

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

The Influence of System Properties
on Software Assurance and Project
Management

ABSTRACT: Certain characteristics of software being developed and of the de-
velopment environment influence how software assurance should be managed.
The scope and size of the system are obvious attributes to consider. A large sys-
tem is built by first decomposing it into pieces that are more easily managed.
Project management decisions often influence how that decomposition is done.

DEVELOPMENT CONTEXT
Certain characteristics of software being developed and of the development envi-
ronment influence how software assurance should be managed. The scope and
size of the system are obvious attributes to consider. We build a large system by
first decomposing it into pieces that are more easily managed. Project manage-
ment decisions often influence how we do that decomposition. A decomposition
might be constrained by a need to integrate legacy systems, a requirement to use
commercial products, or a desire to reduce costs by reusing available software.
The challenge is to decompose the system in such a way that those individual
pieces can be individually built and that the composition of those components
meets system requirements.

Software assurance is strongly influenced by how we integrate components and
by the knowledge and control that we have with respect to the behavior of those
components. We consider the consequences for software assurance and project
management as the development context moves from general-purpose software
such as commercial products to organization-specific applications and integrated
systems and then to system of systems that may span organizational boundaries.

GENERAL GUIDANCE
Risk analysis should be threaded through the development process. A series of
risk assessments provides a measure of how well the previously identified risks
have been addressed.

Robert J. Ellison

February 2006

There should be a close tie between the risk analysis and requirements as risk
analysis helps to define the scope for security in terms of the threats to be con-
sidered, the responses desired, and the assurance levels desired.

GENERAL PURPOSE COMPONENTS AND COMMERCIAL
PRODUCTS
The complexity associated with product development may be a consequence of
tight component integration to meet market demands for functionality or perfor-
mance. Products typically have extensibility requirements so that they can be
tailored for a specific customer’s operating environment. The complexity in-
duced by those product requirements also raise the risk that those features could
be exploited.

Cost reduction is a frequent business driver that encourages the development of
software packages that are used in multiple systems within an organization. Of-
ten cost reduction leads to sharing infrastructure services among multiple appli-
cations.

While the size and scope of commercial products can be significantly larger than
that for libraries of shared business services, these two development contexts
share traits that affect software assurance.

• The developer for commercial software typically can change any of the
product software and has detailed knowledge its structure. Shared business
components are typically small, with the developer having control over most
aspects of their development.

• General-purpose business software can be used in applications with differing
assurance requirements, although such software is typically avoided for sys-
tems with high-assurance requirements. The developer for a commercial
product has limited or no knowledge of the criticality of the services that
may be implemented with that product, the business impact of a product
failure, or the operational risks associated with any specific usage.

Example
There is increasing interest in using service-oriented architectures (SOA) and
Web Services to satisfy the escalating integration requirements among distribut-
ed business systems. That approach raises several software assurance issues for
applications and systems. There are multiple definitions of SOA. This note con-
siders it as an architecture in which the business logic of the application is orga-

1 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

nized in modules (services). Each module is a discrete service, and its internal
design is independent of the nature and purpose of the requester (i.e., loosely
coupled). The objective is to develop reusable services (components) that can be
easily composed to implement multiple and frequently changing business work
processes. The difficulty of assuring the behavior of a large, tightly coupled ap-
plication has been replaced by the difficulty of

• assuring not only a specific business service but also assuring those services
as used in multiple business processes with potentially differing perfor-
mance, security, or reliability requirements. For example, a business process
may use stronger authentication methods or limit data access with a remote
business process when the process participants are not on a trusted network.

• assuring that those services can be composed to support complex and ever
changing business processes

Selected Project Management Issues for Products and Shared Services

1. Code analysis, both manual and tool-based, can be applied to all software to
find and correct many of the vulnerabilities associated with coding.

2. Design reviews should reflect the breadth of potential usage. There should
be sufficient access to all component software to enable correcting the de-
sign or implementation faults identified.

3. Threat modeling and risk analysis should assume a spectrum of attacker
profiles, from a novice using a readily available attack kit to a sophisticated
attacker with ample resources who can tailor an attack for a specific system.

