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Quantifying Uncertainty: A Key Component 
for Informative and Robust AI Systems

Image: South Carolina National Guard, 151st Signal Battalion

Friendly Truck
(0.9834 Confident)
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Quantifying Uncertainty: A Key Component 
for Informative and Robust AI Systems

Image: South Carolina National Guard, 151st Signal Battalion

Friendly Truck
(0.9834 Confident)

Accurate estimates of uncertainty can lead to better 
informed decision making.
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If Friendly Truck 
is detected
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Mark Position of 
Friendly Truck 
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Mark Position of 
Unknown Vehicle 

on Map

Maneuver Robot to 
gain confidence

By allowing high-level reasoning to be 
informed by predictive uncertainty, AI 
systems can be more robust to failures 
caused by unconfident predictions.



Uncertainty Quantification
©2022 10[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

?

Quantifying Uncertainty: A Key Component 
for Informative and Robust AI Systems

If Friendly Truck 
is detected

Confidence
≥

0.5

Confidence 
<

0.5

Mark Position of 
Friendly Truck 

on Map

Mark Position of 
Unknown Vehicle 

on Map

Maneuver Robot to 
gain confidence

By allowing high-level reasoning to be 
informed by predictive uncertainty, AI 

systems can be more robust to failures 
caused by unconfident predictions.

ML models that can accurately express their uncertainty…
1. Can better inform end users, leading to less opaque, more trustable AI Systems.
2. Be evaluated, debugged, improved upon, and built around in a more robust way.

National Security Commission on Artificial Intelligence, Final Report
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By allowing high-level reasoning to be 
informed by predictive uncertainty, AI 

systems can be more robust to failures 
caused by unconfident predictions.

Our Work: Evaluating, Characterizing, Articulating, and 
Rectifying Uncertainty in ML models for the purpose of more 

informative and robust AI Systems.

This Talk: Using uncertainty as means to characterize errors.
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Introduction to Modern Object Detection

Object detection is really two tasks done in tandem:
1. Localization: Identifying where in the image objects are
2. Classification: Identifying what those objects are

Neural Network
Car Traffic Light
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Introduction to Modern Object Detection

Neural Network

Backbone 
Network

Classification 
Head

Localization 
Head 𝑥𝑥1, 𝑦𝑦1 , 𝑥𝑥2, 𝑦𝑦2

Object detection is really two tasks done in tandem:
1. Localization: Identifying where in the image objects are
2. Classification: Identifying what those objects are
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Introduction to Modern Object Detection

Neural Network

Backbone 
Network

Classification 
Head

Localization 
Head

𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠,𝑝𝑝𝑝𝑝𝑠𝑠𝑐𝑐𝑠𝑠𝑝𝑝𝑝𝑝, …

Object detection is really two tasks done in tandem:
1. Localization: Identifying where in the image objects are
2. Classification: Identifying what those objects are
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Introduction to Modern Object Detection
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Object detection is really two tasks done in tandem:
1. Localization: Identifying where in the image objects are
2. Classification: Identifying what those objects are
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Introduction to Modern Object Detection

Neural Network

Backbone 
Network

Classification 
Head

Localization 
Head

𝟎𝟎.𝟗𝟗, 0.001, 0.05, …

Maximum value 
corresponds to “Car” class.

Object detection is really two tasks done in tandem:
1. Localization: Identifying where in the image objects are
2. Classification: Identifying what those objects are
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Introduction to Modern Object Detection

Neural Network

Backbone 
Network

Classification 
Head

Localization 
Head

𝟎𝟎.𝟗𝟗, 0.001, 0.05, …

Box is assigned class “Car”.

Object detection is really two tasks done in tandem:
1. Localization: Identifying where in the image objects are
2. Classification: Identifying what those objects are
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Uncertainty in Object Detectors

Neural Network

Backbone 
Network

Classification 
Head

Localization 
Head

0.9, 0.001, 0.05, …

Predictive Uncertainty – Uncertainty in the output of the model
• A combination of aleatoric and epistemic uncertainty

- Epistemic: Uncertainty in the parameters of the model. Can be reduced by training on more data.
- Aleatoric: Uncertainty caused by inherent noise in the data. Cannot be reduced by training on more data.

• Uncertainty can be expressed for both classification and localization.

Most standard object 
detection models already 
express predictive 
uncertainty for classification 
by producing probabilities!
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Uncertainty in Object Detectors

Neural Network

Backbone 
Network

Classification 
Head

Localization 
Head

0.9, 0.001, 0.05, …

Classification uncertainty metrics:
1.Maximum classification probability
2.Entropy of class probability distribution
3. (Others)

Predictive Uncertainty – Uncertainty in the output of the model
• A combination of aleatoric and epistemic uncertainty

- Epistemic: Uncertainty in the parameters of the model. Can be reduced by training on more data.
- Aleatoric: Uncertainty caused by inherent noise in the data. Cannot be reduced by training on more data.

• Uncertainty can be expressed for both classification and localization.
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Uncertainty in Object Detectors

Neural Network

Backbone 
Network

Classification 
Head

Localization 
Head 𝑥𝑥1, 𝑦𝑦1 , 𝑥𝑥2, 𝑦𝑦2

Most standard object 
detection models DO NOT
express obvious uncertainty 
in localization.

