermediate Output Dimensions (HxWxK)
B LibTorch W PyTorch XLA W Unfused C++ M Fused C++ —— Fused Memory Savings

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 1 9
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SMalLl.: Software for Machine Learning Libraries

Innermost loops define the microkernels the low-
level APL.

Microkernels are developed for specific targeted
hardware (sometimes in assembly code).

Performance models developed from experiments
using microkernels.

These models inform the selection of the data
blocking factors in the orchestration layer.

PHITE
©2022

Applications &

Benchmarks
(reference models,
data, validation)

CNN API

Orchestration:
data layout
and
loop structure

puKernel API

Microkernels
(HW-specific)

Hardware

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
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Publications

Abstract—

Matrix engines, also known as matrix-multiplication accel-
erators, capable of computing on 2D matrices of various data
types are traditionally found only on GPUs. However, they are
increasingly being introduced into CPU architectures to support
AIML computations. Unlike traditional SIMD functional units,
these accelerators require both the input and output data to be
packed into a specific 2D-data layout that is often dependent
on the input and output data types. Due to the large variety of
supported data types and architectures, a common abstraction
is required to unify these seemingly disparate accelerators and
more efficiently produce high-performance code. In this paper,
we show that the hardware characteristics of a vast array of
different matrix engines can be unified using a single analytical
maodel that casts matrix engines as an accumulation of multiple
outer-products (also known as rank-k updates). This allows us to
easily and quickly develop high-performance kernels using matrix
engines for different arthliectures We demonstrate our matrl\c

riohility ha 1 i e baen dick

noine maondal and it

Modeling Matrix Engines for Portability and
Performance

Nicholai Tukanov*, Rajalakshmi Srinivasaraghavanf, José E. Moreira® and Tze Men g Low?$
* Electrical and Computer Engineering, Camegie Mellon University, Pittsburgh, PA, Email: ntukanov @cmu.edu
fIBM Systems, Austin, TX, Email: Rajalakshmi.Srinivasaraghavan@ibm.com
IBM Research, Yorktown Heights, NY, Email: jmoreira@us.ibm.com
§Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, Email: lowt@cmu.edu

Speedup of POWER10 MMA over POWER10 VSX

apeeuuw PL0WSK BASELINE  m P10 OPENBLAS MMA P10 BUS MMA

Promem SHG fM N=K=X}

Fig. 1: Performance of double-precision BLIS and Open-
BLAS POWERI0O MMA kemnels over a baseline POWERIO
VSX for square problem sizes. From the plot, we see that
POWERI0 MMA achieves 1.73-1.76x speedup (out of a
theoretical achievable speedup of 2x) over POWERI0 VSX

implementation.

IEEE International Parallel and Distributed Processing Symposium (IPDPS), May 2022

PHITE
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[Published] “Modeling Matrix Engines for
Portability and Performance.” IEEE
International Parallel and Distributed
Processing Symposium (IPDPS). May 2022.

[Submitted] “SMalLL: Software for Rapidly
Developing Machine Learning Libraries.” ACM
Transactions on Embedded Computing:
Special issue on TinyML.

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.



What's Next

* Developing microkernels for ATLAS hardware
platform and benchmarking

» Adding support for more neural network layers
* Implementing all possible fused layers

» Open-source software release

* Explore integration with the MLIR ecosystem

For further information:
Scott McMillan
info@sei.cmu.edu

Carnegie
Mellon
University

Software
Engineering
Institute
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