4. Shared services typically aggregate risks. A failure in shared software or
infrastructure services could affect multiple systems. The level of software
assurance required for the shared components should be higher than that re-
quired than for the systems in which they are deployed. The higher assur-
ance and aggregation of risks implies that the risks for shared services
should include the full spectrum of integrity, confidentiality, and availabil-
ity issues.

Microsoft’s Trustworthy Computing Security Development Lifecycle provides a
detailed description of their experience for incorporating software assurance into
development life cycle for software products [Lipner 05].

2 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

PRODUCTS/COMPONENTS TO APPLICATIONS/INTEGRATED
SYSTEMS
The difficulty of demonstrating software assurance is compounded by two prob-
lems as we move to applications and integrated systems. Commercial products
and shared components are used to build applications and integrated systems.
Compared to the original developer, the application or system developer has lim-
ited knowledge of their internal structure and control of their behavior and can-
not provide as strong an assurance argument as that provided by the product de-
veloper. While the product developer should demonstrate software assurance for
a spectrum of uses, the system developer only has to demonstrate assurance for
how products or shared components are used in that system.

Component Assurance Issues
The section on requirements and scope included examples of medium and high
assurance systems. Although there are many studies on the problems raised by
low assurance, medium assurance is more of a grey area in terms of the devel-
opment practices that should be used. Some will argue that we cannot compose a
medium-assurance system from low-assurance components, and that medium
assurance has to be built in from the start of development. Medium- and high-
assurance requirements are often in conflict with other development strategies
such as the reuse of existing code to lower costs and shorten development time.
Reuse can lead to software being employed in an environment where it was not
designed to be secure or to a combination of components that were not designed
to manage failure. The addition of extensibility mechanisms so that a product
can be customized for specific usage usually raises the security risks. Hence,
medium- and high-assurance systems may need to use more special purpose
mechanisms than the more flexible and general-purpose techniques that are used
for low-assurance systems.

System Assurance Issues
There is frequently a tendency when considering system security to focus on the
security of the components. Unfortunately, the whole is not the sum of the parts.
Security is an emergent system attribute and depends on the collective behavior
of the components. Although many security failures have been caused by a com-
ponent error, security vulnerabilities also arise from unexpected interactions
among components and from inconsistencies in the design and operational as-
sumptions among the subsystems.

While the problems associated with networked computing systems may be re-
ceiving the most attention, the difficulties associated with managing large sys-
tems have a long history. John Gall first published Systemantics in 1975. The

3 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

third edition was published in 2002 and renamed The Systems Bible [Gall 02].
While the wry humor in The Systems Bible is entertaining, the discussions
should be a reminder that many aspects of large system assembly and integration
are not well understood and that the methods that were successful for compo-
nents and relatively simple systems do not necessarily scale to large systems.

Grady Booch listed some of his favorite Gall axioms in his Web log on Feb 15,
2005 [Booch 05]. Several of those suggest the software assurance and project
management issues that arise with systems and systems of systems.

• A large system that is produced by expanding the dimensions of a smaller
system does not behave like the smaller system.

• A complex system that works is invariably found to have evolved from a
simple system that worked.

Both safety and security are emergent system properties. Nancy Leveson’s dis-
cussion of the consequences for safety analysis of that emergent behavior also
applies to security [Leveson 05].

Safety is an emergent property of systems. Determining whether a plant is ac-
ceptably safe is not possible by examining a single valve in the plant. In fact,
statements about the “safety of the valve,” without information about the context
in which that valve is used, are meaningless. Conclusions can be reached, how-
ever, about the reliability of the valve, where reliability is defined as “the ability
of a system or component to perform its required functions under stated condi-
tions for a specified period of time,” i.e., that the behavior of the valve will satis-
fy its specification over time and under given conditions. This is one of the basic
distinctions between safety and reliability: Safety can only be determined by the
relationship between the valve and the other plant components—that is, in the
context of the whole. Therefore it is not possible to take a single system compo-
nent, like a software module, in isolation and assess its safety. A component that
is perfectly safe in one system may not be when used in another. Attempts to
assign safety levels to software components in isolation from a particular use, as
is currently the approach in some international safety standards, is misguided.