Predictive Uncertainty – Uncertainty in the output of the model
• A combination of aleatoric and epistemic uncertainty

- Epistemic: Uncertainty in the parameters of the model. Can be reduced by training on more data.
- Aleatoric: Uncertainty caused by inherent noise in the data. Cannot be reduced by training on more data.

• Uncertainty can be expressed for both classification and localization.
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Uncertainty in Object Detectors

Neural Network

Backbone 
Network
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Head

Localization 
Head

𝜇𝜇𝑥𝑥1 , 𝜇𝜇𝑦𝑦1 , 𝜇𝜇𝑥𝑥2 , 𝜇𝜇𝑦𝑦2

*Kendall, Alex, and Yarin Gal. "What uncertainties do we need in bayesian deep learning for computer 
vision?." Advances in neural information processing systems 30 (2017).

We use a technique called 
loss attenuation* to produce 
probabilistic estimates of a 
bounding box instead of a 
fixed prediction.

𝜎𝜎𝑥𝑥1 ,𝜎𝜎𝑦𝑦1 , 𝜎𝜎𝑥𝑥2 ,𝜎𝜎𝑦𝑦2

Predictive Uncertainty – Uncertainty in the output of the model
• A combination of aleatoric and epistemic uncertainty

- Epistemic: Uncertainty in the parameters of the model. Can be reduced by training on more data.
- Aleatoric: Uncertainty caused by inherent noise in the data. Cannot be reduced by training on more data.

• Uncertainty can be expressed for both classification and localization.
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Uncertainty in Object Detectors
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Backbone 
Network
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Head
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Head

𝜇𝜇𝑥𝑥1 , 𝜇𝜇𝑦𝑦1 , 𝜇𝜇𝑥𝑥2 , 𝜇𝜇𝑦𝑦2
𝜎𝜎𝑥𝑥1 ,𝜎𝜎𝑦𝑦1 , 𝜎𝜎𝑥𝑥2 ,𝜎𝜎𝑦𝑦2

Localization uncertainty metrics:
1.Entropy over Gaussian parameters
2.Normalized Entropy
3. (Others)

Predictive Uncertainty – Uncertainty in the output of the model
• A combination of aleatoric and epistemic uncertainty

- Epistemic: Uncertainty in the parameters of the model. Can be reduced by training on more data.
- Aleatoric: Uncertainty caused by inherent noise in the data. Cannot be reduced by training on more data.

• Uncertainty can be expressed for both classification and localization.
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Predictive Uncertainty – Uncertainty in the output of the model
• A combination of aleatoric and epistemic uncertainty

- Epistemic: Uncertainty in the parameters of the model. Can be reduced by training on more data.
- Aleatoric: Uncertainty caused by inherent noise in the data. Cannot be reduced by training on more data.

• Uncertainty can be expressed for both classification and localization.

Uncertainty in Object Detectors

Neural Network

Backbone 
Network

Classification 
Head

Localization 
Head

𝜇𝜇𝑥𝑥1 , 𝜇𝜇𝑦𝑦1 , 𝜇𝜇𝑥𝑥2 , 𝜇𝜇𝑦𝑦2
𝜎𝜎𝑥𝑥1 ,𝜎𝜎𝑦𝑦1 , 𝜎𝜎𝑥𝑥2 ,𝜎𝜎𝑦𝑦2

Localization uncertainty metrics:
1. Entropy over Gaussian parameters
2. Normalized Entropy
3. (Others)

What happens when a detector is uncertain?
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Probabilistic Object Detection Example – Overlapping Objects
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Probabilistic Object Detection Example – Occlusion

Increases in uncertainty seem to correspond 
to challenging detection events!
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Preliminary Quantitative Results

Classification Localization
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Preliminary Quantitative Results

Classification Localization

Increases in uncertainty seem to correspond to errors 
in either classification or localization!
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Bringing It All Together

Observations:
• Qualitative: Increase in detector uncertainty correspond to events.
• Quantitative: Increase in detector uncertainty correspond to errors.

By using both, we can not only predict when errors are likely, but also 
characterize the events that caused them.

Events like: Occlusions, intersection of objects, objects leaving frame, 
duplication of predictions, etc.
Even without much context we can differentiate between errors in localization
versus those in classification.

Next Step: Using context and uncertainty values to characterize potential errors.

Practical Benefit: End users can reason about events that caused model errors.



Uncertainty Quantification
©2022 29[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2022

Summary

Uncertainty can be a key component to more robust and trustworthy machine learning models.

We showed:
• How uncertainty can be quantified by modern object detectors.
• Some qualitative results showing events causing the detector to be uncertain.
• Some preliminary quantitative results showing uncertainty corresponds to error.
• An outline of upcoming work combining the two to use uncertainty to detect and characterize 

errors in object detection models.

Other work in the project:
• Metrics for evaluating a model’s ability to express uncertainty accurately (Kirchenbauer, Oaks, 

and Heim; 2022)
• Learning from limited sources of information (Garg et al; 2021)(Garg, Balakrishnan, and 

Lipton; 2022)
• Learning to detect when instances are “out of domain”
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