The vulnerabilities generated by interactions among multiple system components
are much more difficult to locate and predict than the vulnerabilities associated
with a specific component or technology. The issue is not whether a component
is secure or insecure but whether that component can be securely used in a sys-
tem with specific threats. Security issues often arise with the use of commercial
components. Such components may need to be incorporated into a system with
stronger surety requirements than those satisfied by the individual components.

4 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

Selected Project Management Issues for Application and System
Development
Security is a system property. Whereas the implementation of a specific applica-
tion feature might be contained in a single component, a security feature may
require coordinated actions by multiple components or may depend on design or
coding guidelines that must be followed for all components. A well-designed
system might not depend on a single component to prevent an attack but instead
would implement multiple defenses so that the failure of a single mechanism
would not expose the system to attack.

Integration introduces dependencies and feedback among components that may
lead to an unintentional system or operational error or allow a maliciously in-
duced fault. Individual component design decisions on how to recover from and
report faults, either accidental or malicious, can lead to undesirable system be-
havior. A safe shutdown from a component perspective may induce a significant
system failure.

1. Risk analysis occurs at multiple levels of the system. A general system risk
analysis and threat model is an essential input into the design of the overall
system software architecture. That architecture should describe the response
to the identified risks in terms of the responsibilities of the software com-
ponents, users, and operations. Risk-based testing should be applied to both
components and to the system. (See White Box Testing and Security Test-
ing content.)

2. The design and implementation of components may generate system risks.
The outcome of the component risk analysis should be input for the period-
ic system risk analyses.

3. The user’s risk analysis for commercially available software may not have
to consider as wide a spectrum of threats as the analysis done by the ven-
dor. A user’s risk analysis only has to consider how that software is used in
the specific system with the identified threats for that context.

4. Poor coordination and communications are often listed among the reasons
for project failures. System integration has to resolve any mismatches with
both internal and outsourced development. One mechanism to encourage
better integration might be to specify the software assurance criteria for
each component such as completed code analysis for all delivered software.
There are likely differences in the software assurance requirements among
components developed in-house and those commercially available.

5. Systems typically have a shared infrastructure; hence, item four on the list
of project management issues for components and shared services is a criti-
cal requirement for system development.

5 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

6. The system risk assessment has to consider the functional design decisions
as well as the technologies that are used. Functional design decisions may
have significant security implications. A design that uses a central data
server has very different risks than a design that is based on peer-to-peer in-
formation sharing.

7. Just as for other aspects of the software, the early phases of development
are a learning curve for the security requirements associated with the de-
sired functionality. Reports of possible vulnerabilities must be treated dif-
ferently from other defects, as they represent a threat to users and other
stakeholders. There will be a significant number of unknowns when the
business application or supporting technology is on the leading edge. A se-
rious mismatch between the functional architecture and the security re-
quirements that is only recognized late in the development process is typi-
cally both difficult and expensive to resolve.

8. Many quality requirements such as those for security are known only ab-
stractly in the early life-cycle phases. An early risk analysis might identify
general threats such as insider attacks for a financial institution. A vulnera-
bility analysis model with more detailed attacker actions and possible re-
sponses requires a more detailed description of the software such as that
provided by the software architecture or a detailed design. The refinement
of these requirements could lead to changes in the project plan.

SYSTEMS TO SYSTEMS OF SYSTEMS
The expanding role of Web-based information exchange and technologies such
as Web Services is leading to the deployment of more systems of systems. We
use Mark W. Maier’s criteria to distinguish systems of systems from large-scale
monolithic systems [Maier 96]. A system of systems characterized by

• operational independence: If the system of systems is disassembled into its
component systems those component systems must be able to effectively
operate independently. The system of systems is composed of systems which
are independent and useful in their own right.

• managerial independence: The component systems not only can operate in-
dependently, they do operate independently. The component systems are
separately acquired and integrated but maintain a continuing operational ex-
istence independent of the system of systems.

• evolutionary development: The system of systems does not appear fully
formed. Its development and existence are evolutionary with functions and
purposes added.

6 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

• emergent behavior: The system performs functions and carries out purposes
that do not reside in any component system. These behaviors are emergent
properties of the entire system of systems and cannot be localized to any
component system.

• geographic distribution: The geographic extent of the component systems is
large. Large is a nebulous and relative concept as communication capabili-
ties increase, but at a minimum it means that the components can readily ex-
change only information and not substantial quantities of mass or energy.

Example
An event-driven architecture is an alternative to implementing a business-to-
business transaction with an online application. In an event-driven architecture, a
business transaction corresponds to an asynchronous message sent from the buy-
er to a supplier. An acknowledgement or a later shipping notice would be a mes-
sage from the supplier to the seller. The arrival of such messages can be thought
of as events. The advantage of asynchronous communications is that neither par-
ty ties up computing resources waiting on a response from the other.

Such a purchasing process represents a simple system of systems and is a good
example of the differences in design guidance between an integrated system or
application and a system of systems. Both parties in the system of systems im-
plementation have to operate without full control and visibility of the total pro-
cess.

In an IT application, authentication and authorization can be checked whenever
data are accessed. For an event-driven architecture, the authentication and au-
thorization might be implemented by a Web Services protocol. The message not
only contains the data but must also satisfy the authorization and authentication
requirements for both parties. Encryption might be used by the sender to restrict
access to the information. Signing might be used to help in identifying the source
of an order. The authentication and authorization of an individual who submitted
an order would typically have been verified on the purchaser’s system. The mes-
sage may contain information that describes the details of that authentication that
could be reviewed by the supplier.

Business to business transactions may be supported by a contractual agreement
that defines the responsibilities and liabilities of both parties. Such an agreement
may impose software assurance requirements on both parties.

7 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

Some Project Management Issues for Application and System
Development
1. The threats for any single system in a system of systems are propagated to

the other participants.
2. Whereas prevention is a frequent response to a component or application

risk, a system participating in a system of systems cannot control how the
risks are mitigated by the other systems. There will be a greater spectrum of
errors, and it is difficult to distinguish malicious errors from normal opera-
tional errors. The architect for a participant in a system of systems now has
to demonstrate software assurance for that system’s behavior in the context
of the system of systems faults.

3. Many of the design guidelines that support component or application devel-
opment should be carefully revised for a system of systems. The analysis of
a system used in a system of systems is done with incomplete information
about the other participants. The design of a system-of-systems interface
has to reflect the complexity of error handling in that context.

4. Static analysis is often effective for a component or application, but the
analysis of a system of systems can depend more on run-time analysis of
behavior because of the limited knowledge of other participants. The diffi-
culty of analysis is compounded by the evolutionary nature of a system of
systems.

INFLUENCE OF SYSTEM PROPERTIES ON RESOURCES

Estimates
Shared infrastructure can reduce component development costs, but those shared
services typically aggregate risks. Estimates should reflect the increased assur-
ance that be applied to the shared services.

Systems and systems of systems can raise havoc with estimates. As noted by
Leveson, it is very difficult to identify vulnerabilities that arise from the integra-
tion of components or systems [Leveson 05]. Unanticipated behavior can appear
during integration testing, and the resolution of such problems may require com-
ponent or architectural changes. Systems of systems requirements typically in-
crease the costs for the development of a participating system. The implementa-
tion of dynamic (run-time) analyses of system-of-systems interfaces and the
system’s response to adverse system-of-systems events is more expensive than

8 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

the static analyses and preventive measures frequently used for an integrated
system or application.

Facilities and Staffing
The development context—component, system, or system of systems—also in-
fluences the skills required. An analysis of the emergent behavior of a system or
system of systems is quite different from the vulnerability analysis of a compo-
nent. The assurance of a system and system of systems likely requires the assur-
ance of any shared infrastructure services. A risk assessment requires experience
with risk analysis and with applying it in the corresponding development con-
text.

Other Related Estimates Such as Size and Defects
A number of Gall’s axioms suggest the difficulties with estimating defects with
large systems [Gall 02].

• Any large system is going to be operating most of the time in failure mode.
• The mode of failure of a complex system cannot ordinarily be determined

from its structure.
• One does not know all the expected effects of known bugs.

Vulnerabilities arise as we put the pieces together. The sources of potential er-
rors now include

• specific interface: An interface controls access to a service. Interfaces that
fail to validate the input stream are frequent members of published vulnera-
bility lists.

• component-specific integration: Assembly problems often arise because of
conflicts in the design assumptions for the components. Project constraints
may require using components, COTS software, or legacy systems that were
not designed for the operating environment, which raises the likelihood of
mismatches. The increasing importance of business integration requirements
compounds the component integration problems.

• architecture integration mechanisms: Commercial software tool vendors of-
ten provide the capability for the purchaser to integrate the tool into their
systems and tailor its functionality for their specific needs. However, the ca-
pability to reconfigure a system rapidly is matched by the increased proba-
bility of component inconsistencies generated by the more frequently chang-
ing component base, as well as the increased risk that the dynamic
integration mechanisms could be misused or exploited. These mechanisms
represent another interface that must be properly constrained.

9 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

• system behavior — component interactions: The behavior of a system is not
the simple sum of the behavior of the individual components. System behav-
ior is strongly influenced by the interactions of its components. Components
may individually meet all specifications, but when they are composed into a
system the unanticipated feedback among components can lead to unac-
ceptable system behavior. Security and safety are system rather than compo-
nent requirements. We can build a reliable system out of unreliable compo-
nents by appropriate use of redundancy. Components that are not secure as
standalone components in an operating environment may be secure when
used within the constraints maintained by a system.

Each source of errors requires its own analysis. (See the Assembly, Integration &
Evolution content area for more detail.) The errors associated with system be-
havior challenge the traditional approach to failure analysis. The assumption for
almost all causal analysis for engineered systems today is a model of accidents
that assumes they result from a chain (or tree) of failure events and human errors.
From an observed error, the analysis backward chains and eventually stops at an
event that is designated as the cause [Leveson 05].

Event-based models of accidents, with their relatively simple cause-effect links,
were created in an era of mechanical systems and then adapted for electro-
mechanical systems. The use of software in engineered systems has removed
many of the physical constraints that limit complexity and has allowed engineers
to incorporate greatly increased complexity and coupling in systems containing
large numbers of dynamically interacting components. In the simpler systems of
the past, where all the interactions between components could be predicted and
handled, component failure was the primary cause of accidents. In today’s com-
plex systems, made possible by the use of software, this is no longer the case.
The same applies to security and other system properties: While some vulnera-
bilities may be related to a single component only, a more interesting class of
vulnerability emerges in the interactions among multiple system components.
Vulnerabilities of this type are system vulnerabilities and are much more diffi-
cult to locate and predict [Leveson 05].

10 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

BIBLIOGRAPHY

[Booch 05] Booch, Grady. Architecture Web Log. http://www.booch.com/architecture/blog.jsp
(2005).

[Gall 02] Gall, John. The Systems Bible. Walker, MN: The General Systemmantics Press,
2002.

[Leveson 05] Leveson, Nancy. “A Systems-Theoretic Approach to Safety in Software-Intensive
Systems.” IEEE Transactions on Dependable and Secure Computing 1, 1 (January-
March 2004): 66-86.

[Lipner 05] Lipner, Steve & Howard, Michael. The Trustworthy Computing Security Development
Lifecycle. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsecure/html/sdl.asp (March 2005).

[Maier 96] Maier, Mark W. Architecting Principles for Systems-of-Systems.
http://www.infoed.com/Open/PAPERS/systems.htm (1996).

11 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.infoed.com%2FOpen%2FPAPERS%2Fsystems.htm

Copyright 2005-2012 Carnegie Mellon University

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade
name, trade mark, manufacturer, or otherwise, does not necessarily constitute or im-
ply its endorsement, recommendation, or favoring by Carnegie Mellon University or
its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0001120

12 | THE INFLUENCE OF SYSTEM PROPERTIES ON SOFTWARE ASSURANCE AND
PROJECT MANAGEMENT

	The Influence of System Properties on Software Assurance and Project Management
	Development Context
	General Guidance
	Products/Components to Applications/Integrated Systems
	Component Assurance Issues
	System Assurance Issues
	Selected Project Management Issues for Application and System Development

	Systems to Systems of Systems
	Example
	Some Project Management Issues for Application and System Development

	Influence of System Properties on Resources
	Estimates
	Facilities and Staffing
	Other Related Estimates Such as Size and Defects

	Bibliography

